用户名: 密码: 验证码:
宁夏六盘山华北落叶松人工林与华山松天然次生林蒸散特征对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环境的重视,人工林面积开始不断增加,而由此引起的林水矛盾也成为当今森林水文研究的热点问题之一。而了解森林结构与森林耗水量的关系是协调林水矛盾的关键。2009年5-10月,应用热扩散法、微型蒸渗仪和传统水文学方法,对六盘山南侧香水河小流域内的华北落叶松人工林和华山松天然次生林的林分结构进行了对比,并比较分析了两种林分主要乔木树种的液流速率特征、林分蒸散及其分量组成,得出以下主要结论:
     (1)液流速率动态变化。在典型天气(8月4~9日)下,晴天,各树种的液流速率表现为白桦>华北落叶松>华山松;阴雨天,华北落叶松液流速率最大,华山松液流速率最小。各树种的日平均液流速率在生长季不同时期表现不同特征,分别为:生长季初期(5、6月份):红桦>华山松>白桦>华北落叶松;生长季中期(7、8月份):红桦>白桦>华北落叶松>华山松;生长季末期(9、10月份):华山松>华北落叶松>红桦>白桦。
     (2)液流速率与气象因子相关分析。4个树种液流速率与饱和水汽压差之间的R2值在0.89~0.93之间;与太阳辐射之间R2值在0.76~0.87之间;而与风速的相关性并不是很高。各个树种的瞬时液流速率、日均液流速率分别与气象因子进行了逐步回归分析,结果表明:饱和水汽压差为瞬时液流速率主要影响因子,太阳辐射的影响存在着滞后效应。而在日时间尺度上,只有太阳辐射入选方程,说明太阳辐射是树木日蒸腾耗水的最主要影响因子。
     (3)各蒸散分量研究。在整个生长季,华北落叶松人工林冠层截留量变化范围为6.2~33.7mm,是华山松天然次生林的1.14倍,林冠截留的差异主要受冠层叶面积指数的影响,华北落叶松林LAI为2.97~4.8,华山松林LAI为2.26~4.06,且前者各月LAI值均大于后者;华北落叶松林林分日均蒸腾量为0.25~1.33mm/d,华山松林林分日均蒸腾量为0.07~0.63mm/d,累积边材面积是林分蒸腾量的决定因素;华北落叶松人工林灌木日均蒸腾量仅为0.14mm/d,而华山松天然次生林灌木日均蒸腾量为0.61mm/d,整个生长季后者是前者的3.3~4.8倍;华北落叶松人工林林下日均蒸散量为1.21 mm/d,是华山松天然次生林的1.5~2倍,林分各蒸腾分量除受树木自身生理特征影响外,还受林分不同层郁闭度和盖度的影响,郁闭度、盖度越大蒸腾量越大。
     (4)总蒸散量对比。2009年生长季总降雨量为495.4mm,华北落叶松人工林生长季日均总蒸散量为2.87mm/d,乔木层蒸散量(包括乔木蒸腾和截持)、灌木蒸腾量、林下蒸散量分别占53.2%,5.0%,41.8%,总蒸散量为生长季总降雨量106.7%;华山松天然次生林生长季日均总蒸散量为2.35mm/d,乔木层蒸散量(包括乔木蒸腾和截持)、灌木蒸腾、林下蒸散量分别占44.8%,26.1%,29.1%,总蒸散为生长季总降雨量87.4%。以上结果表明,虽然两种林分总蒸散的分量组成结构相同,即乔木层蒸散量是林分总蒸散的最大分量,林下蒸散量是第二分量,灌木蒸腾量最小,但各分量所占比例显然不同,这是由于两种林分的结构差异所引起的。另外,本研究中华北落叶松人工林的总蒸散量高于当地同期的降雨量,这可能会引起土壤水分的亏缺,适当调整林分密度可能会有利于减少水分的过度消耗。
Artificial forest area has been increasing with the people’s the attention of environmental problem,which causes the contradictions between forest and water has also become one of the emphasis of forest hydrology abroad,while understanding the relationship between forest structure and water consumption will be the key that coordinates the contradictions between forest and water.
