用户名: 密码: 验证码:
苹果近红外光谱数据库系统关键算法研究及原型系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近红外(Near-infrared, NIR)光谱的信息量丰富,图谱稳定性高且容易采集,其NIR漫反射分析不需要对样品做任何化学处理,因此NIR光谱分析技术具有快速、无损和绿色的特点。计算机技术的广泛应用和化学计量学的不断发展促使NIR光谱分析方法在诸多领域倍受青睐。但是,建立性能优良的NIR模型必须同时具备:规范、合理的光谱采集标准,性能稳定、精度符合要求的光谱仪,丰富的样品资源,准确测量样品成分浓度的技术以及具有丰富经验的建模人员等条件。对于普通单位而言,很难同时具备以上条件;另一方面,具备以上条件的单位所取得的NIR光谱分析成果受限于现有光谱数据管理方法而难以大范围应用。因此,为了推广NIR光谱分析技术的应用范围和共享NIR光谱分析结果,建立光谱数据库系统(Spectral database system, SDBS)是非常必要的。
     本课题以苹果为检测对象,探索构建用于苹果NIR光谱及其分析结果管理的数据库系统的方法。首先,研究了苹果NIR光谱匹配算法(Spectral matching algorithm, SMA)。根据杰卡德相似系数(Jaccard similarity coefficient, JSC)构造全光谱匹配算法(Spectral matching algorithm based on JSC, SMA-JSC),将曲线线形作为光谱匹配指标引入到光谱匹配中来。其次,本文还利用曲线平滑算法、曲线谱峰识别方法对苹果NIR光谱有效特征峰识别进行研究。优选了苹果NIR光谱曲线谱峰识别参数,实现了苹果NIR光谱有效特征峰的自动识别。并在此基础上对光谱特征峰匹配算法(Spectral matching algorithm with peak information, SMA-P)进行研究。最后,根据以上研究所得出的结论,开发了苹果NIR SDBS原型系统。
     本文的主要内容和研究结果如下:
     (1)分析和研究了苹果NIR光谱特征峰自动识别方法,优选了苹果NIR光谱特征峰识别参数。由于常用曲线平滑算法容易导致光谱特征峰波段产生较大的形变,导致特征峰参数产生偏差,且无法满足特征峰自动识别的要求。本文提出一种基于数据点加权的曲线平滑算法,在固定宽度的滑动窗口内根据曲线波动频率对中心数据点加权,对权重不同的数据点采用不同的平滑算法进行平滑。当权重阈值大于0.5时,经过平滑的曲线均方根(Root mean square, RMS)值变化不明显,当窗口大小为21时,对特征峰波段的保护效果最优。选择峰宽和峰形指数作为假性峰(Pseudo peak, PP)过滤指标,测试了20个水平的峰宽闽值(Tpw:3~41)对PP的过滤效果,当Tpw达到29时,无法通过继续增大Tpw过滤其他PP;继续采用峰形指数阈值(Tpws过滤其他PP,当阈值为0.005时,滤除效果最佳。比较了8~128cm-1分辨率下的光谱特征峰识别情况,在32或64cm-1分辨率下的特征峰识别效果最佳,当分辨率继续降低时,光谱数据点数逐渐减小,无法满足Tpw的要求,特征峰识别效果变差。结果表明:当光谱分辨率为32cm-1,加权窗口为21,权重阈值为0.7,平滑窗口大小为21,Tpw为29,Tps为0.005时,特征峰位1正确识别率为100%,特征峰位2正确识别率为99.50%,可以实现苹果NIR光谱特征峰及相关参数的自动计算.
     (2)研究了用于苹果NIR光谱的SMA-P.对SMA-P区分不同样品光谱的能力进行验证,采用阿克苏红富士,山东红将军,陕西红富士和陕西黄金帅4个类别,每个类别100个样品,共400个样品进行测试。在400条试验样品光谱中随机抽取20条与所有样品光谱进行比较。分别采用特征峰个数、峰位、峰面积和峰宽作为光谱匹配指标进行匹配,抽取的20条光谱与总体样品光谱中多条光谱完全匹配的比率分别为100%、25.00%、10.00%和0。因此,采用特征峰宽或面积指标区分不同样品光谱效果较好。进一步采用特征峰宽和面积作为光谱匹配指标对样品光谱进行分类测试,平均分类正确率分别为47.25%和55.00%。此结果表明:SMA-P对不同类别的苹果样品分类识别能力较差,不能胜任苹果NIR SDBS对未知样品进行分类初选的任务.
