用户名: 密码: 验证码:
论波前构建法中的几个计算问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于波前构建法是一种产生于1993年的经典方法,本论文首先对该算法的研究现状、基本思想、数值解法、算法流程等进行了讨论,然后详细的讨论了波前构建法目前存在和探讨较少的以下4个问题:
     (1)波前构建过程中非网格节点处速度以及速度导数的插值计算:通过对比分析数字地形、数字导航、计算机图形学中常用的二维插值算法,引入二维三次卷积插值实现非网格节点处速度及导数的计算,提高射线追踪的效率和精度;
     (2)模型的光滑处理对地震波走时、射线路径及振幅信息带来的影响:应用不同的光滑算子、同一光滑算子不同光滑次数及不同光滑因子讨论了波前构建法中模型的光滑处理对地震波走时、射线路径及振幅信息的影响,并在浅层模型和深层模型了进行了走时和射线路径的对比分析;
     (3)波前非规则的四边形网格与规则的矩形网格节点相对定位及转换:通过对比计算机图形学、计算机图像学中常用的几种定位算法并在前人工作的基础上从4个方面对其进行改进和完善,提高了网格转换的精度和效率;
     (4)波前构建法在起伏地表条件下的应用:通过对强起伏地表条件(山顶、山谷、山坡)下震源初始化、射线追踪范围以及边界条件的具体改进,使波前构建法可以应用到起伏地表条件下来计算射线传播的路径。
The traveltimes, ray path and amplitudes of the seismic wave are several more important physical quantities in exploration seismology. They have many useful purposes such as Kirchhoff’s migration and demigration, tomography, and modeling. Wavefront construction method is a kind of fast algorithm which calculated these physical quantities, this method consider the calculation of the ray family which come from the entire wave field, make the classical geometric ray theory application in exploration seismology to be broken through, make it become possible to calculate hundreds and thousands of rays as well as traveltimes and amplitudes attach to they at the same time. Compared with the other algorithms of ray tracing, this method has incomparable superiority:①It can count traveltimes, ray path and amplitude of seismic wave at the same time;②It can improve rays coverage in study range, with the initial wavefront, we can through the wavefront propagation and ray interpolation to achieve the coverage of the entire study range;③It can calculate Multi-valued traveltimes, according to geometry diffraction theory, ray in caustic region will be split, a ray can produce many rays of diffractions (scattering), tracing these rays at the same time, we will be achieve the Multi-valued traveltimes at the same point;④It can adapt to the comparatively complicated velocity model and no limitation in observation system;⑤It has very high computational efficiency and accuracy.
     Seeing that wavefront construction method is a kind of classical method from 1993, in this paper, we first introduce the research situation, basic theory, numerical solution and algorithm implementation scheme of wavefront construction method, then sum up and summarize at present and still exist problems in research current situation, to these questions, this paper will carry on thorough researching and analysing from 4 following respects:
     (1) The interpolation problem of velocity and velocity derivative in non-grid nodes; By the way of calculating in numerical solution can be used to achieve the spread of wavefront, in the course of calculating, wavefront expansion outwards according to the time step by step, calculate each time step needs to know the velocity and derivative value in x direction and z direction in this step , but this step is not might just leave the regular grid node , so we need to know velocity and derivative of any point in the velocity model, and the model that often provide the velocity value with nodal regular grid, so we must use the interpolation algorithm to get velocity and derivative of any point value in the model. In the process of wavefront construction method ray tracing, the accuracy of the velocity and velocity derivative of interpolation points in the model influences the accuracy of ray path and traveltimes, so the choice of the interpolation method is influencing the efficiency and accuracy. In this paper, we analysis and comparison two-dimensional interpolation algorithm of digital topography, digital navigation and computer graphics, use bicubic convolution interpolation to calculate the value of the velocity and velocity derivative of non-grids node in the model, because this algorithm adopts 16 grid nodes around the interpolation point to calculate the value, and obtain the value of velocity and velocity derivative at once time ,so, this method have been improved computational efficiency and accuracy relative to other interpolation algorithm. This kind of interpolation algorithm using the wavefront construction make the ray tracing become more faster and accuracy.
