用户名: 密码: 验证码:
紧凑型P波段同轴相对论返波振荡器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,L、S、C、X波段的相对论返波振荡器已经得到了较为充分的发展,但P波段相对论返波振荡器的实验研究工作尚未见到报导,分析认为P波段较大的结构尺寸是限制其发展的主要原因。同轴相对论返波振荡器的研究及其向低频段的拓展,为实现P波段相对论返波振荡器紧凑化提供了可能,但许多重要的技术问题仍然需要解决。此外,P波段高功率微波还在国防和工业领域具有重要的应用前景。在此背景下,本文综合理论研究、物理分析及粒子模拟结果,提出了一种紧凑型P波段同轴相对论返波振荡器结构,并在实验中成功获得了GW量级P波段高功率微波辐射。本文的研究内容主要包括以下几个方面:
     (1)研究了同轴慢波结构中的空间电荷限制电流,给出了数值计算结果,并根据数值结果总结出了一种等效分析方法,通过这一方法,可以直观地判断结构参数改变引起的空间电荷限制电流变化情况。推导了任意同轴慢波结构中任意模式的色散方程,并对色散方程进行了数值计算,验证了色散方程在求解色散曲线时的有效性;总结了外波纹同轴慢波结构和双波纹同轴慢波结构中色散曲线随结构参数变化的规律;求解了混合模色散曲线;理论上解释了同轴相对论返波振荡器实验中非对称模式激励的原因。
     (2)针对普通P波段同轴相对论返波振荡器轴向尺寸大,微波输出饱和慢的缺点,结合数值计算与粒子模拟,对慢波结构进行了详细的物理分析。数值研究指出,双波纹同轴慢波结构较之普通的外波纹同轴慢波结构,能够显著增大同步谐波的耦合阻抗,能够较大地提高时间增长率。因此,选择双波纹同轴慢波结构作为新型器件的慢波结构,并利用线性理论选择了慢波结构参数,预测了器件的工作频率与工作模式。利用粒子模拟方法对慢波结构周期数进行了选择,结果表明当选择三个周期的慢波结构时,器件不仅结构紧凑,而且有较宽的单频工作区间,并在较宽的二极管电压范围内具有较高的束-波转换效率和输出微波功率。最后,基于物理分析,提出了一种紧凑型P波段同轴相对论返波振荡器。
     (3)对紧凑型P波段同轴相对论返波振荡器进行了粒子模拟优化,在二极管电压585kV、电流7.85kA、导引磁场0.8T的条件下,产生微波功率为1.5GW,效率约为33%,频率为900MHz。模拟结果证明了慢波作用区工作模式为准TEM模,器件工作机制为返波振荡机制。此外,还研究了实验中可进行调节的参数以及加工、装配带来的附加参数对紧凑型器件工作特性的影响。
     (4)对紧凑型结构进行了拓展研究和结构改进研究。验证了紧凑型P波段同轴相对论返波振荡器设计思想在L波段的可行性,并结合P波段和L波段研究结果,得到了该类器件的相关设计原则。拓展设计了能够在低导引磁场下工作的紧凑型P波段同轴相对论返波振荡器,并设计了永磁导引系统,微波源与永磁导引系统结合的粒子模拟初步证实了永磁封装的可行性。改进了紧凑型结构的收集极,使其有利于长脉冲和重频运行,并提出了一种简单易行的收集极设计方法,避免了使用粒子模拟反复优化,节省了设计时间。改进了紧凑型结构的慢波结构和收集极,提高了器件的效率,在二极管电压585kV、电流7.85kA、导引磁场0.8T条件下,产生微波功率达到2.2GW,效率为48%,频率为900MHz。
     (5)对紧凑型P波段同轴相对论返波振荡器进行了实验研究。利用薄介质铜阴极获得的典型实验结果如下:在二极管电压570kV、电流8.0kA、导引磁场0.86T、电压脉宽60ns的条件下,产生了功率1.47GW、脉宽40ns、频率897MHz的微波辐射,效率约为32%,实验结果与粒子模拟结果基本一致。此外,利用天鹅绒阴极也获得了与薄介质铜阴极一致的实验结果。研究了二极管电压和导引磁场对产生微波的影响,并在1.2T导引磁场、995kV二极管电压条件下,获得了3.14GW微波输出,效率约为20%,脉冲宽度约47ns。
Currently, the relativistic backward wave oscillators (RBWOs) operating in thefrequency regime of L-band, S-band, C-band and X-band have been fully developed, butresearches on the P-band RBWOs are rare. The main reason is that the P-band RBWO is solarge and cumbersome that it is difficult to fabricate and manipulate in experiments.Coaxial RBWO has the potential to realize compactness for the P-band RBWO, but thereare still many important issues to be solved. In addition, the P-band high power microwave(HPM) has the potential applications both in military and industrial areas, and theinvestigation on the P-band RBWO is of importance. Therefore, a compact P-band coaxialRBWO is proposed based on the results of theoretical studies, physical analysis andparticle simulation in this dissertation. Experiments of the compact P-band RBWO arecarried out and a P-band, gigawatt level HPM can be generated effectively. The contents ofthe dissertation are listed as follows.