     (3)研究了用于苹果NIR光谱的全光谱匹配算法(Spectral matching algorithm with full spectral information, SMA-FS).对SMA-FS,包括绝对差异法(Absolute distance, AD)、总体平方差法(Sum of square difference, SSD)、欧式距离法(Euclidean distance, ED)、相关系数法(Correlation coefficient, CC)和光谱角法(Spectral angle, SA),区分不同样品光谱的能力进行验证。仍采用(2)中所描述的测试样品和测试方法进行测试,结果表明上述5种SMA-FS均能够正确区分不同样品光谱。进一步采用这5种SMA-FS对样品光谱进行分类测试,平均分类识别正确率分别为65.50%、66.00%、73.00%、64.75%和62.75%,分类结果明显优于SMA-P的分类结果,但正确率仍有待进一步提高。根据JSC原理构造全光谱匹配算法SMA-JSC.采用(2)中所描述的测试样品和测试方法进行测试,结果表明SMA-JSC能够正确区分不同样品的光谱。进一步采用SMA-JSC对样品光谱进行分类测试,对应平均分类识别正确率为:94.50%(校正)和95.00%(内部验证);进一步扩大测试范围,采用甘肃红富士、山东红富士和陕西红富士三个类别的苹果,每个类别100个样品,共300个样品进行上述测试。结果进一步证实SMA-JSC能够正确区分不同样品的光谱,对应平均分类识别正确率为:93.67%和93.33%;为了验证扩大测试样品集对算法的影响,将两个测试样品集合并后再进行上述测试。结果表明SMA-JSC仍然能够正确区分所有不同样品的光谱,对应平均分类识别正确率为:94.14%和94.29%,算法性能并未因测试样品集的扩大而降低。采用判别分析法(Discriminant analysis, DA)对以上样品光谱进行分类测试。两两分类平均精度分别为:98.60%(原始光谱)、95.90%(一阶导数)和96.30%(二阶导数),随着样类别数量的增加,分类正确率逐渐下降,当对以上7类样品进行分类时,正确率降低为:88.00%、56.40%和58.40%。以上结果表明:SMA-JSC对多类别的苹果样品分类识别正确率远高于SMA-P和常见的SMA-FS,具有受样品类别数量影响小,分类精度高和性能稳定的优点。相比较而言,分类样品类别的增加将导致传统分类算法效果变差。因此,在上述几类算法中,SMA-JSC最适用于苹果NIR SDBS的分类筛选任务,为苹果NIR SDBS的查询分析正确率的提高提供了有力保障。
     (4)制定苹果NIR SDBS入库光谱规范。从标准样品选择、样品预处理方法、光谱采集仪器、仪器参数设置、光谱采集试验环境等影响光谱品质的因素着手,充分利用前人的研究成果和领域知识,并结合本文的研究结论制定了苹果NIR SDBS入库光谱规范。此项工作为苹果NIR SDBS的数据规范性和一致性提供了理论依据和指导。
     (5)基于苹果NIR SDBS入库光谱规范、苹果NIR光谱特征峰识别方法和SMA的研究结论,开发了苹果NIR SDBS原型系统,规划和设计了苹果NIR SDBS实用平台原型。此项工作为理论和方法研究提供了测试平台,同时也为后续的研究工作做好铺垫。
Near-infrared (NIR) spectra can carry abundant sample information. They are with high stability and easy to collect, especialy, in NIR diffuse reflectance analysis, no chemical pretreatment was required. Therefore, NIR spectroscopy analysis method is regarded as a rapid, non-destructive and non-polluting method. Due to the wide application of computer technology and the continuous development in chemometrics, the NIR analysis method is becoming more and more popular in many fields. However, a reasonable standard, stable and accurate spectrometer, accurate measurement technology for sample component concentration and experienced scientists are needed for excellent NIR models. It is difficult to meet the above requirements for ordinary organizations. Therefore, standard NIR spectral information centers are necessary to promote the application of NIR analytical results.