     (2)The problem of the smooth processing of the velocity model influence of traveltimes ray path and amplitude of seismic wave;
     The smooth processing of the velocity model is an essential problem to wavefront construction method, firstly, it can ensure the ray tracing successful, Secondly, for using the smooth processing of the velocity model, thus avoid using snell law in the velocity interface of the model, improved the computational efficiency of ray tracing. But the problem of the smooth processing of the velocity model, we must take into account the relationship between the spatial distribution of velocity model at wavenumber region, computational speed and efficiency, and the number of the smooth times. As to this, we use different smooth operators, the different smooth number of times and different smooth factors of the same smooth operators, we are detailed from 3 respects to discuss the question of smooth processing of the velocity model:
     ①The problem of the smooth processing of the velocity model influence of ray path;
     ②The problem of the smooth processing of the velocity model influence of traveltimes;
     ③The problem of the smooth processing of the velocity model influence of amplitudes.
     Through the above 3 aspects of analysis and discussion, we can get:
     ①In the data processing of the seismic, we should choose a suitable smooth operator, so it can reduce the error caused by smooth processing of the model of ray path traveltimes and amplitude information;
     ②For the choice number of smooth times, we must take into account comprehensive influence of ray path traveltimes and amplitude information, choose the proper smooth times, it can improve efficiency and accuracy of ray tracing;
     ③For convolution smooth operator, because the value of factor is different, it can effect on ray path traveltimes and amplitude information at the same.
     ④Through the comparative analysis in the shallow and deep velocity model, the smooth processing of the velocity model influence of traveltimes on the shallow model at less than deep model, but the influence of ray path on the shallow model more than deep model. This conclusion has a great role in practical application.
     (3)The relative position between the non- regular quadrangle and regular rectangle grid node and question of changing in wavefront construction method;
     For this question, the article in the previous studies mainly by use of vector product approach to determine the regular of the rectangular grid node is located in a nonregular quadrilateral grid of wavefront, but does not take the rules of the other relative position of rectangle grid nodes and nonregular quadrilateral grid of wavefront, so the accuracy of the conversion property will be influenced by the fact. in order to improve the accuracy of the conversion, this paper through the comparative analysis of several computer graphics grid point positioning algorithm as well as application and error analysis in wavefront construction, we studying the relative position of rectangular grid nodes and non-rules of wavefront quadrilateral grid following 4 respects and by using the different interpolation algorithm corresponding to calculate traveltimes:
     ①Rectangle grid point is located in nonregular quadrilateral grids of wavefront, we propose a distance weighted averaging of extrapolated traveltimes;
     ②Rectangle grid point is located on two rays in nonregular quadrilateral grids of wavefront, we using linear interpolation algorithm for calculating the traveltimes;
     ③Rectangle grid point is located on the intersection of ray and wavefront, this situation needn't interpolation, the value of Rectangle grid point is equal to the value of intersection of ray and wavefront;
     ④Rectangle grid point is located on the boundary of non-ray in nonregular quadrilateral grids of wavefront, we can use two algorithm to achieve: The first kind of method is expanding the region, to incorporate other nonregular quadrilateral grids of wavefront, and using the distance weighted interpolation algorithm for calculating the traveltimes; The second kind of method is insert new ray between two adjacent rays, and using linear interpolation algorithm for calculating the traveltimes.
     Through the above four methods and calculations to determine the nonregular quadrilateral grids of wavefront and rectangle grid point, this kind of method using the wavefront construction make the conversion of property become more faster and accuracy.
     (4)The application of wavefront construction method under ragged surface condition According to the application of wavefront construction method, because the algorithm is based on the level of surface made by a fast speed computing traveltimes ray path of seismic wave, the algorithm should be applied to ragged surface condition, we must change source initialization, the range and border of ray tracing, make the wavefront construction method to calculate traveltimes and ray path under ragged surface condition.
引文
[1]杨文采,李幼铭等.应用地震层析成像[M].北京:地质出版社,1993.
    [2] Nolet G.地震层析成像及应用[M].北京:学术书刊出版社,1989.
    [3]和锐,杨建思,张翼.地震层析成像方法综述[J].CT理论与应用研究,2007,16 (1):35-48.
    [4]吴振利,李家彪,阮爱国.地震层析成像及其国内研究进展[J].东海海洋, 2003,21(3):54-64 .
    [5]成谷,马在田,耿建华等.地震层析成像发展回顾[J].勘探地球物理进展, 2002,25(3):6-12.
    [6]邢庆祝.地震CT成像技术中正演模拟技术的研究与应用[D].硕士学位论文,福州大学,2005.
    [7] Sena A G and Toks?z M N. Kirchhoff migration and velocity analysis for converted and nonconverted waves in anisotropic media[J].Geophysics,1993,58: 265-276.
    [8] Schleicher J, Tygel M and Hubral P. 3D true-amplitude finite-offset migration[J]. Geophysics,1993,58:1112-1126.