     1. Space charge limiting current of a relativistic electron beam propagating in acoaxial slow wave structure (SWS) is derived and calculated. An equivalent analysismethod for investigating the space charge limiting current is given based on the numericalresults. With this method, the effects of the configuration parameters on space chargelimiting current can be determined obviously. The arbitrary mode dispersion equation ofthe coaxial SWS with arbitrary periodic profile is derived and calculated. With thenumerical results, the validity of our dispersion equation for calculating dispersion curve isverified, and the variations of dispersion curve related to the configuration parameters inthe coaxial SWS with only outer conductor ripple and the coaxial SWS with both inner andouter conductor ripple is presented. In addition, the accuracy of the mix mode dispersioncurve is verified and the excitation of the asymmetric-mode in the experiment for thecoaxial RBWO is studied theoretically.
     2. The large longitudinal dimensions and the long saturation time of the microwavesignal are two main shortcomings for the conventional P-band coaxial RBWO. In order toovercome these shortcomings, the physical analysis on the coaxial SWS is performed withnumerical calculation and particle simulation. Numerical results show that compared withthe conventional coaxial SWS with only outer conductor ripple, the coaxial SWS with bothinner and outer conductor ripples can remarkably enlarge the coupling impedance for the-1st space harmonics of the quasi-TEM and can largely enhance the temporal growth.Therefore, the coaxial SWS with both inner and outer conductor ripples is chosen as theSWS of our novel P-band RBWO. The parameters of the SWS are chosen using the resultsof the linear theoretical analysis, and then the operating frequency and mode of the noveldevice are given theoretically. The SWS period number is chosen by particle simulation. The simulation results show that three periods SWS not only has a compact structure, butalso has a wide region of single-frequency operation and relatively high efficiency andoutput power in a wide range of the diode voltage. Based on the above mentioned analysis,a compact P-band coaxial RBWO is proposed.
     3. The compact P-band coaxial RBWO is optimized with a2.5-dimension fullelectromagnetic PIC code. With the diode voltage of585kV and the beam current of7.85kA guided by a magnetic field of0.8T, a microwave with frequency of900MHz, powerof1.5GW and efficiency of about33%is obtained. The simulation results also show thatthe operation mode of the device is quasi-TEM mode, and the operating mechanism of thedevice is the mechanism of the backward wave oscillator. In addition, the effects of theadjustable parameters in the experiment and the additional parameters caused by theprocess of the machining and assembling are presented and discussed in detail.
     4. The extension and improvement studies on the compact P-band coaxial RBWO areperformed. It is demonstrated that the idea of designing a compact P-band coaxial RBWOis also feasibility for the L-band RBWO. A principle of design for the low-band coaxialRBWO is presented with the results of P-band coaxial RBWO and L-band coaxial RBWO.A P-band coaxial RBWO, which can operate at low magnetic field, is proposed and apermanent magnet system is designed for it. The simulation results of the RBWO confirmthe feasibility of permanent magnet, which can be used for the guiding magnetic field. Thecollector of the compact device is improved for the long pulse and repetitive rate operation.Then a collector design method is proposed. The main merit of this method is that it canavoid the use of particle simulation optimization repeatedly, and thus can save time greatly.The SWS and collector of the compact device is improved for increasing the beam-waveconversion efficiency. With the diode voltage of585kV and the beam current of7.85kAguided by a magnetic field of0.8T, the improved device can generate a microwave withfrequency of900MHz, power of2.2GW and efficiency of48%.
     5. The experiments of the compact P-band coaxial RBWO are performed. Theexperimental results with the dielectric-copper cathode shows that with the diode voltageof570kV and the beam current of8.0kA guided by magnetic field of0.86T, the P-bandmicrowave with frequency of897MHz is obtained. The microwave power is measured tobe1.47GW and the efficiency is approximately32%. The experimental results are in goodagreement with the results of particle simulations. In addition, increasing the guidingmagnetic field to1.2T, a microwave with power of3.14GW, efficiency of20%and pulsewidth of about47ns is obtained at the diode voltage of995kV and the beam current of15.5kA.
引文
[1] J. Benford and J. A. Swegle. High-power microwaves [M]. Norwood, Mass: ArtechHouse,1992.
    [2] J. N. Benford, N. J. Cooksey, J. S. Levine, et al. Techniques for High PowerMicrowave Source at High Average Power [J]. IEEE Trans. Plasma Sci.,1993,21(4):388-392.
    [3] J. N. Benford, S. Ashby, R. R. Smith, et al. High power microwave sourcedevelopment [J]. Technical report, Defense Nuclear Agency,1995.
    [4] S. H. Gold and G. S. Nusinovich. Review of high-power microwave source research[J]. Rev. Sci. Instrum.,1997,68(11):3945-3974.
    [5] J. A. Swegle and J. Benford. High-power microwave at25years: the current state ofdevelopment [C]. Proceedings of the12th international conference on high-powerparticle beams, Haifa, Israel,1998.