     In this work, apples were selected as the targets of interests, and spectral matching algorithms (SMA) of apple NIR spectra were studied. A new spectral matching algorithm with full spectra (SMA-FS) based on the jaccard similarity coefficient (JSC) has been established. It is the first time to explore the available spectral matching method based on the shape of curve. In addition, an automatic peak detection algorithm was also studied. A prototype apple NIR SDBS has been developed to test the new explored algorithms.
     The main contents and results are summarized as follows:
     (1) An automatic peak detection algorithm was proposed and the parameters included in the algorithm were optimized. The commonly used spectral smoothing algorithms usually bring about large deformation in peak bands and large bias of peak parameters and can not meet the demands of automatic peak recognition. Thus, a new spectral smoothing algorithm based on weighted spectrl data points was proposed. In this algorithm, the center datapoint of a slide window with a fixed width was weighted according to the fluctuation frequency in the slide window. Where, all of the weights were normalized into0-1and large weights mean low noise levels while small weights mean high noise levels. The optimal weight threshold (WT) and window width (WW) were explored. The results of this study showed that:the noise content of the smoothed spectra did not change siginificantly when WT was larger than0.5and the peak band were best protected when the WW equaled to21. Peak width threshold (Tpw) and peak shape threshold (Tps) were adopted to filter pseudo peaks (PP) which were flat or narrow. In total,20different levels of Tpw from3to41were tested and the results indicated that all narrow PP were eliminated when Tpw reached29. Following this, a Tps equaled to0.005was used to filter flat PP. Effect of resolution on peak detection was also studied. Seven different levels of resolutions from2to128cm-1were tested and the results showed that resolution in the range of32~64cm-1was ideal for peak detection. It was concluded that apples NIR spectral peaks could be automatically detected under conditions that resolution was32cm-1or64cm-1, WW was21, WT was0.7, Tpw was29and Tps was0.005. The recognition rate of peak at5150cm-1was100%and peak at6900cm-1was99.50%.
     (2) SMA-P for apple NIR spectra was studied. The numbers of peaks, peak positions, peak areas and peak shapes have been used as the spectral matching indexes. The ability of SMA-P to distinguish between different spectra with peak information was validated. In total,400samples from4classes (100in each) were selected as the reference group and5samples were randomly selected from each class as the target group. The results indicated that different spectra could be distinguished from each other with their peak width and peak area. Based on this conclusion, classification tests were done with peak width and peak area. The slassification accuracies were47.25%and55.00%. So, it was concluded that the SMA-P could not be applied for sample classification in apple NIR SDBS.
     (3) SMA-FS for apple NIR spectra was studied. Normal SMA-FS, including absolutely distance (AD), square derivative (SD), euclidean distance (ED), correlation coefficient (CC) and spectral angle (SA) were used to distinguish different samples. The test datas introduced in (2) were also used for this test and the results indicated that all of these five methods could distinguish different spectra accurately. The classification accuracies were65.50%,66.00%,73.00%,64.75%and62.75%, which were much higher than the accuracies of the SMA-P. However, these algorithms were also unable to meet the requirements of SDBS for the accuracies were still not high engough. This might because the normal SMA-FS relied on spectral absolute intensity to much. Hence, a new SMA-FS based on JSC (SMA-JSC) was proposed to match spectra by the shape of spectral curves. In this method, the monotonicities of spectral curves in the same bands were compared for the similarity among different spectra. The experimental results showed that the new proposed algorithm could distinguish different spectra accurately, with the calibration accuracy being94.50%and the validation accuracy being95.00%. Futher verification was done with another group of datas which contained300samples of3classes (100in each). The calibration accuracy was93.67%and the validation accuracy was93.33%. Also, the mixing datas of these two batches were also used for the test, in which the calibration accuracy was94.14%and the validation accuracy was94.29%. A comparsion has been done between the SMA-JSC and the discriminant analysis (DA). The average classification accuracies between two varieties reached98.60%(raw spectra),95.90%(the first derivate) and96.30%(the second derivate). However, as the classes increasing, the accuracies declined rapidly and the classification accuracy of the total seven classes of samples droped to88.00%,56.40%and58.40%. It was concluded that the SMA-JSC was with high accuracy and stable and it was far superior to normal SMA-FS and DA method. SMA-JSC is optimal for classification task in apple NIR SDBS.