    [9] Gray S H and May W P. Kirchhoff migration using eikonal equation traveltimes [J].Geophysics,1994,59:810-817.
    [10] Moser T J..Migration using the shortest-path method[J]. Geophysics,1994,59(7): 1110-1120.
    [11] Epili D and McMechan G A. Implementation of 3-D prestack Kirchhoff migration,with application to data from the Ouachita frontal thrust zone[J]. Geophysics,1996,61:1400-1411.
    [12] Hanitzsch C. Comparison of weights in prestack amplitude-preserving depth migration[J]. Geophysics,1997,62:1812-1816.
    [13] Martins J L, Schleicher J, Tygel M, et al. 2.5-D true-amplitude migration and demigration[J]. J. Seis. Expl.,1997,6:159-180.
    [14] Buske S. 3-D prestack Kirchhoff migration of the ISO89–3D data set[J]. Pureappl. Geophys.,1999,156:157-171.
    [15] Sun J. On the aperture effect in 3-D Kirchhoff-type migration[J]. Geophysical Prospecting,1999,47:1045-1076.
    [16] Sun J. Limited-aperture migration[J]. Geophysics,2000,65:584-595.
    [17] Sun J. True-amplitude weight functions in 3D limited-aperture migration Revisited[J].Geophysics,2004,69:1025-1036.
    [18] Vanelle C and Gajewski D. Second-order interpolation of traveltimes[J]. Geophys.Prosp.,2002,50:73-83.
    [19] Vanelle C. Traveltime-based true-amplitude migration[D]. Ph.D. thesis, University of Hamburg,2002.
    [20]严又生.地震波数值模拟技术[A]. SEG第68届年会论文概要[C].北京:石油工业出版社,1999:182-192.
    [21]赵爱华,张中杰,王光杰等.非均匀介质中地震波走时与射线路径快速计算技术[J].地震学报,2000,22(2):151-157.
    [22]佘德平,管路平,查树贵等.复杂介质地震波场的数值模拟研究[A].中国地球物理学会2002年论文集[C].北京:地震出版社,2002,26.
    [23]张永刚.地震波数值模拟方法[J].石油物探,2003,42(2):143-148.
    [24]赵爱华,张中杰,彭苏萍.复杂地质模型转换波快速射线追踪方法[J].中国矿业大学学报,2003,32(5):513-516.
    [25]张建中,陈世军.复杂介质地震初至波数值模拟[J].计算物理,2003,20(5): 429-433.
    [26]佘德平.波场数值模拟技术[J].勘探地球物理进展,2004,27(1):16-21.
    [27]赵爱华,张中杰.三维复杂介质中转换波走时快速计算[J].地球物理学报,2004,47(4):702-707.
    [28]董良国.复杂地表条件下地震波传播数值模拟[J].勘探地球物理进展,2005,28(3):187-194.
    [29]王雪秋,孙建国,张文志.复杂地表地质条件下地震波数值模拟综述[J].吉林大学学报(地球科学版),2005,35(专辑):12-18.
    [30]赵爱华,张美根,丁志峰.横向各向同性介质中地震波走时模拟[J].地球物理学报,2006,49(6):1762-1769.
    [31] ?erveny V, Mototkov I A and Psencik I. Ray method in seismology[M].Prague Charkes university Press,1977:15-18.
    [32] Cerveny V. Seismic rays and intensities in inhomogeneous anisotropic media[J]. Geophys. J. R. astr. Soc.,1972:29:1-13.
    [33] ?erveny V and Psencik I. Ray amplitude of seismic body waves in laterally inhomogeneous media[J].Geophy,J.R.Astr.Soc,1979,57:96-106.
    [34] ?erveny V, Popov M M and Psencik I. Computation of wave filed in inhomogeneous media-Gaussian beam approach[J].Geophy,J.R.Astr.Soc,1982: 110-121.
    [35] Cerveny V. Seismic Ray Theory[M]. Cambridge University Press,2001.
    [36] Jacob K H. Three-dimensional seismic ray tracing in a laterally heterogeneous spherical earth[J].J Geophys Res,1970,75:6685-6689.
    [37] Julian B R. Regional variations in upper mantle structure beneath North America[D].Ph.D.Thesis, Calif Inst of Technology,1969.
    [38] Julian B R. Ray tracing in arbitrarily heterogeneous media[R].Technical Note 1970,45,Lincoln Lab,17pp.
