用户名: 密码: 验证码:
GPS海洋水汽信息反演及三维层析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是水、汽交换的主要场所,大气中86%的水汽来源于海洋。连续、实时、高精度地获取海洋水汽信息,对准确地掌握天气系统的演化非常重要。我国东临太平洋,太平洋暖湿气流为我国的东部地区带来了大量的水汽及降水,也造成了沿海地区海洋灾害的频繁发生。因此,加强海洋水汽信息的监测方法和应用研究,是有效应对全球气候变化的重要手段,也是海洋防灾减灾的关键措施。
     GPS气象学(GPS Meteorology,简称GPS/MET)研究为海洋水汽信息反演提供了新的途径。近20年来,地基GPS气象学快速发展和深入应用,国内外出现了大量的地基GPS气象的研究成果和应用系统,针对陆地稳固GPS站的GPS可降水汽(precipitable water vapor, GPS/PWV)反演方法基本成熟和完善,也为海上动态环境的GPS水汽监测提供了基础和借鉴。海上缺乏密集、稳固的GPS安装平台,只能以海洋浮标或航行船舶为载体。国外多位学者分别利用船载或浮标GPS数据,对近海乃至开阔海域上空GPS/PWV信息的反演方法进行了一些探索性研究,取得了令人鼓舞的结果,从而将地基GPS气象学的研究与应用由陆地推向海洋。GPS海洋水汽遥感一直缺乏系统性研究,海上动态GPS斜路径水汽(slant-path water vapor, GPS/SWV)信息提取及海洋上空三维水汽层析是GPS海洋水汽信息反演的重点和难点,国内外尚无相关专题研究。因此,海上动态GPS水汽信息反演研究已成为地基GPS气象学研究的薄弱环节。
     本文以渤海为研究区域,对GPS海洋水汽信息反演和三维水汽层析展开研究,形成了一套基于动态GPS的海洋水汽信息反演技术和方法,研制了相关数据处理软件,验证了本文提出的所有方法及其结果。利用本文的研究成果,借助海面浮体上的GPS设备,可以实现海洋水汽信息的连续和高精度监测,以弥补星载或机载微波遥感、海上探空气球等方式的不足,为海气交换研究提供基础性数据,也为灾害性海洋天气的预报和预警服务。
     本文主要研究内容和相关结论如下:
     (1)精密单点定位(precise point positioning, PPP)软件研制和精度分析
     基于序贯最小二乘估计方法,利用IGS等提供的精密卫星星历和钟差产品,作者与香港理工大学等联合研制了精密单点定位软件UNIP。相对于高精度事后差分处理软件GrafNavTM解算得到的双差固定解,在航行状态下,UNIP软件得到的海上船载动态PPP解在X,Y,Z三个方向的RMS均在±2cm以内。因此,基于PPP技术和UNIP软件可以实现海上移动平台的厘米级动态精密定位,为海上高精度动态GPS水汽探测提供了良好的平台。
     (2)海上动态GPS大气可降水汽(PWV)估计
     系统、深入地研究了海上动态GPS/PWV信息提取方法,导出了其函数模型和随机模型。结合海洋动态观测环境和海上水汽信息的时空变化,引入随机游走过程估计方法,动态模拟船载GPS接收机天顶对流层湿延迟(zenith wet delay, ZWD)在时间和空间尺度上的随机变化,在滤波处理时附加ZWD参数的动态噪声约束;并对不同噪声约束及卫星截止高度角对海上动态GPS/PWV信息提取精度的影响进行了讨论和分析。
     基于UNIP软件平台,开发了’GPS/PWV信息提取模块。利用渤海船载动态GPS测量和同步气象观测数据,进行了海上动态GPS/PWV信息提取和精度验证。结果表明:海上船载动态GPS/PWVMM5模式积分水汽基本一致;以后者为参考值,GPS/PWV的偏差在3mm以内,RMS优于1.2mm,这一结果明显好于国外现有研究结果。
     (3)海上动态GPS斜路径水汽含量(SWV)估计
     在海上动态GPS/PWV信息提取的基础上,本文进一步对海上动态GPS/SWV信息提取进行了深入研究。在现有计算方法的基础上,对海上动态GPS/SWV的提取算法进行改进,提出了顾及星间单差残差的GPS/SWV提取方法。
     利用渤海船载动态GPS测量和同步气象观测数据,提取了海上动态GPS/SWV信息,并对改进算法进行了数据验证和精度分析。结果表明:海上动态GPS/SWV的估算精度可以达到mm量级,与地基GPS/SWV的估算精度相当。相对于MM5模式积分水汽结果,采用本文提出的SWV提取方法,海上动态GPS/SWV的偏差在±3.5mm以内,其RMS为1.2mm,相比传统的“非差残差法”,精度提高1mm左右,改善效果较为明显。
     (4) GPS三维水汽层析的算法研究和软件研制
     本文对附加约束条件的水汽层析算法进行了系统和深入的研究。以附加约束条件的水汽层析方法为基础,采用序贯逐次滤波的数据处理手段,引入随机游走过程估计方法,在分时段逐次滤波处理中兼顾水汽层析参数随时间变化的特性;同时,针对海洋水汽资料相对匮乏的客观实际,提出和设计了无先验信息约束的水汽层析处理模式,使其史加适用于海洋三维水汽场的构建。
     基于上述算法,作者研制了GPS三维水汽层析软件3DTom,分别利用香港CORS参考站网数据和无线电探空数据、渤海船载动态GPS观测数据和MM5模式数据进行了算法验证和精度分析。结果表明:①附加低精度先验信息约束的处理方案的水汽层析结果相对较差,在水汽分布的主要高度层(1-4km)上均出现了较大的偏差;而附加高精度先验信息约束的处理方案的水汽层析结果在三种方案中相对最优,与探空结果最为接近。该结果进一步验证了先验信息的精度对GPS水汽层析的不同影响,高精度的先验信息可进一步改善GPS水汽层析结果。②无先验信息约束的处理方案的水汽层析结果同样优于低精度先验信息约束方案,与高精度先验信息约束方案的解算结果基本一致。在先验信息精度较低或缺少先验信息的情况下,本文提出的无先验信息约束的GPS水汽层析处理模式同样取得了较为理想的结果,具有更大的应用价值。