     (4) Standards of spectra which could be uploaded into the apple NIR SDBS were drawn up. These standards were based on previous research results, professional knowledge and our own conclusions, mainly involving four factors, i.e. sample pretreatment, spectrometer, spectrometer configuration and experimental environment. This work provided foundation for the reliability and the reference values of information stored in the apple NIR SDBS. Finally, an apple NIR SDBS prototype system was developed based on the above researches.
引文
1. 严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社.2005.
    2. 陆婉珍.现代近红外光谱分析技术.北京:中国石油化工出版社.2006.
    3. 王艳斌,褚小立,陆婉珍.近红外光谱定量与定性分析规范介绍.北京:中国石油出版社.2006.
    4. 傅霞萍.水果内部品质可见/近红外光谱无损检测方法实验研究[博士论文].杭州:浙江大学.2008.
    5. 谢丽娟.转基因番茄的可见_近红外光谱快速无损检测方法[博士论文].杭州:浙江大学.2009.
    6. 贾春晓.现代仪器分析技术及其在食品中的应用.北京:中国轻工业出版社.2005.
    7. Ozaki, Y., McClure, W. F., Christry, A. A. near-infrared spectroscopy in food science and technology. Wiley&Sons, Inc., Hoboken, New Jersey.2007.
    8. ASTM E1655 Standard practices for infrared multivariavte quantitative analysis.
    9. ASTM E1790 Standard practices for near infrared quantitative analysis.
    10. Jolliffe, I. Principal component analysis. John Wiley & Sons, Ltd,2005.
    11. Abdi, H., Williams, L. J. Principal component analysis. Wiley Interdisciplinary Reviews:Computational Statistics. 2010,2(4):433-459.
    12. Moore, B. Principal component analysis in linear systems:controllability, observability and model reduction, automatic control, IEEE Transactions on,1981,26(1):17-32.
    13. Haaland, D. M., Thomas, E. V. Partial least-squares methods for spectral analyses.1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry.1988,60(11):1193-1202.
    14. Haaland, D. M., Thomas, E. V. Partial least-squares methods for spectral analyses.2. Application to simulated and glass spectral data. Analytical Chemistry.1988,60(11):1202-1208.
    15. Chang, C. W., Laird, D. A., Mausbach, M. J., Hurburgh, C. R. Near-infrared reflectance spectroscopy principal components regression analyses of soil properties. Soil Science Society of America Journal.2001,65(2):480-490.
    16. Norgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., Engelsen, S. B. Interval partial least-squares regression (iPLS):A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy.2000,54(3):413-419.
    17. Wold, S., Antti, H., Lindgren, F., Ohman, J. Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems.1998,44(1):175-185.
    18. Nyden, M. R. Computer-Assisted Spectroscopic Analysis Using Orthonormalized Reference Spectra. Part I: Application to Mixtures. Applied Spectroscopy.1986,40(6):868-871.
    19. Nyden, M. R., Pallister, J. E., Sparks, D. T., Salari, A. Computer-Assisted Spectroscopic Analysis Using Orthonormalized Reference Spectra. Part II:Application to the Identification of Pure Compounds. Applied Spectroscopy.1987,41(1):63-66.
    20. Tungol, M. W., Bartick, E. G., Montaser, A. The development of a spectral database for the identification of fibers by infrared microscopy. Applied Spectroscopy.1990,44(4):543-549.
    21. Varmuza, K., Penchev, P. N., Scsibrany, H. Maximum common substructures of organic compounds exhibiting similar infrared spectra. Journal of Chemical Information and Computer Sciences.1998,38:420-427.
    22. Varmuza, K., Penchev, P. N., Scsibrany, H. Large and frequently occurring substructures in organic compounds obtained by library search of infrared spectra. Vibrational Spectroscopy.1999,19:407-412.
    23. Varmuza, K., Kochev, N. T., Penchev, P. N. Evaluation of hitlists from IR library searches by the concept of maximum common substructures. Analytical Sciences.2011,17:1659-1662.