    [6] L. D. Bacon and L. F. Rinehart. A brief technology survey of high-power microwavesources [C]. Sandia National Laboratory report,2001.
    [7] R. J. Barker and E. Schamiloglu. High-power microwave sources and technologies[M]. New York: The Institute of Electrical and Electronics Engineer, Inc.,2001.
    [8] E. Schamiloglu, K. H. Schoenbach, and R. Vidmar. Basic research on pulsed power fornarrowband high power microwave sources [C]. Proceedings of SPIE, IntenseMicrowave Pulses IX,2002,4720:1-9.
    [9] D. B. McDermott, A. T. Lin, and K. R. Chu. The ninth special issue on high-powermicrowave generation [J]. IEEE Trans. Plasma Sci.,2002,30(3):731.
    [10]《高功率微波源与技术》翻译组译. R. J. Barker, E. Schamiloglu著.高功率微波源与技术[M].北京:清华大学出版社,2005.
    [11]周传明,刘国治,刘永贵等.高功率微波源[M].北京:原子能出版社,2007:40-47.
    [12]江伟华,张弛译. J. Benford, J. A. Swegle, E. Schamiloglu著.高功率微波(第2版)[M].北京:国防工业出版社,2009.
    [13]C. D. Taylor and D. V. Giri.高功率微波系统和效应[M].中国工程物理研究院科技信息中心译.1995.
    [14]G. Z. Liu. Recent advances of high power microwave sources in Northwest Institute ofNuclear Technology. In proceedings of the first Euro-Asian pulsed power conference(EAPPC’06), Chengdu, China,2006.
    [15]G. A. Mesyats.大功率毫微秒脉冲的产生[M].北京:原子能出版社,1982.
    [16]刘盛纲.相对论电子学[M].北京:科学出版社,1987.
    [17]R. B. Miller.强流带电粒子束物理学导论[M].北京:原子能出版社,1990.
    [18]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003.
    [19]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005.
    [20]张军.新型过模慢波高功率微波发生器的研究[D].长沙:国防科技大学,2004.
    [21]D. Clunie. The design, construction and testing of an experimental high power,short-pulse radar, strong microwave in Plasmas [M], Litvak, A.G., Ed., NovgorodUniversity Press, Nizhny Novgorod,1997.
    [22]J. McSpadden and K. Chang. Microwave Power Transmission[M]. Wiley-InterScience,NY,2007.
    [23]K. L. G. Parkin, L. D. DiDomenico and E. C. Culick. The microwave thermal thrusterconcept[C]. Second international symposium on beamed-energy propulsion.Komurasaki K., Ed., Melville NY,418,2004.
    [24]A.V. Gaponov, V. A. Flyagin, A. Sh. Fix, et al. Some perspectives on the use ofpowerful gyrotrons for the electron-cyclotron plasma heating in large tokamaks[J]. Int.J. Infrared Milli-meter Waves,1980,1(3):351-372.
    [25]H. Bluhm, W. An, V. Engelko, et al. High power particle beams and pulsed power forindustrial applications[C]. Proceeding of Beams2002. Edited by T. A. Mehlhorn andM. A. Sweeney, Albuquerque UM USA,2002,9
    [26]杜广星.强流相对论带状电子束的产生与传输[D].长沙:国防科技大学,2010.
    [27]J. A. Swegle, J. W. Poukey, and G. T. Leifeste. Backward wave oscillators with rippledwall resonators: analytic theory and numerical simulation [J]. Phys. Fluids.,1985,28:2882-2294.
    [28]B. Levush, T. M. Antonsen, A. Bromborsky, et al. Theory of relativisticbackward-wave oscillators with end reflections [J]. IEEE Trans. Plasma Sci.,1992,20(3):263.
    [29]Miller S M, Antonsen T M, Levush B, et al. Theory of relativistic backward waveoscillators operating near cutoff [J]. Phys Plasmas,1994,1(3):730-740.
    [30]Goebel D M, Butler J M, Schumacher R W, et al. High-power microwave sourcebased on an unmagnetized backward-wave oscillator [J]. IEEE Trans. Plasma Sci.1994,22(5):547-553.
    [31]L. D. Moreland, E. Schamiloglu, R. W. Lemke, et al. Efficiency enhancement of highpower vacuum BWOs using nonuniform slow wave structures [J]. IEEE Trans. PlasmaSci.,1994,22:554-565.
    [32]L. Baruch, M. A. Thomas, N. V. Alexander, et al. High-efficiency relativistic BWO:theory and design [J]. IEEE Trans. Plasma Sci.,1996,24(3):843.
    [33]钱宝良.具有等离子体背景或介质衬套的返波管[D].北京:清华大学,1996.
    [34]Shiffler D, Nation J A, Kerslick G S. A High-Power, Traveling Wave Tube Amplifier[J]. IEEE Transactions on Plasma Science,1990,18(3):546-552.