    [39] Chander R. On tracing seismic rays with specified and points[J]. J Geophys, 1975,41:173-177.
    [40] Pereyra V, Lee W and Keller H. Solving two-point seismic ray-tracing problems in a heterogeneous medium:part 1. A general adaptive finite difference method[J]. Bulletin of the Seismological Society of America,1980,70:79-99.
    [41] Um J and Thurber C. A fast algorithm for two-point seismic ray tracing[J]. Bulletin of the Seismological Society of America,1987,77:972-86.
    [42] Nakanishi I and Yamaguchi K. A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure [J].J. Phys. Earth,1986,34:195-201.
    [43] Moser T J. Shortest path calculation of seismic rays[J]. Geophysics, 1991, 56:59-67.
    [44] Fischer R and Lees J M. Shortest path ray tracing with sparse graphs[J].Geophysics,1993,58:987-996.
    [45] Cheng N and House L. Minimum traveltime calculations in 3-D graph theory [J].Geophysics,1996,61:1895-1898.
    [46] Sava P, and Fomel S. Huygens wavefront tracing: A robust alternative to ray tracing[C]. 68 Ann. Internat. Mtg., Soc. Expl. Geophys, Expanded Abstracts, 1998:1961-1964.
    [47] Symes W W. A slowness matching finite difference method for traveltimes beyond transmission caustics[C]. 68 Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1998:1945-1948.
    [48] ?erveny V, Molotkov, I A and Psencik,I.著,刘福田,胡戈,吴华,全幼黎译.地震学中的射线方法[M].北京:地质出版社,1986年第一版.
    [49]朱介寿.地震学中的计算方法[M].北京:地震出版社,1988.
    [50]张霖斌,刘迎曦,赵振峰等.有限差分法射线追踪[J].石油地球物理勘探,1993,28(6):673-677.
    [51]宋林平,朱介寿,谢晓黎.非均匀介质解析射线追踪[J].物探化探计算技术,1993,15(3):238-244.
    [52]刘洪,孟繁林,李幼铭.计算最小走时和射线路径的界面网全局方法[J].地球物理学报,1995,38(6):823-832.
    [53]赵成斌,许云,乌达巴拉.地震波走时和射线的有限差分计算[J].华北地震科学,1995,13(4):42-46.
    [54]徐昇,杨长春,刘洪等.射线追踪的微变网格方法[J].地球物理学报,1996,39(1):97-102.
    [55]高尔根,徐果明,赵焱.一种任意界面的逐段迭代射线追踪方法[J].石油地球物理勘探,1998,33(1):51-60.
    [56]许琨,吴律,王妙月.改进Moser法射线追踪[J].地球物理学进展,1998,13(4): 60-65.
    [57]张钋,刘洪,李幼铭.射线追踪方法的发展现状[J],地球物理学进展,2000,15(1):36-45.
    [58]赵爱华.各向同性与各向异性介质中地震波旅行时正演模拟与反演成像[D].博士学位论文,中国科学院地质与地球物理研究所,2000.
    [59]陈裕明,李晶唐,湘蓉等.最小时间两点射线追踪[J].石油地球物理勘探,2002,37(5):455-459.
    [60]张建中,陈世军,余大祥.最短路径射线追踪方法及其改进[J].地球物理学进展,2003,13(1):146-150.
    [61]张建中,陈世军,徐初伟.动态网络最短路径射线追踪[J].地球物理学报,2004,47(5):889-904.
    [62]徐涛,徐果明,高尔根等.复杂介质的折射波射线追踪[J].石油地球物理勘探,2004,39(6):690-693.
    [63]刘殿秘.网格法射线追踪研究及应用[D].硕士学位论文,吉林大学,2004.
    [64]蒋先艺.基于二维与三维复杂结构模型正演的地震数据采集设计方法研究[D].博士学位论文,成都理工大学,2004.
    [65]武斌,严忠琼,曹俊兴.平方慢度解析射线追踪层析成像[J].工程地球物理学报,2005,2(2):109-113.
    [66]彭直兴.地震波初至旅行时射线追踪正演方法研究[D].成都理工大学硕士学位论文,2005.
    [67]尹纪超.基于网格的球面波波前射线追踪方法研究[D].硕士学位论文,成都理工大学,2006.
    [68]杨昊.有限差分法地震波走时计算的快速算法研究[D].硕士学位论文,吉林大学,2007.
    [69]王华忠,谢海兵,马在田.有限差分法地震波走时计算[J].同济大学学报(自然科学版),1997(3):318-321.