    24. Penchev, P. N., Sohou, A. N., Andreev, G. N. Description and performance analysis of an infrared library search system. Spectroscopy Letters.1996,29 (8):1513-1522.
    25. Penchev, P. N., Kotchew, N. T., Andreev, G. N. IRSS:A program system for infrared library search. Comptes Rendus de I'Acaddmie Bulgare des Sciences.1998,51 (1-2):67-70.
    26. Penchev, P. N., Andreev, G. N., Varmuza, K. Automatic classification of infrared spectra using a set of improved expert-based features. Analytica Chimica Acta.1999,388:145-159.
    27. Penchev, P. N., Miteva, V. L., Sohou, A. N., Kochev, N. T., Andreev, G. N. Implementation and testing of routine procedure for mixture analysis by search in infrared spectral library. Bulgarian Chemical Communications.2008,40 (4):1-5.
    28. Yoon, W. L., Jee, R. D., Moffat, A. C., Blackler, P. D., Yeung, K., Lee, D. C. Construction and transferability of a spectral library for the identification of common solvents by near-infrared transflectance spectroscopy. Analyst.1999, 124(8):1197-1203.
    29. Yoon, W. L., Jee, R. D., Moffat, A. C. An interlaboratory trial to study the transferability of a spectral library for the identification of the solvents using near-infrared spectroscopy. Analyst.2000,125:1817-1822.
    30. Shepherd, K. D., Walsh, M. G. Development of reflectance spectral libraries for characterization of S properties. Soil Science Society of America Journal.2002,66 (3):988-998.
    31. Johnson, T., Sams, R., Sharpe, S. The PNNL Quantitative Infrared Database for Gas-Phase Sensing:Spectral Library for Environmental, Hazmat, and Public Safety Standoff Detection, Chemical and Biological Point Sensors for Homeland Defense. Proceedings of SPIE.2004,5269:159-167.
    32. Johnson, T. J., Profeta, L. T. M., Sams, R. L., Griffith, D. W. T., Yokelson, R. L. An infrared spectral database for detection of gases emitted by biomass burning. Vibrational Spectroscopy.2010,53(1):97-102.
    33. Loudermilk, J. B., Himmelsbach, D. S., Barton, F. E., Haseth, J. A. Novel search algorithm for a mid-infrared spectral library of cotton contaminants. Applied Spectroscopy.2008,62 (2):661-670.
    34. Genot, V., Colinet, G., Dardene, P., Bock, L. Transferring a calibration model and a spectral library to a soil analysis laboratory network. In EGU General Assembly Conference Abstracts.2009,11:2805.
    35. FDM Reference Spectra Databases [2013-06-06]. http://www.fdmspectra.com/index.html.
    36. Organic Chemistry Resources Worldwide, http://www.organicworldwide.net/content/about.
    37.刘苹,张镜城,杨永璧,邓景辉,邵潜.石油产品添加剂近红外光谱库的研究.现代仪器使用与维修.1998,6:27-28.
    38. 张录达,李军会,赵龙莲,赵丽丽,覃方丽,严衍禄.傅里叶变换近红外光谱信息资源共享的基础研究.光谱学与光谱分析.2004,24(8):938-940.
    39.祝诗平,王鸣,张小超.农产品近红外光谱品质检测软件系统的设计与实现.农业工程学报.2003,19(4):175-179.
    40.何淑华,曲连颍,王文龙,姜大成,高晓霞,张洁,赵冰,徐蔚清,陶艳春.对照中药材红外光谱数据库的研制与应用.光散射学报.2001,13(1):25-29.
    41.褚小立,田松柏,许育鹏,王京.近红外光谱用于原油快速评价的研究.石油炼制与化工.2012,43(1):72-77.
    42. 中科院上海有机化学研究所化学专业数据库中的红外谱图数据库http://202.127.145.134/scdb/main/irs introduce.asp.
    43.王静.红外光谱数据库系统研究[硕士论文].上海:华东师范大学.2008.
    44. Oi-Wah, L., Ping-Kay, H., Tao, B. A new approach to a coding and retrieval system for infrared spectral data:The 'Effective Peaks Matching' method. Vibrational Spectroscopy.2000,23:23-30.