     In this study, stand structure of Larix principis-rupprechtii plantation forest and Pinus armandii Natural Forest was contrastively researched through the method of Thermal Dissipation technique, Lysimeter,Traditional hydrology in Xiangshui river small watershed on the south of Liupan Moutain from May 2009 to October 2009. the tree sap flow velocity and tree stand evaptranspiration and its component in two tree stands were contrastively analyzed, the conclusions are as follows:
     1. dynamic variations of sap flow velocity.
     In typical weather, the daily sap flow rate are with the order of B.platyphylla >L.principis-rupprechtii >P.armandii in the sunny day. when it is cloudy or rainy,the sap flow rate of L.principis-rupprechtii is the highest, while the P.armandii’s is the lowest. The sap flow rate in different forest types are also obvious different during different stage of growing season,the sap flow rate are with the order of B.albo-sinensis > B.platyphylla > L.principis-rupprechtii > P.armandii during the early growing seasons(may-June), B.albo-sinensis > P.armandii > B.platyphylla > L.principis-rupprechtii in the mid-growing seasons(July-Aug),P.armandii> L.principis-rupprechtii > B.albo-sinensi > B.platyphylla in the late growing season (Sep-Oct).
     2. Correlation analysis between the sap flow rate and meteorological factor.
     The correlation coefficient is in the range of 0.89-0.93 between the sap flow rate of four forest types and saturated VPD, is in the range of 0.76-0.87 between the sap flow rate of four forest types and solar radiation, However, there is no correlation between the sap flow rate of four forest types and wind speed.
     The method of stepwise regression analysis is adopted between instantaneous sap flow rate,average daily sap flow rate and meteorological factor.The result shows that the saturated VPD is the main impact-factor to instantaneous sap flow rate,however, the influence of solar radiation is a lagging phenomenon. In day time scales showed that only solar radiation involves in the equaltion, which futher proves that solar radiation is the main factor to the trees water consumption.while solar radiation is entered in the regression equation,which indicates that solar radiation is the main factor to water consumption of the tree species in daily time scales
     3.The study on evapotranspiration components.
     In the growing season, canopy interception of L.principis-rupprechtii plantation forest ranges from 6.2 to 33.7mm which is 1.14 times as P.armandii Natural Forest. The canopy interception differ greatly because of the influence of LAI, LAI value ranges from 2.97 to 4.8 in L.principis-rupprechtii,while LAI value ranges from 2.26 to 4.06 in P.armandii. The former monthly LAI value is larger than the latter.The average transpiration of L.principis-rupprechtii ranges from 0.25 to 1.33mm/d, P.armandii’s is between 0.07 and 0.63mm/d, the cumulative sapwood area ia a determining factor in forest transpiration.The mean daily forest transpiration of L.principis-rupprechtii plantation forest shrub is only 0.14mm/d, while the P.armandii Natural Forest is 0.61mm/d. the latter is 3.3 -4.8 times larger than the former’s during the whole growing seasons.the L.principis-rupprechtii plantation underwood average transpiration is 1.21mm/d which is 1.5-2 times larger than P.armandii Natural forest,forest transpiration is influenced by forest physiology characteristic,besides,it is also influenced by canopy density and cover degree of different layers.Forest transpiration increase with the canopy density and cover degree increasing.
     4.The comparison of total evapotranspiration
     The sum precipitation of the growing season is 495.4mm in 2009, average evaptranspiration of L.principis-rupprechtii plantation forest is 2.87mm/d during the whole growing season, the evaptranspiration of tree stand(transpiration and interception),shrub, underwood is 53.2%,5.0%, 41.8% respectly. The total transpiration takes up 106.7% of the total rainfall during the growing season. The total amount of average daily evaptranspiration is 2.35mm/d in P.armandii Natural Forest, the evaptranspiration of tree stand(transpiration and interception),shrub,underwood is 44.8%,26.1%, 29.1% respectly. The total evaptranspiration takes up 87.4% of the total rainfall during the growing season. From this we can see that although the component of total evaptranspiration in two forest stands is the same, the evaptranspiration of tree stand is the highest in total transpiration of two forest stands. The evaptranspiration of underwood takes second place, the transpiration of shrub is smallest.The components made up different percentage obviously. It is because of the different stand structure in two forest.The total evaptranspiratio of L.principis-rupprechtii plantation is larger than the local homochronous rainfall, so it may lead to the lack of the water in the soil, therefore, it is necessary to adjust density of the tree stand properly,it is useful for decreasing the over consumption of the water.