    [70] Vinje V, Iversen E and Gj?ystdal H. Traveltime and amplitude estimation using wavefront construction[J].Geophysics,1993,58:1157-1166.
    [71]孙建国,何洋.基于波前构建的射线追踪:一种Java实现[J].吉林大学学报(地球科学版).2007,37(4):814-820.
    [72] Podvin P and Lecomte I. Finite difference computation of traveltimes in very contrasted velocity model: a massively parallel approach and its associated tools[J]. Geophys. J. Int., 1991,105:271-284.
    [73] Qin F, Luo Y, Olsen K B,et al. Finite-difference solution of the eikonal equationalong expanding wavefronts[J].Geophysics,1992,57:478-487.
    [74] Sethian J A. A fast marching level set method for monotonically advancing fronts[J].Proc. Nat. Acad. Sci.,1996,93:1591-1595.
    [75] Vidale J E. Finite-difference traveltime calculation[J]. Bull., Seis. Sot. Am., 1988,78:2062-2076.
    [76] Trier J V and Symes W W. Upwind finite-difference calculation of traveltimes [J].Geophysics,1991,56:812-821.
    [77] Sun J. Geometrical ray theory: Edge-diffracted rays and their traveltimes (Second-order approximation of the traveltimes)[J].Geophysics,1994,59:148-155.
    [78] LambaréG, Lucio P and Hanyga A. Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field[J].Geophys. J. Int., 1996,125:584-598.
    [79] Sun Y. Computation of 2D multiple arrival travel time fields by an interpolative shooting method[C].62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1992:1320-1323.
    [80] Vinje V, Iversen E, ?steb?l K,et al. Estimation of multivalued arrivals in 3D models using wavefront construction–Part I[J]. Geophysical Prospecting,1996, 44:819-842.
    [81] Vinje V, Iversen E, ?steb?l K,et al. Estimation of multivalued arrivals in 3D models using wavefront construction–Part II[J]. Tracing and interpolation: Geophysical Prospecting, 1996,44:843-858.
    [82] Coman R and Gajewski D. 3-D multivalued traveltime computation using a hybrid method[C].70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,2000a:2309-2312.
    [83] Lucio P, LambaréG and Hanyga A. 3D multivalued travel time and amplitude maps[J].Pure Appl. Geophys.,1996,148:449-479.
    [84] Operto S, Xu S and LambaréG. Can we quantitatively image complex structures with rays?[J].Geophysics,2000,65:1223-1238.
    [85] ?erveny V. The application of ray tracing to the numerical modeling of seismic wavefields in complex structures.In: G. Dohr (Ed.):Seismic shear Waves,PartA,Theory,London,Geophysical Press,1985:1-124.
    [86] ?erveny V. Ray tracing algorithms in three-dimensional laterally varying layered structures. Seismic Tomography (ed. G. Nolet)[M].Riedel Publishing Company,1987:99-133.
    [87] Sun Y, Clapp R G, Biondi B. three dimensional dynamic ray tracing in complex geological structures[R].SEP-93,1997:63-75.
    [88] Chilcoat S R and Hildebrand S T. Wavefront construction in 3-D[C]. 65nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1995,95:1247-1250.
    [89] Vinje V, Iversen E, ?steb?l K,et al. 3-D ray modeling by wavefront construction in open models[J],Geophysics,1999,64:1911-1919.
    [90] Coman R. Computation of multivalued traveltimes in three-dimensional heterogeneous media[D]. Prof. Dr. H. Schleicher, Hamburg,2003.
    [91] Gibson Jr RL, Durussel V and Lee KJ. Modeling and velocity analysis with a wavefront-construction algorithm for anisotropic media[J]. Geophysics,2005, 70(4):T63-T74.
    [92]何洋.基于波前构建的射线走时和振幅计算[D].硕士学位论文,吉林大学, 2005.
    [93]孙小东,李振春,栗宝鹃等.波前构建法三维射线追踪[J].天然气工业,2007,27 (增刊A):275-277.
    [94]阎世信,刘怀山,姚学根.山地地球物理勘探技术[M].北京:石油工业出版社,2000.
    [95] Ettrich N and Gajewski D. Wavefront Construction in Smooth Media for Prestack Depth Migration[J].Pageoph,1996,148:481-502.
    [96] Bulant P and Klime? L. Interpolation of ray theory traveltimes within ray cells[J]. Geophys. J.Int.,1999,139:273-282.