    45. Vivo-Truyols, G., Torres-Lapasio, J. R., van Nederkassel, A. M., Vander Heyden, Y., Massart, D. L. Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals. Journal of Chromatography A.2005,1096:133-145.
    46. Vivo-Truyols, G., Torres-Lapasio, J. R., van Nederkassel, A. M., Vander-Heyden, Y., Massart, D. L. Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals:Part Ⅱ:Peak model and deconvolution algorithms. Journal of Chromatography A.2005,1096(1-2):146-155.
    47. Yang, C., He, Z. Y., Yu, W. C. Comparison of public peak detection algorithms for MSLDI mass spectrometry data analysis. BMC Bioinformatics.2009,10:1-13.
    48. Du, P., Sudha, R., Prystowsky, M. B., Angeletti, R. H:Data reduction of isotope-resolved LC-MS spectra. Bioinformatics.2007,23:1394-1400.
    49. Katajamaa, M., Miettinen, J., Oresic, M. MZmine:Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics.2006,22:634-636.
    50. Li, X., Gentleman, R., Lu, X., Shi, Q., Iglehart, J. D., Harris, L., Miron, A. SELDI-TOF mass spectrometry Protein Data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor Statistics for Biology and Health.2005,91-109.
    51. Mantini, D., Petrucci, F., Pieragostino, D., DelBoccio, P., Nicola, M. D., Ilio, C. D., Federici, G., Sacchetta, P., Comani, S., Urbani, A. LIMPIC:a computational method for the separation of protein MALDITOF-MS signals from noise. BMC Bioinformatics.2007,8(1):101.
    52. Du, P., Kibbe, W. A., Lin, S. M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform based pattern matching. Bioinformatics.2006,22:2059-2065.
    53. Leptos, K. C., Sarracino, D. A., Jaffe, J. D., Krastins, B., Church, G. M. Map-Quant:Open-source software for large-scale protein quantification. Proteomics.2006,6:1770-1782.
    54. Lange, E., Gropl, C., Reinert, K., Kohlbacher, O., Hildebrandt, A. High accuracy peak picking of proteomics data using wavelet techniques. Andreas Hildebrandt Pacific Symposium on Biocomputing.2006, (11):243-254.
    55. Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M. C., Kuerer, H. M. Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics.2005,5:4107-4117.
    56. Karpievitch, Y. V., Hill, E. G., Smolka, A. J., Morris, J. S., Coombes, K. R., Baggerly, K. A., Almeida, J. S. PrepMS: TOF MS data graphical preprocessing tool. Bioinformatics.2007,23:264-265.
    57. Smith, C. A., Want, E. J., Maille, G. O., Abagyan, R., Siuzdak, G. XCMS:processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry.2006,78: 779-787.
    58. Penski, E. C., Padowski, D. A., Bouck, J. B. Computer storage and search system for infrared spectra including peak width and intensity. Analytical Chemistry.1974,46(7):955-957.
    59. Mikael, B., Staffan, F., Anders, S., Anders, R., John, S. Applying spectral peak area analysis in near-infrared spectroscopy moisture assays. Journal of Pharmaceutical and Biomedical Analysis.2007,44:127-136.
    60. Lowry. S. R., Huppler, D. A., Andersonm C. R. Database development and search algorithms for automated infrared spectral identification. Journal of Chemical Information and Computer Sciences.1985,25(3):235-241.
    61. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., Goetz, A. F. H. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment 1993,44(2):145-163.
    62. 李兴.高光谱数据库及数据挖掘研究[博士论文].北京:中国科学院遥感应用研究所.2006.
    63. Rasmussen, G. T., Isenhour, T. L. Library retrieval of infrared spectra based on detailed intensity information. Applied Spectroscopy.1979,33(4):371-376.
    64. Rasmussen, G. T., Isenhour, T. L. The evaluation of mass spectral search algorithms. Journal of Chemical Information and Computer Sciences.1979,19(3):179-186.
    65. Rasmussen, G. T., Isenhour, T. L., Marshall, J. C. Mass spectral library searches using ion series data compression. Journal of Chemical Information and Computer Sciences.1979,19(2):98-104.
    66. Leung, K., Chau. F., Gao, J., Shih, T. M. Application of wavelet transform in infrared spectrometry:spectral compression and library search. Chemometrics and Intelligent Laboratory Systems.1998,43(1):69-88.