     (5)渤海三维水汽场的构建方法研究
     以渤海为研究区域,本文对渤海上空GPS三维水汽场的构建思路和方法进行了深入地探讨。利用沿岸地基GPS固定站和海上船载或浮标动态GPS移动观测平台,实现对渤海上空水汽的连续监测。以沿岸地基GPS观测为基础,利用船载动态GPS观测进行加密,组建“动态GPS气象监测网”,同时结合HY-2扫描微波辐射计获取的柱状水汽产品,提出了陆、海、空联合探测渤海上空水汽空问分布的研究思路和设计方案。
     首次对渤海上空GPS水汽信息反演和三维水汽层析进行了系统研究。以渤海局域上空(东经120.75。-122.0。,北纬37.5。~38.25。)为试验区域,利用沿岸地基GPS观测和海上船载动态GPS测量数据,借助研制的UNIP和3DTom软件,构建了渤海局域上空大气湿折射率的空间分布。以MM5模式数据为参考值,对GPS三维水汽层析结果进行了精度分析。结果表明:GPS三维水汽层析结果与MM5估算结果基本一致,各分层网格单元的均方根差(RMS)均优于10mm/km,所有层析网格单元(voxel)大气湿折射率的RMS优于5mm/km,在渤海局域上空稀疏水汽资料条件下,取得了较为理想的结果。
     以环黄渤海沿岸地基GPS/PWV为参考值,首次对HY-2扫描微波辐射计获取的柱状水汽产品进行了验证和精度分析。HY-2柱状水汽产品与地基GPS/PWV结果具有良好的一致性,可作为GPS海洋三维水汽层析的一种新的数据源。
Ocean is the main place of water-vapor exchange, and86%of water vapor in the atmosphere comes from the ocean. Continuous, real-time and high-precision acquisition of oceanic water vapor is very important to accurately grasp the evolution of weather systems. China is an oceanic disaster-prone country. The Pacific has brought a lot of water vapor and precipitation for our country's eastern region, also contributed to the frequent marine disasters for the coastal areas. Strengthening the monitoring of oceanic water vapor information is an important means of effective response to global climate change, also a key to the marine disaster prevention and mitigation measures.
     GPS meteorology provides a new ways for oceanic water vapor retrieval. Over the past20years, ground-based GPS meteorology obtained the rapid development and further application. GPS water vapor inversion method has been basically mature and perfect. All of these provide the basis and reference for marine GPS water vapor monitoring. Lacking of dense and solid GPS observation platforms at sea, there is only a buoy or ship as a carrier where the GPS receivers are set up. In the past decade, foreign professionals carried out exploratory research on GPS/PWV information retrieval using GPS data from ship or buoy which is offshore or over the open sea, and achieved some encouraging results. Thus the research and application of ground-based GPS meteorology has trended towards sea. Marine GPS water vapor remote sensing has been a lack of systematic research. GPS slant-path water vapor (SWV) information extraction and three-dimensional water vapor tomography is the research emphasis and difficulties on marine GPS water vapor retrieval. There are no relevant research results on the field at home and abroad. Therefore, oceanic GPS water vapor retrieval has become the weaknesses in GPS meteorology.