引文
1王双贵,张晓娥,张建军,等.六盘山林区华北落叶松人工林抚育问伐合理密度的研究.宁夏农学院学报. 2002,23(3):12-14.
    2彭舜磊,王得祥,赵辉,等.我国人工林现状与近自然经营途径探讨[J].西北林学院学报.2008,23(2):184-188.
    3 Calder I.Water use of Eucalyp ts—a review[A]. Growth and water use of forest plantation[C]. England, Chichester: John Wiley and Sons,1992:167-179.
    4 White K,Ball J, Kashio M. Proceedings of the regional expert consultation on Eucalyp tus, October 1993 [C]. FAO Regional Office forAsia and the Pacific, Bangkok: RAPA Publication,1996:196.
    5白嘉雨,甘四明.桉树人工林的社会、经济和生态问题[J].世界林业研究.1996,9(2):63~68.
    6张宁南,徐大平,Jim Morris,等.雷州半岛尾叶桉人工林耗水量研究[J].林业科学研究.2007,20(1):1-5.
    7张宁南.徐大平,Jim Morris,等.雷州半岛加勒比松人工林旱季液流特征与耗水量研究[J].林业科学研究.2007,20(5):591-597.
    8 Wullschleger S,King AW. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow poplar trees[J]. Tree Physiol.2000.20:511-518.
    9 D.G. Williams, W. Cable , K. Hultine, et al.Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J]. Agricultural and Forest Meteorology,2004,125:241-258.
    10闫俊华,周国逸,黄忠良.鼎湖山亚热带季风常绿阔叶林蒸散研究[J].林业科学.2007,37(1):37-45.
    11王进鑫,黄宝龙,罗伟祥.黄土高原人工林地水分亏缺的补偿与恢复特征.生态学报.2004,24(4):2395-2401.
    12王彦辉,熊伟,于彭涛,等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2006,4(4):19-25.
    13赵梅芳,项文化,田大伦,等.基于3-PG模型的湖南会同杉木人工林蒸发散估算[J].湖南农业科学.2008,162(3):158-161.
    14黄志宏,王旭,周光益,等.不同理论方程模拟华南桉树人工林蒸散量的比较[J].生态环境2008,17(3):1107-1111.
    15 Wullschleger S, Meinzer F C, Vertessy R A.A review of whole-plant water use studies in trees[J].Tree physiology.1998,18:499-512.
    16马玲,赵平,饶兴权,蔡锡安,曾小平.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005,24(1):88-96.
    17刘京涛,刘世荣.植被蒸散研究方法的进展与展望[J].林业科学.2006,42(6):108-114.
    18王华田,张光灿,刘霞.论黄土丘陵区造林树种选择的原则[J].世界林业研究.2001,14(5):74-78.
    19孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报.2004,15(6):1074-1078.
    20李广德,贾黎明,孔俊杰.运用热技术检测树干边材液流研究进展[J].西北林学院学报.2008,23(3):94-100.
    21郑怀舟,朱锦懋,魏霞,等.5种热动力学方法在树干液流研究中的应用评述[J].福建师范大学学报.2007,23(4):119-123.
    22 Ping LU, Laurent URBAN, ZHAO Ping. Granier’s Thermal Dissipation Probe (TDP) Method for Measuring Sap Flow in Trees: Theory and Practice[J]. Acta Botanica Sinica. 2004,46(6):631-646.
    23赵平,饶兴权,马玲,等.Granier树干液流测定系统在马占相思的水分利用研究中的应用[J].热带亚热带植物学报.2005,13(6):457-468.
    24孙鹏森.2000.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究[D].北京林业大学博士学位论文.
    25熊伟.2003.六盘山北侧主要造林树种耗水特性研究[D].中国林业科学研究院森林生态环境与保护研究所博士学位论文.
    26王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报.2002,26(6):661-667.
    27王华田,赵文飞,马履一.侧柏树干边材液流的空间变化规律及其相关因子[J].林业科学.2006,42(7):21-27.
    28张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究[J].中国沙漠.2004,24(4):498-492.
    29申李华,张志强,刘晨峰,等.沙地杨树人工林树干液流特征[J].中国水土保持科学.2007,5(1):88-92.
    30马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系[J].生态学报,2005,25(9):2145-2151.
    31王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学.2002,38(5):31-37.
    32马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报.2002,24(3):23-27.
    33 Edwards W R N, R E Booker. Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement[J]. Journal of Experimental Botany.1984,33,153:551-561.