    [35]Wang P, Xu Z, Ivers J D, et al. Efficient operation of a high-power X-band travelingwave tube amplifier [J]. Applied Physics Letters,1999,75(16):2506.
    [36]Lau Y Y, Friedman M, Krall J, et al. Relativistic Klystron amplifiers driven bymodulated intense relativistic electron beams [J]. IEEE Trans Plasma Sci,1990,18(3):553-569.
    [37]Friedman M. Present and future development of high power RKA. SPIE.1992,1629.
    [38]Serlin V, Friedman M. Development and optimization of the relativistic klystronamplifier [J]. IEEE Trans Plasma Sci,1994,22(5):692-700.
    [39]Fazio M V, Haynes W B, Carlsten B E, et al. A500MW,1μs pulse length, highcurrent relativistic klystron [J]. IEEE Trans Plasma Sci,1994,22(5):740-749.
    [40]Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cherenkovgenerators [J]. IEEE Trans Plasma Sci,1990,18(3):525-536.
    [41]Viktor M P, Igor A C. Linear theory of the relativistic superdimensional Cherenkovdevices [C]. SPIE.1993:358-367.
    [42]舒挺.多波切伦柯夫振荡器的研究[D].长沙:国防科技大学,1998.
    [43]Zhang J, Zhong H H, Shu T, et al. A New High Efficiency Multiwave CherenkovGenerator Operating at Low Magnetic Field [J]. Chinese Physics Letters,2003,20(12):2265-8.
    [44]朱俊.低磁场准单模Cerenkov型高功率毫米波器件研究多波切伦柯夫振荡器的研究[D].长沙:国防科技大学,2011.
    [45]A. Palevsky, G. Bekefi. Microwave emission from pulsed, relativistic e-beam diodes II:The multiresonator magnetron [J]. Phys. Fluids.,1979,22:986.
    [46]J. Benford, H. Sze, T. Young, et al. Variations on the relativistic magnetron [J]. IEEETrans. Plasma Sci.,1985,13(6):538.
    [47]D. A. Phelps. A reproducible rep-rate high power magnetron microwave tube [J]. IEEETrans. Plasma Sci.,1990,18(3):577.
    [48]H. S. Uhm. A kinetic theory of the extraordinary-mode perturbations in cylindricalrelativistic magnetrons [J]. Phys. Fluids.,1992,4(3):740.
    [49]Haworth M D, Baca G, Benford J, et al. Significant pulse-lengthening in amultigigawatt magnetically insulated transmission line oscillator [J]. IEEE TransPlasma Sci,1998,26(3):312-319.
    [50]Fan Y W, Shu T, Liu Y G, et al. A Compact Magnetically Insulated Line Oscillator withNew-Type Beam Dump [J]. Chinese Physics Letters,2005,22(1):164-167.
    [51]樊玉伟.磁绝缘线振荡器及其相关技术研究[D].长沙:国防科技大学,2007.
    [52]Fan Y W, Zhong H H, Li Z Q, et al. Recent progress of the improved magneticallyinsulated transmission line oscillator [J]. REVIEW OF SCIENTIFIC INSTRUMENTS,2008,79(3):034703.
    [53]H. A. Davis. High power microwave generation from a virtual cathode device[J].Phys.Rev.Lett.,1985(21):2293~2296.
    [54]S. Burkhart. Multigigawatt microwave generation by use of virtual cathode oscillatordriven by1~2MV electron beam[J]. J.Appl. Phys.,1987(1):75~78.
    [55]叶卫民.虚阴极振荡器的研究[D].长沙:国防科技大学,1998.
    [56]王弘刚.调制型虚阴极振荡器的研究[D].长沙:国防科技大学,2004.
    [57]刘静.同轴波导虚阴极振荡器的研究[D].长沙:国防科技大学,2011.
    [58]王文祥.微波工程技术[M].北京:国防工业出版社,2009.
    [59]J. A. Nation. On the coupling of a high-current relativistic electron beam to a slowwave structure [J]. Appl. Phys. Lett.,1970,17:491-494.
    [60]N. F. Kovalev, M. I. Petelin, M. D. Raizer, et al. Generation of powerfulelectromagnetic radiation pulse by a beam of relativistic electrons[J]. ZhETF Pis. Red.,1973,18:232.
    [61]V. I. Kurilko, et al. Stability of a relativistic electron beam in a periodic cylindricalwaveguide[J]. Sov. Phys. Tech. Phys.,1979,24(12):1451.
    [62]肖仁珍.同轴慢波结构相对论切伦柯夫发生器研究[D].北京:清华大学,2007.
    [63]Y. Carmel, J. Ivers, R. E. Kribe, et al. Intense coherent Cherenkov radiation due to theinteraction of a relativistic electron beam with a slow-wave structure[J]. Phys. Rev.Lett.,1974,33:1278-1282.
    [64]K. Minami, W. R. Lou, and W. W. Destler. Observation of a resonant enhancement ofmicrowave radiation from a gas-filled backward wave oscillator [J]. Appl. Phys. Lett.,1988,53(7):559-561.