    [97] Coman R and Gajewski D. 3D wavefront construction method with spherical interpolation[C]: 62th Mtg.,Eur. Assn. Geosci. Eng., Extended Abstracts, 2000b:C43.
    [98] Coman R and Gajewski D.3D traveltime and migration weight computation using wavefront-oriented ray tracing[C]. 63th Mtg., Eur. Assn. Geosci. Eng.,Extended Abstracts,2001:P008.
    [99] LambaréG, Lucio P and Hanyga A. Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field[J]. Geophys. J. Int., 1996,125:584-598.
    [100] Vinje V. A new interpolation criterion for controlling accuracy in wavefront construction[C].67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1997:1723-1726.
    [101] George Th, Virieux J and madariaga R.Seismic wave synthesis by Gaussian beam summation: A comparison with finite differences[J]. Geophysics, 1987,52(8):1065-1073.
    [102] Maslov V P. Semi-classical Approximation in quantum mechanics Hingham [M].Mass:D.Reidel,Publishing Compangy,1981.
    [103] Chapman C H, Drummond R. Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory[J]. Bull. Seism. Soc.Am,1982,72(6B) :S277-S317
    [104]李世雄.波动方程的高频近似与辛几何[M].北京:科学出版社,2001:95-105.
    [105]李立康,於崇华,朱政华.微分方程数值解法[M].上海:复旦大学出版社,1991.
    [106]王德人,杨忠华.数值逼近引论[M].北京:高等教育出版社,1990:314-338.
    [107]奚梅成.数值分析方法[M].合肥:中国科学技术大学出版社出版,1995.
    [108]刘金英.数值计算方法[M].长春:吉林科学技术出版社,2000.
    [109] Robert G K. Cubic convolution interpolation for digital image processing. IEEE Transaction on Acoustics, speech, and signal processing[J].1981,ASSP-29(6): 1153-1160.
    [110]韩复兴,孙建国,杨昊.基于c++实现的波前构建法射线追踪[J].石油地球物理勘探,2007,42(4):474-481.
    [111] [美]R E谢里夫,[加]L P吉尔达特.勘探地震学[M].北京:石油工业出版社. 1999.
    [112]韩志刚,孙隆和,李林森等.四次卷积插值及其在数字地图中的应用[J].兵工学报,2000,21(4):310-313.
    [113]张厚道.基于数字地图的无人战斗机低空突防轨迹规划方法研究[D].硕士学位论文,西北工业大学,2004.
    [114]孙家广,许隆文.计算机图形学[M].北京:清华大学出版社,1986:73-87.
    [115] Jenkins, F A and White, H E著.王先镕译.光学原理[M].北京:教育部出版,1967.
    [116]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社,1989:155-156.
    [117] Sun J. The relationship between the first Fresnel zone and the normalized geometrical spreading factor[J].Geophysical Prospecting,1996,44:351-374.
    [118] Jesper S and Roel S. Tutorial: The Fresnel volume and seismic imaging[R]. CWP-393P. 2002 CWP Project Review Report:37-46.
    [119] Gray S H. Velocity smoothing for depth migration: how much is too much? [C].715 Fifth Avenue SW, Calgary, Alberta, T2P5A2,SEG Technical Program Expanded Abstracts,2000:1055-1058.
    [120] Zoeppritz K.Uber reflexion und durchgang seismischer wellen durch unsretig- kerlsflashchen[J]. Uber Erdebenwellen VII B,Nachrichten der Koniglichen Gesellschaft der Wissenschaften zu Gottingen ,Math,Phys.,1919,K1:57-84.
    [121] ?erveny V. Ray synthetic seismograms for complex two-dimensional and three-dimensional structures[J].Geophys.,1995b,58:2-26.
    [122]曹建章,朱光明.高斯束方法合成地震记录[J].石油地球物理勘探,1992,27(5):93-604.
    [123]韩复兴,孙建国,孙章庆.波前构建法中的网格点相对定位研究[C].北京:2008年第24届中国地球物理年会论文,p420.
    [124]潘云鹤.计算机图形学—原理、方法及应用[M].北京:高等教育出版社, 2001:53-55.
    [125]张全伙,张剑达.计算机图形学[M].北京:机械工业出版社,2003:143-145.
    [126]金廷赞.计算机图形学[M].杭州:浙江大学出版社, 1988. 226-230.
    [127]周铁军.平面多边形内外点判定算法评估[J].微计算机信息,2006,22(6): 231-233.
    [128]何樵登.地震波理论[M].北京:地质出版社,1988.
    [129]何樵登.地震波理论[M].长春:吉林大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700