    67.谢狄林,施伟巧,李勇波,林积荣,陈忠.光谱数据库软件系统.光谱实验室.2006,23(1):118-122.
    68. 中国果品信息网.我国苹果种植面积与生产水平[2011-11-21].http://yzcp.agri.gov.cn/gpxxzl/pg/gk/sctg/t20100630_832643.htm.
    69. 中国果品信息摘要.中国苹果冷藏技术的标准.新鲜苹果冷藏贮存标准[2011-11-21].http://yzcp.agri.gov.cn/gpxxzl/pg/zcybz/hybz/t20100622_831507.htm.
    70.刘燕德,应义斌,傅霞萍.近红外漫反射用于检测苹果糖度及有效酸度的研究.光谱学与光谱分析.2005,25(11):1793-1796.
    71. 陆辉山.水果内部品质可见/近红外光谱实时无损检测关键技术研究[博士论文].杭州:浙江大学,2006.
    72. 段焰青,杨涛,孔祥勇,汤丹瑜,李青青.样品粒度和光谱分辨率对烟草烟碱NIR预测模型的影响.云南大学学报.2006,28(4):340-344.
    73. 王一兵,王红宇,瞿宏菊,芦菲,吴卫红,王海水,席时权.近红外光谱分辨率对定量分析的影响.分析化学研究简报.2006,34(5):699-701.
    74. 谢丽娟,刘东红,张宇环,徐惠荣,叶兴乾,应义斌.分辨率对近红外光谱和定量分析的影响研究.光谱学与光谱分析.2007,27(8):1489-1492.
    75. 严衍禄,陈斌,朱大洲,等.近红外光谱分析原理、技术与应用.北京:轻工业出版社.2013.
    76. 蒋焕煜,彭永石,谢丽娟,应义斌.扫描次数对番茄叶漫反射光谱和模型精度的影响研究.光谱学与光谱分析.2008,28(8):1763-1766.
    77.王韬,张录达,劳彩莲,李军会,赵龙莲,严衍禄.PLS回归法建立适用温度变化的近红外光谱定量分析模型.中国农业大学学报.2004,96(6):76-79.
    78. 李勇,魏益民,王峰.影响近红外光谱分析结果准确性的因素.核农学报.2005,19(3):236-240.
    79. 蒋焕煜、谢丽娟、彭永石,应义斌.温度对叶片近红外光谱的影响.光谱学与光谱分析.2008,28(7):1510-1513.
    80.周莹,傅霞萍,应义斌.湿度对近红外光谱检测的影响.光谱学与光谱分析.2007,27(11):2197-2199.
    81. 邢志娜,王菊香,申刚,叶勇.环境温度、湿度对混合胺近红外光谱分析模型的影响.兵工学报.2007,28(10):1238-1242.
    82. 胡克良,林林,冯子刚,等.现代分析仪器计量检定规程-傅里叶变换红外光谱仪计量检定规程.1997.
    83. Moving average. http://www.analog.com/static/imported-files/tech docs/dsp_book_Ch15.pdf.
    84. Danielsson, R., Bylund, D., Markides, K. E. Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography-mass spectrometry. Analytica Chimica Acta. 2002,454(2):167-184.
    85. Kaiser window [2013-11-27]. http://en.wikipedia.org/wiki/Kaiser_window.
    86. 王惠文,等.偏最小二乘回归方法及其应用.北京:国防工业出版社.1999.
    87. 王惠文,武载斌,孟洁.偏最小二乘回线性与非线性方法.北京:国防工业出版社.2006.
    88. Brillls, M., Folestad, S., Sparen, A., Salomonsson, J. Applying spectral peak area analysis in near-infrared spectroscopy moisture assays. Journal of pharmaceutical and biomedical analysis.2007,44(1):127-136.
    89. Howari, F. M. Comparison of spectral matching algorithms for identifying natural salt crusts. Journal of Applied Spectroscopy.2003,70(5):782-787.