    [65]X. Zhai, E. Garate, R. Prohaska, et al. Study of a plasma-filled X-band backward waveoscillator [J]. Appl. Phys. Lett.,1992:2232-2234.
    [66]G. Barreto, C. B. Wharton. Experimental results from a tandem BWO-TWT systemused to generate high-power microwaves[J]. IEEE Trans. Plasma Sci.,1992,20:493-498.
    [67]A. V. Gunin, S. D. Korovin, I. K. Kurkan, et al. Relativistic BWO with electron beampre-modulation[C]. Proceedings of the12th international conference on high-powerparticle beams,1998:849-852.
    [68]A. V. Gunin, A. I. Klimov, S. D. Korovin, et al. Relativistic X-Band BWO with3-GWOutput Power [J]. IEEE Trans. on Plasma Sci.,1998,26(3):326-330.
    [69]C. Grabowski, E. Schamiloglu, C. T. Abdallah, et al. Observation of thecross-excitation instability in a relativistic backward wave oscillator[J]. Phys. Plasmas.,1998,5:3490-3492.
    [70]E. B. Abubakirov, A. N. Denisenko, N. F. Kovalev, et al. Relativistic backward waveoscillator using a selective mode converter[J]. Tech. Phys.,1999,44:1356-1359.
    [71]F. Hegeler, E. Schamiloglu, S. D. Korovin, et al. Recent advances in the study of along pulse relativistic backward wave oscillator[C].12th IEEE international pulsedpower conference,1999:825-828.
    [72]C. H. Che, G. Z. Liu, W. H. Huang, er al. A repetitive X-band relativisticbackward-wave oscillator. IEEE Trans. Plasma Sci[J].2002,30:1108-1111.
    [73]S. A. Kitsanov, A. I. Klimov, S. D. Korovin, et al. S-band resonant BWO with5GWpulsed power [C]. Proceeding of Beams2002,650:255-258.
    [74]S. A. Kitsanov, S. D. Korovin, A. I. Klimov, et al. Mechanically Tuned RelativisticBackward Wave Oscillator[J]. Tech. Phys. Lett.,2004,30:619-621.
    [75]S. D. Polevin, E. V. Chernykh, and V. E. Fortov. HPM pulses generated by S-Bandresonant relativistic BWO with power supply based on EMG. The first Euro-Asianpulsed power conference (EAPPC'06), Chengdu,2006.
    [76]L. D. Moreland, E. Schamiloglu, R. W. Lemke, et al. Efficiency enhancement of highpower vacuum BWOs using nonuniform slow wave structures [J]. IEEE Trans. PlasmaSci.,1994,22:554-565.
    [77]D. K. Abe, Y. Carmel, S. M. Miller, et al. Experimental studies of overmodedrelativistic backward-wave oscillators[J]. IEEE Trans. Plasma Sci.,1998,26:591-604.
    [78]G. T. Leifeste, L. M. Earley, J. A. Swegle, et al. Ku-band radiation produced by arelativistic backward wave oscillator[J]. J. Appl. Phys.,1986,59:1366-1378.
    [79]S. K. Lyubutin, G. A. Mesyats, S. N. Rukin, et al. Nanosecond microwave generatorbased on the relativistic38-GHz backward-wave oscillator and all-solid-state pulsedpower modulator[C].12th IEEE international pulsed power conference,1999,1:202-205.
    [80]A. I. Klimov, et al. Highly efficient generation of subnansecond microwave pulses inKa-band relativistic BWO [J]. IEEE Trans. Plasma Sci.,2002,30(3):1120-1125.
    [81]靳振兴,张军,杨建华等. S波段长脉冲相对论返波振荡器实验研究[J].强激光与粒子束,2010,22(11):2648-2652.
    [82]张军,靳振兴,钟辉煌等. C波段谐振式相对论返波振荡器设计及其高频特性[J].强激光与粒子束,2010,22(10):2398-2402.
    [83]张军,靳振兴,杨建华等. X波段GW级长脉冲高功率微波源的设计与实验[J].强激光与粒子束,2010,22(11):2644-2647.
    [84]Jun Zhang, Zhen-Xing Jin, Jian-Hua Yang, et al. Efficiency enhancement of highpower vacuum BWOs using nonuniform slow wave structures [J]. IEEE Trans. PlasmaSci.,2011,39(6):1438-1444.
    [85]宋玮,陈昌华,孙钧等. X波段相对论返波管谐振反射器[J].强激光与粒子束,2010,22(4):853-856.
    [86]W. Song, J. Sun, Z. M. Song, et al. Suppressing RF breakdown of powerful backwardwave oscillator by field redistribution[J]. AIP Advances,2012,2(1):012118.
    [87]Z. H. Li. Investigation of an oversized backward wave oscillator as a high powermicrowave generator[J]. Appl. Phys. Lett.,2008,92(5):054102.
    [88]Z. H. Li and Y. Qi. Mode control in an oversized backward wave oscillator[J]. Physicsof Plasmas,2008,15(9):093104.