     GPS marine water vapor retrieval and three-dimensional water vapor tomography is researched in this thesis. A set of GPS marine water vapor retrieval technology and method is gained, and relevant data processing software is developed. Based on the research results of this thesis, continuous and high precision monitoring of oceanic water vapor information is achieved by means of GPS devices on the sea floats. It can compensate for satellite or airborne microwave remote sensing and sea sounding balloon, and provide a basis data for air-sea exchange research, forecasting and warning services for disaster ocean weather.
     Main contents and conclusions are as follows:
     (1) Precise point positioning (PPP) software development and its precision analysis
     Based on sequential least squares estimation method, the author develops precise point positioning software named as UNIP in cooperation with Hong Kong Polytechnic University, taking advantage of IGS precise satellite ephemeris and clock products. In the dynamic mode, relative to the high-precision double difference fixed solutions from GrafNavTM software, RMS of sailing ship-borne PPP solutions in X, Y, Z coordinates are within±2cm. Therefore, precise point positioning (PPP) technology based on dynamic mobile platform at sea can achieve centimeter-level positioning precision, and provide a good platform for high-precision oceanic GPS water vapor remote sensing.
     (2) Oceanic dynamic GPS precipitable water vapor (PWV) in the atmosphere estimate
     This paper carries out in-depth research on oceanic dynamic GPS/PWV information extraction method, and gives out its function model and random model. Combining marine dynamic observation environment and temporal and spatial variation of oceanic water vapor information, random walk process is introduced as dynamic noise constraint of ZWD parameter, which simulates random changes of ship-borne GPS zenith wet delayed (ZWD). Then the influences of PWV retrieval precision for different random process noise constraint and cut-off elevation angle are analyzed.
     Based on UNIP software, the GPS/PWV information extraction module is developed. With Bohai ship-borne dynamic GPS measurements and synchronous meteorological observations, oceanic GPS/PWV information is extracted and accuracy validation of that is carried out relative to MM5model integral water vapor. Results show that oceanic ship-borne GPS/PWV is basically the same as MM5model. Using MM5mode as reference, the deviation of GPS/PWV is in3mm, and RMS is less than1.2mm.
     (3) Oceanic dynamic GPS slant-path water vapor (SWV) estimates
     The marine dynamic GPS/SWV retrieval is further researched on the basis of oceanic GPS/PWV extraction. This article has improved the existing oceanic GPS/SWV extraction algorithm, and proposed a new oceanic GPS/SWV extraction method of taking into account single-difference residual between satellites.
     With ship-borne dynamic GPS measurements and synchronous meteorological observations in the Bohai Sea, the oceanic GPS/SWV information is extracted and validation of improved algorithms and accuracy analysis of GPS/SWV are carried out. Results showed that the precision of oceanic dynamic GPS/SWV can achieve in millimeter range, and is basically the same as that of ground-based GPS/SWV estimation. With the proposed oceanic GPS/SWV extraction method, the deviation of GPS/SWV is in3.5millimeter relative to the MM5model integral water vapor, and accordingly its RMS is1.2millimeter. Compared with traditional "non-difference residual method", the accuracy of GPS/SWV extraction can improve about1millimeter.
     (4) Algorithm research and software development of three-dimensional GPS water vapor tomography
     This paper has carried out a systematic research on GPS water vapor tomography algorithm with constraint condition. Using sequential least squares estimation and successive filtering processing with time interval, random walk process estimation method is introuduced to take into account the characteristics of water vapor change over time. In view of the lack of marine water vapor, this paper puts forward and designs the solution without prior information, which is more suitable for the construction of marine three dimensional water vapor field.
     Based on the above algorithms, the author developed a three-dimensional GPS water vapor tomography software named as3DTom. Algorithm validation and accuracy analysis of3DTom software is carried out using Hong Kong CORS network and radiosonde data, Bohai ship-borne dynamic GPS observation and MM5data. Results showed that:①the water vapor tomography result of the2nd solution with low-precision priori information constraints is relatively poor, and appears the larger deviations in the main levels of water vapor distribution (1~4km). However the1st solution with high-precision priori information constraints is relatively optimal in three solutions, with the closest the sounding results. The results further validate the differential impact of the precision of priori information on GPS water vapor tomography. High-precision priori information can further improve the precision of GPS water vapor tomography results.②the result of3rd solution without priori information constraints is basically the same as1st solution with high-precision priori information constraints, and superior to2nd solution with low-precision priori information constraints. In the absence of priori information such as radiosonde and numerical weather model data, the designed solution without priori information by author can also get a more ideal result, and has more application value.