    34刘奉觉, Edwards W R N.杨树树干液流时空动态研究[J].林业科学研究.1993, 6(4):368-372.
    35熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学.2003,39(2):1-7.
    36赵平,饶兴权,马玲,等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J].生态学报,2006,26(12):4050-4058.
    37 Hinckley TM. Broks JR, Cerm ak J, et a1. Water flux in a hybrid poplar stand[J]. Tree Physiology.1994,14:1005-1018.
    38 Sakuratani T, Brent EC,Steven RG. Measurement of sap flow in the roots,trunk and shoots of an apple tree using heat pulse and heat balance methods[J].JAgric Meteorol.1997,53(2):141-145.
    39虞沐奎,姜志林,鲁小珍,等.火炬松树干液流的研究[J].南京林业大学学报.2003,27(3):7-10.
    40孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报.2002,22(9):1387-1391.
    41吴永波,薛建辉.岷江流域冷杉树干液流的动态变化规律[J].南京林业大学学报.2005,29(6):61-64.
    42张小由,康尔泗,张智慧,等.沙枣树干液流的动态研究[J].中国沙漠.2006,1(26):146-151.
    43孙慧珍,李夷平,王翠.不同木材结构树干液流对比研究[J].生态学杂志.2005,24 (12):1434-1439.
    44徐军亮,马履一,阎海平.油松树干液流进程与太阳辐射的关系[J].中国水土保持科学.2006,4(21):103-107.
    45刘德良.油松树干边材液流空间变化规律[J].东北林业大学学报.2008,36(5):15-18.
    46聂立水,李吉跃.应用TDP技术研究有松树干液流速率[J].北京林业大学学报.2004, 26(6):49-56.
    47张友焱,周泽福,党宏志,等.利用TDP茎流计研究沙地樟子松的树干液流[J].水土保持科学.2006,23(4):223-231.
    48张小由,康尔泗,张智慧,等.黑河下游天然胡杨树干液流特征的试验研究[J].冰川冻土.2005,27(5):742-746.
    49 Hatton TJ, Vertessy R A. Transpiration of plantation Pinus radiata estimated by the heat pulse method and the Bowen Ratio[J]. Hydrological Processes.1990, 4:289-298.
    50 Hatton TJ, Moore.Reece PH.Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method : Measurement errors and sampling strategies[J].Tree Physiol.1995,15:219-227.
    51 Thorburn PJ, Hatton TJ, Walker GR. Combining measurements of transpiration and stableisotopes of water to determine ground water discharge from forests[J]. Hydro1.1993,50:563-587.
    52马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报.2001,23(4):1-5.
    53王瑞辉,奚如春,徐军亮,等.用热扩散式茎流计测定园林树木蒸腾耗水量[J].中南林学院学报,2006,2(26):7-12.
    54熊伟,王彦辉,于澎涛,等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J].林业科学,2008,44(1):34-40.
    55王鹤松,张劲松,孟平,等.华北石质山区杜仲人工林蒸腾特征及水分供求关系[J].林业科学研究.2008,21(4):475-480.
    56王鹤松,孟平,张劲松,等.华北石质山区山茱萸人工林蒸腾特征及水分供求关系[J].林业科学.2007,43(10):14-18.
    57翟洪波,李吉跃,聂立水.油松栓皮栎混交林林地蒸散和水量平衡研究[J].北京林业大学学报.2004,26(2):48-51.
    58孙慧珍,赵雨森.水曲柳和樟子松树干液流对不同天气的响应[J].东北林业大学学报,2008,36(1):1-3.
    59熊伟,王彦辉,于澎涛,等.六盘山辽东栎、少脉椴天然次生林夏季蒸散研究[J].应用生态学报.2005,16(9):1628-1632.
    60王彦辉,熊伟,于彭涛,等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2006,4(4):19-25.
    61 N.S.Sannikova.Micro ecosystem analysis of the structure and functions of forest biogeocenoses[J]. Russian Journal of Ecology. 2003, 34(2):80-85.
    62邵青还.第二次林业革命——“接近自然的林业”在中欧兴起[J].世界林业研究,1991,4(4):8-15.
    63 Sari Pitkanen. Classification of vegetational diversity in managed boreal forests in eastern Finland Plant[J]. Ecology,2000,146:11-28.