    [89]Q. S. Ma, Z. H. Li, C. Z. Lu, et al. Efficient Operation of an OversizedBackward-Wave Oscillator[J]. IEEE Trans. Plasma Sci.,2011,39(5):1201-1203.
    [90]X. D. Zheng, K. Minami, M. R. Amin, et al. Linear analysis of a backward waveoscillator with coaxial slow wave structure[J]. J. Phys. Soc. Jpn.,1995,64(4):1402-1411.
    [91]文光俊,李家胤,熊祥正等.同轴相对论返波管高频特性的数值分析[J].强激光与粒子束,1997,9(3):347-352.
    [92]刘国治.一种同轴慢波结构相对论高功率微波器件的数值模拟研究[C].全国第五届高功率微波学术研讨会论文集,广东珠海,2002:2-6.
    [93]肖仁珍,刘国治,林郁正等.同轴慢波结构相对论高功率微波产生器初步实验研究[J].强激光与粒子束,2006,18(5):839-842.
    [94]G. Z. Liu, R. Z. Xiao, C. H. Chen, et al. A Cerenkov generator with coaxial slow wavestructure [J]. J. Appl. Phys.,2008,103(9):093303.
    [95]Y. Teng, G. Z. Liu, H. Shao, et al. A New Reflector Designed for EfficiencyEnhancement of CRBWO [J]. IEEE Trans. Plasma Sci.,2009,37(6):1062-1068.
    [96]Y. Teng, R. Z. Xiao, Z. M. Song, et al. High-efficiency coaxial relativistic backwardwave oscillator[J]. Rev. Sci. Instrum.,2011,82(2):024701.
    [97]牛洪昌.紧凑型L波段同轴相对论返波振荡器的研究[D].长沙:国防科学技术大学,2005.
    [98]葛行军. L波段频率可调同轴相对论返波振荡器研究[D].长沙:国防科学技术大学,2010.
    [99]葛行军,高梁,曹亦兵等. L波段相对论返波振荡器初步实验研究[J].强激光与粒子束,2010,22(3):609-612.
    [100]葛行军,钟辉煌,张军等. L波段高效频率可调相对论返波振荡器研究[C].第二届全国脉冲功率会议,陕西西安,2011.
    [101] X. J. Ge, H. H. Zhong, B. L, Qian, et al. An L-band coaxial relativistic backwardwave oscillator with mechanical frequency tunability[J]. Appl. Phys. Lett.,2010,97(10):101503.
    [102] X. J. Ge, H. H. Zhong, B. L, Qian, et al. Asymmetric-mode competition in arelativistic backward wave oscillator with a coaxial slow-wave structure[J]. Appl. Phys.Lett.,2010,97(24):241501.
    [103]陈旭. P波段同轴返波振荡器的研究[D].长沙:国防科学技术大学,2008.
    [104] R. Z. Xiao, C. H. Chen, X. W. Zhang, et al. Efficiency enhancement of a high powermicrowave generator based on a relativistic backward wave oscillator with a resonantreflector[J]. J. Appl. Phys.,2009,105(5):053306.
    [105] R. Z. Xiao, X. W. Zhang, L. J. Zhang, et al. Efficient generation of multi-gigawattpower by a klystron-like relativistic backward wave oscillator[J]. Laser Part. Beams,2010,28:505-511.
    [106] R. Z. Xiao, C. H. Chen, J. Sun, et al. A high-power high-efficiency klystronlikerelativistic backward wave oscillator with a dual-cavity extractor[J]. Appl. Phys. Lett.,2011,98(10):101502.
    [107] R. Z. Xiao, Y. Teng, C. H. Chen, et al. High efficiency coaxial klystron-likerelativistic backward wave oscillator with a premodulation cavity[J]. Phys. Plasmas,2011,18(11):113102.
    [108] R. Z. Xiao, W. B. Tan, X. Z. Li, et al. A high-efficiency overmoded klystron-likerelativistic backward wave oscillator with low guiding magnetic field[J]. Phys.Plasmas,2012,19(11):093102.
    [109] A. I. Klimov, S. D. Korovin, V. V. Rostov, et al. On the possibility to realize theefficient relativistic Cerenkov microwave generator without an external guidingmagnetic field[J]. Radiophys. Quantum Electron.,2006,49(10):747–753.
    [110] E. M. Totmeninov, A. I. Klimov, and V. V. Rostov. Relativistic Cherenkovmicrowave oscillator without a guiding magnetic field[J]. IEEE Trans. Plasma Sci.,2009,37(7):1242–1245.
    [111] E. M. Totmeninov, A. I. Klimov, and V. V. Rostov. Relativistic Cherenkovmicrowave oscillator without a guiding magnetic field for the electronbeam energy of0.5MeV[J]. IEEE Trans. Plasma Sci.,2010,38(10):2944–2947.
    [112] E. M. Totmeninov, S. A. Kitsanov, and P. V. Vykhodtsev. Repetitively pulsedrelativistic cherenkov microwave oscillator without a guiding magnetic field[J]. IEEETrans. Plasma Sci.,2011,39(4):1150–1153.