    90. ChaoSimple,余弦距离、欧氏距离和杰卡德相似性度量的对比分析[2013-06-28].http://www.cnblogs.com/chaosimple/archi ve/2013/06/28/3160839.html.
    91.Fleetyang,不同相关性度量方法的线上效果对比与分析[2012-11-01].http://blog.sina.com.cn/s/blog_4b59de07010166z9.html.
    92.何晋浙,邵平,孙培龙.林芝红外光谱的特征峰研究.光谱学与光谱分析.2010,30(5):1022-1025.
    93. Anderson, D. H., Covert, G. L. Computer search system for retrieval of infrared data. Analytical. Chemistry.1967,39 (11):1288-1293.
    94. Erley, D. S. Fast searching system for the ASTM infrared data file. Analytical. Chemistry.1968,40(6):894-898.
    95. Rann, C. S. Automatic sorting of infrared spectra. Analytical. Chemistry.1972,44 (9):1669-1672.
    96. Fox, R. C. Computer searching-of infrared spectra using peak location and intensity data. Analytical Chemistry.1976, 48 (4):717-721.
    97. Luinge, H. J., Leussink, E. D., Visser, T. Trace-level identity confirmation from infrared spectra by library searching and artificial neural networks. Analytica Chimica Acta.1997,345(1):173-184.
    98. Discriminent analysis.http://www.mathworks.cn/cn/help/stats/classificationdiscriminantclass.html.
    99. Guo, Y., Hastie, T., Tibshirani, R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics.2007,8(1):86-100.
    100.欧阳爱国,谢小强,周廷睿,刘燕德.苹果可溶性固形物近红外光谱检测的偏最小二乘回归变量筛选研究.光谱学与光谱分析.2012,32(10):2680-2684.
    101.孙通,应义斌,刘魁武,胡雷秀.梨可溶性固形物含量的在线近红外光谱检测.光谱学与光谱分析.2008,28(11):2536-2539.
    102. Deubska, B., Guzowska-Swider, B., Cabrol-Bass, D. Automatic generaten of knowledge base from infrared spectral database for substructure identification. Journal of Chemical Information and Modeling.2000,4(2):330-338.
    103. Karpushkin, E., Bogomolov, A., Zhukov, Y., Boruta, M. New system for computer-aided infrared and Raman spectrum interpretation. Chemometrics and Intelligent Laboratory Systems.2007,88(1):107-117.
    104. Chu, P. M., Rhoderick, G. C., Vlack, D. V., Wetzel, S. J., Lafferty, W. J., Guenther, F. R. A quantitative infrared spectral database of hazardous air pollutants. Fresenius Journal of Analytical Chemistry.1998,360(3/4):426-429.
    105.刘燕德,应义斌.苹果糖分含量的近红外漫反射检测研究.农业工程学报.2004,20(1):189-192.
    106. Coombes, K. R., Fritsche, H. A., Clarke, C., Chen, J. N., Baggerly, K. A., Morris, J. S., Xiao, L., Hung, M., Kuerer, H. M. Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clinical Chemistry,2003,49:1615-1623.
    107. Lau, O. W., Hon, P. K., Bai, T. A new approach to a coding and retrieval system for infrared spectral data:The effective peaks matching method. Vibrational Spectroscopy.2000,23(1):23-30.
    108. Li, J. F., Hibbert, D. B., Fuller, S., Vaughn, G. A comparative study of point-to-point algorithms for matching spectra. Chemometrics and Intelligent Laboratory Systems.2006,82(1/2):50-58.
    109. Small, G. W., Rasmussen, G. T., Isenhour, T. L. An infrared search system based on direct comparison of interferograms. Applied Spectroscopy.1979,33(5):444-450.
    110. Varmuza, K., Karlovits, M., Demuth, W. Spectral similarity versus structural similarity:infrared spectroscopy. Analytica Chimica Acta.2003,490(1/2):313-324.
    111. Kumar, Vipin. Introduction to Data Mining. ISBN 0-321-32136-7.2005.
    112. Jaccard, Paul.Etude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Societe Vaudoise des Sciences Naturelles.1901,37:547-579.
    113. Jaccard, Paul. The distribution of the flora in the alpine zone, New Phytologist.1912,11:37-50.
    114. Open source computer vision [2013-11-11].http://opencv.org/.
    115. OpenCv中文网站[2013-11-10]http://www.opencv.org.cn/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700