    64卢琦,赵体顺,罗天祥,金烈谊,阴三军.黄山松天然林与人工林物种多样性和林分生长规律的比较研究[J].林业科学研究.1996,9(3):273-277.
    65李裕元,郑纪勇,邵明安.子午岭天然林与人工林群落特征比较研究[J].西北植物学报,2005,25(12):2447-2456.
    66邓娟,上官周平.黄土丘陵区人工和天然油松林物种多样性比较[J].西北农业学报.2008,17(2):126-131,136.
    67曾明洪,熊建宏,杨清培,梁跃龙,孔小丽.南岭山地杉木人工林与天然林群落特征研究[J].江西林业科技.2008,5:10-15.
    68胡喜生,洪滔,宋萍,范海兰,洪伟,吴承祯.木荷天然林与人工林群落结构特征比较[J].福建林业科技.2007,34(1):24-29.
    69刘庆,尹华军,吴彦.川西米亚罗亚高山地区云杉林群落结构分析[J].山地学报.2003,21(6):695-701.
    70吴彦,刘庆,乔永康,等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].植物生态学报.2001.25(6):648-655.
    71王雄宾,耿凤梅,谷建才,杜鸿云,宁书祥,李校,李永杰.油松天然林与人工林物种丰富度及最小面积的比较研究[J].河北林果研究.2007,22(12):122-125.
    72蔡年辉,李根前,朱存福,黄永祥,李俊楠,赵文东.云南松人工林与天然林群落结构的比较研究[J].西北林学院学报.2007,22(2):1-4.
    73惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究.2001,14(l):177-181.
    74何东进,洪伟,范圣锋,王英姿,蓝斌.武夷山毛竹天然林与人工林种群结构比较研究[J].中国生态农业学报.2005,13(2):34-36.
    75廖彩霞,吴瑶,衣得萍,惠巍巍.林分空间结构的研究[J].林业科技情报.2007,39(2):40-41.
    76李晓慧,陆元昌,袁彩霞,雷相东,孟京辉,王新民.六盘山林区林分直径分布模型研究[J].内蒙古农业大学学报. 2006,27(4):68-72.
    77姚爱静,朱清科,张宇清,吉文丽.林分结构研究现状与展望[J].林业调查规划.2005,130(2):70-76.
    78胡喜生,宋辛森,洪伟,吴承祯.不同年龄马尾松林能量及空间分布特征[J].福建林学院学报.2008,28(3):208-211.
    79钟慕尧,黄树才,杨民胜,陈少雄,吴志华.不同林龄桉树人工林森林空间结构差异研究[J].广东林业科技.2005,21(4):1-4.
    80谢天时.不同林龄水杉人工林群落特征比较研究.福建林业科技.2007,34(2):1923.
    81张永利,鲁绍伟,杨峰伟.华北土石山区人工林与天然林结构与功能研究[J].灌溉排水学报.2007,26(6):63-68.
    82王力,邵明安,王全九,贾志宽.黄土高原子午岭天然林与刺槐人工林地土壤干化状况对比[J].西北植物学报.2005,25(7):1279-1286.
    83王周绪,于宁楼.北京九龙山人工林和天然次生林的土壤物理性状[J].林业资源管理.2007, (4):88-92.
    84何毓蓉,廖超林,张保华.长江上游人工林与天然林土壤结构质量及保水抗蚀性研究[J].水土保持学报.2005,19(5):1-4.
    85盛炜彤.我国人工用材林发展中的生态问题及治理对策[J].世界林业研究.1995,8(2):51-55.
    86范志平,曾德慧,刘大勇,等.油松水源保护林人工诱导更新与定向恢复机理[J].生态学杂志.2005,24(11):1267-1272.
    87 Rust S. Comparison of three methods for determining the conductive xylem area of Scots pine ( Pinus sylvest ris) [J]. Forestry.1999,72(2) :103-108.
    88 Kostner B. Evaporation and transpiration from forests in central Europe-Relevance of patch-level studies for spatial scaling.Meteorol Atmos Phys[J].2001,76 :69-82.
    89尹光彩,周国逸,王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究[J].生态学报.2003,23(10):1984-1990.
    90马雪华.森林水文学[M].北京:中国林业出版社,1993,142-143.
    91刘智慧.四川省缙云山栲树种群结构和动态的初步研究[J].植物生态学与地植物学学报.1990,14(2):120-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700