    [113]汪伟. S波段无外加导引磁场相对论返波振荡器的研究[D].长沙:国防科学技术大学,2009.
    [114]宋刚永,蒙林,于新华等.双频相对论返波振荡器的数值模拟[J].强激光与粒子束,2009,21(1):103-107.
    [115]王挺.双波段相对论返波振荡器的研究[D].长沙:国防科技大学,2011.
    [116] T. Wang, J. D. Zhang, B. L. Qian, et al. Dual-band relativistic backward waveoscillators based on a single beam and dual beams[J]. Phys. Plasmas,2010,17(4):043107.
    [117] T. Wang, B. L. Qian, J. D. Zhang, et al. Preliminary experimental investigation of adual-band relativistic backward wave oscillator with dual beams[J]. Phys. Plasmas,2011,18(1):013107.
    [118] D. Wang, F. Qin, D. B. Chen, et al. X band bifrequency coaxial relativisticbackward wave oscillator[J]. AIP Advances,2011,1(4):042156.
    [119] Y. F. Tang, L. Meng, H. L. Li, et al. A dual-frequency coaxial relativisticbackward-wave oscillator with a modulating resonant reflector[J]. Phys. Scr.,85(5):055801.
    [120]郭辉萍,刘学观.电磁场与电磁波[M].西安:西安电子科技大学出版社,2004.
    [121] T. Said. P band as second generation of radar interferometry[C]. FIT ISI2005,Malang, Indonesia,2005.
    [122] R. Hoad, N. J. Carter, D. Herke, et al. Trends in EM susceptibility of ITequipment[J]. IEEE Trans. Electromag. Compatibility,2004,46(3):390-395.
    [123] B. L. Qian, Y. Z. Lei, Y. G. Liu, et al. Space-charge-limiting current of a relativisticelectron beam propagationg in a rippled-wall waveguide[J]. Chin. Phys. Lett.,2000,17(3):212-214.
    [124] G. X. Du and B. L. Qian. The space-charge limiting current of a sheet relativisticelectron beam in a rippled rectangular waveguide[J]. Phys. Plasmas,2009:16(8):083106.
    [125]王浩英.高功率毫米波Cherenkov器件研究[D].成都:电子科技大学,2005.
    [126] K. Tanaka, K. Minami, X. D. Zheng, et al. Propagating quasi-TE modes in avacuum axisymmetric corrugated-wall waveguide[J]. IEEE Trans. Plasma Sci.,1998,26(3):940-946.
    [127] K. Tanaka, K. Minami, and T. Nagahama. Experimental study on quasi-TE moderadiation from a high power backward wave oscillator[J]. J. Phys. Soc. Jpn.,1998,67(11):3779-3786.
    [128] L. Rayleigh, On the dynamical theory of gratings[J]. Proc. Roy. Soc, Ser, A.,1907,79:339-416.
    [129] R. Petit. Electromagnetic Theory of Gratings[M]. New York: Springer-Verlag,1980.
    [130] R. F. Millar. On the rayleigh assumption in scattering by a periodic surface[J]. Proc.Cambridge Phil. Soc.,1969,65:773-790.
    [131] T. Watanabe, Y. Choyal, K. Minami, et al. Range of validity of the Rayleighhypothesis[J]. Physical Review E,2004,69:056606.
    [132] X. J. Ge, H. H. Zhong, B. L. Qian, et al. Dispersive characteristics and longitudinalresonance properties in a relativistic backward wave oscillator with the coaxialarbitrary-profile slow-wave structure[J]. Physics of Plasmas,2009,16(11):113104.
    [133]张军,钟辉煌.慢波结构纵向谐振特性研究[J].微波学报,2004,20(1):40-44.
    [134]张军,钟辉煌.高功率O型慢波器件的纵向模式选择研究[J].物理学报,2005,54(1):206-210.
    [135] X. J. Ge, H. H. Zhong, B. L. Qian, et al. Transversal and longitudinal modeselections in double-corrugation coaxial slow-wave devices[J]. Physics of Plasmas,2009,16(6):063107.
    [136]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,2001.
    [137]刘盛纲.微波电子学导论[M].北京:国防电子工业出版社,1985:110-114.
    [138] L. V. Bulgakova and S. P. Kuznetsov. Unsteady-state nonlinerar processesaccompanying the interaction of an electron beam with an electromagnetic field nearthe boundary of a transmission band. I. The high-frequency boundary [J]. Translatedfrom Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika,1988,31(2):207-221.
    [139] G. Z. Liu, Z. F. Yang, J. Sun, et al. Characteristics of space-charge-limiting currentfor the magnetically immersed foilless diode[J]. IEEE Trans. Plasma Sci.,2009,37(10):2048-2054.
    [140]张晓萍.新型磁绝缘线振荡器研究[D].长沙:国防科技大学,2004.
    [141] J. M. Dawson. One-dimensinal plasma model [J]. Phys. Fluids,1962,5(4):403.
    [142] C. K. Birdsall and D. Fuss. Clouds-in-cells physics for many-body plasmasimulation [J]. J. Comput. Phys.,1969,12(3):494.
    [143] J. M. Dawson. Particle Simulation of Plasmas [J]. Rev. Mod. Phys,1983,55(2):403.
    [144] V. P. Tarakanov. User’s manual for code Karat [R]. Virginia: Berkeley ResearchAssociates inc.,1999.
    [145] B. Goplen, L. Ludeking, D. Smithe. Magic user’s manual [R]. Technical Report ofMission Research Corporation,1999.
    [146] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd. An object-orientedelectromagnetic PIC code [J]. Comp. Phys. Comm.,1995,87:199.
    [147] J. G. Wang, D. H. Zhang, C. L. Liu, et al. UNIPIC code for simulations of highpower microwave devices [J]. Phys. Plasmas.,2009,16(3):033108.
    [148] J. Zhou, D. G. Liu, C. Liao, et al. CHIPIC: An Efficient Code for ElectromagneticPIC Modeling and Simulation [J]. IEEE Trans. Plasma Sci.,2009,37(10):2002-2011.
    [149] F. J. Agee. Evolution of pulse shortening research in narrow band, high powermicrowave sources[J]. IEEE Trans. Plasma Sci.,1998,26(3):235-240.
    [150] T. Shu and Y. G. Liu. Particle simulation of a millimeter wave multiwave cerenkovgenerator producing gigawatt power levels[J]. Int. J. Infrared Millim. Waves,1998,19(3):385-397.
    [151] K. Minami, M. Saito, Y. Choyal, et al. Linear dispersion relation of backward-waveoscillators with finite-strength axial magnetic field [J]. IEEE Trans Plasma Sci.,2002,30(3):1134.
    [152] A. N. Vlasov, A. S. Ilyin and Y. Carmel. Cyclotron Effects in RBWOs operating atlow magnetic fields [J]. IEEE Trans Plasma Sci.,1998,26(3):605.
    [153] B. L. Qian, C. L. Li, Y. G. Liu, et al. Experiment on the plasma-loadedbackward-wave oscillator using a gas-loaded foil-less diode[J]. J. Appl. Phys.,2000,88(5):3059-3063.
    [154] S. A. Kitsanov, A. I. Klimov, S. D. Korovin, et al. Decimeter-wave resonantrelativistic BWO[J]. Radiophysics and Quantum Electronics,2003,46(10):797-801.
    [155]杨建华.低磁场谐振腔切仑科夫振荡器-锥形放大管的研究[D].长沙:国防科技大学,2002.
    [156]李天明.相对论磁控管的理论与实验研究[D].成都:电子科技大学,2005.
    [157]刘伟伟,张虹,白书欣等.利用永磁环产生轴向均匀磁场研究[J].磁性材料及器件,2007,38(6):24-28.
    [158]张军,李志强,张泽海等. X波段永磁包装HPM源可行性研究[C].首届全国脉冲功率会议文集,安徽芜湖,2009:548-552.
    [159] M. R. Friedman, S. Fernsler, R. Slinker, et al. Efficient conversion of the energy ofintense relativistic electron beams to rf waves[J]. Phys. Rev. Lett.,1995,75:1214.
    [160]曹亦兵.低阻无箔渡越辐射振荡器的研究[D].长沙:国防科学技术大学,2008.
    [161]白现臣.单台加速器产生同步高功率双电子注研究[D].长沙:国防科学技术大学,2007.
    [162]张晓萍,钟辉煌,袁成卫.微波源中同轴提取区支撑杆的理论分析和设计[J].微波学报,2004,20(2):46-50.
    [163]顾茂章,张克潜.微波技术[M].北京:清华大学出版社,1989.
    [164]刘金亮,张亚洲,陈国强等.混频技术测量单次脉冲微波频率的实验研究[J].强激光与粒子束,1997,9(4):631-635.
    [165]舒挺,王勇,李继健等.高功率微波的远场测量[J].强激光与粒子束,2003,15(5):485-488.
    [166]刘克成,宋学诚.天线原理[M].长沙:国防科技大学出版社,1989.
    [167]周恒.偶极天线用于高功率微波功率测量的研究[D].长沙:国防科技大学,2007.
    [168] A. I. Klimov and V. Yu. Konev. Short electric dipole antennas for hpm pulsedetection[C].15thinternational symposium on high-current electronics, Tomsk, Russia,2008:434-436.
    [169] Y. W. Fan, H. H. Zhong, T. Shu, et al. Use of shorted coaxial transmission line forhigh-power microwave measurement[J]. Rev. Sci. Instrum.,2009,80(2):024701.
    [170]顾瑞龙,沈民谊.微波技术与天线[M].北京:国防工业出版社,1980.
    [171]张军,钟辉煌,舒挺等. X波段长脉冲HPM产生的实验研究[J].强激光与粒子束,2008,20(3):443-446.
    [172] G. A. Mesyats. Vacuum discharge effects in the diodes of high-current electronaccelerators[J]. IEEE Trans. Plasma Sci.,1991,19(5):683-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700