     (5) Research on the method of constructing three dimensional water vapor fields in Bohai Sea
     For the study area in the Bohai Sea, this paper explores the ideas and methods on the construction of three-dimensional GPS water vapor fields over the sea. The coastal ground-based GPS stations and oceanic dynamic ship-borne or buoy observation platforms were used to realize the continuous monitoring of water vapor over the Bohai Sea. On the basis of ground-based GPS stations along the coast, the dynamic GPS meteorological monitoring networks were formed with marine dynamic ship-borne GPS observations and HY-2column water vapor products from scanning microwave radiometer. This paper proposed a research idea on joint land, marine and air exploration of water vapor spatial distribution over the Bohai Sea. Then the technique route and schematic design are provided.
     The local region (120.75°E~122.0°E,37.5°N~38.25°N) in the Bohai Sea was used for test area. With the help of developed UNIP and3DTom software, GPS three dimensional water vapor tomography test was first carried out by using marine ship-borne GPS observations and coastal ground-based GPS stations. The space distribution of atmospheric wet refraction over the study area is obtained. Using MM5mode as reference, the precision analysis of GPS three dimensional water vapor tomography results has been carried out. Results indicate that GPS three dimensional water vapor tomography results are basic consistent with MM5estimates, and RMS of atmospheric wet refraction in each layer is superior lOmm/km, then RMS of atmospheric wet refraction in all layers is less than5mm/km. In the sparse water vapor conditions over the local region in the Bohai Sea, this paper achieved more ideal results.
     Using coastal ground-based GPS/PWV as reference, the precision analysis of HY-2column water vapor products from scanning microwave radiometer has been carried out for the first time in domestic. HY-2column water vapor products have good consistency with ground-based GPS/PWV, and can be used as a new source for GPS marine three dimensional water vapor tomography.
引文
[1]Abdel-salam, M. A. T. Precise point positioning using un-differenced code and carrier phase observations [D]. Calgary:University of Calgary,2005.
    [2]Adams, D. K., R. Fernandes, E. R. Kursinski, et al. A dense GNSS meteorological network for observing deep convection in the Amazon [J]. Atmospheric Science Letters,2011,12(2): 207-212.
    [3]Alber, C., R. Ware. C. Rocken, et al. Obtaining Single Path Phase Delays from GPS Double Differences [J]. Geophysical Research Letters,2000,27:2661-2664.
    [4]Askne, J. and H. Nordius. Estimation of tropospheric delay for microwaves from surface weather data [J]. Radio Science,1987,22:379-386.
    [5]Bai, Z. D. Near-real-time GPS Sensing of Atmospheric Water Vapour [D]. Queensland: Queensland University of Technology,2004.
    [6]Bar-Sever, Y. E., P. M. Kroger and J. A. Borjesson. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver [J]. Journal of Geophysical Research, 1998,103(B3):5019-5035.
    [7]Bastin, S., C. Chanpollion, O. Bock, et al. On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France [J]. Geophysical Research Letters,2005,32(5):L05808.
    [8]Bastin, S., C. Chanpollion, O. Bock, et al. Diurnal Cycle of Water Vapor as Documented by a Dense GPS Network in a Coastal Area during ESCOMPTE IOP2 [J]. Journal of Applied Meteorology and Climatology,2007,46:167-182.
    [9]Bender, M. and A. Raabe. Preconditions to ground-based GPS water vapour tomography [J]. Annales Geophysicae,2007,25(8):1727-1734.
    [10]Bender, M., G. Dick, J. Wickert, et al. Validation of GPS slant delays using water vapour radiometers and weather models [J]. Meteorologische Zeitschrift,2008,17(6):807-812.
    [11]Bender, M., G. Dick, J. Wickert, et al. Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications [J]. Journal of Geophysical Research,2009,114, D06303.
    [12]Bender, M., R. Stosius, F. Zus, et al. GNSS water vapour tomography-Expected improvements by combining GPS, GLONASS and Galileo observations[J]. Advances in Space Research,2011,47(5):886-897.
    [13]Bender, M., G. Dick, M. Ge, et al. Development of a GNSS Water Vapour Tomography System using Algebraic Reconstruction Techniques [J]. Advances in Space Research,2011, 47(10):1704-1720.
    [14]Bengtsson, L., G. Robinson, R. Anthes, et al. The use of GPS measurements for water vapor determination [J]. Bulletin of the American Meteorological Society,2003,84(9): 1249-1258.
    [15]Bevis, M., S. Businger, T. A. Herring, et al. GPS Meteorology:Remote Sensing of the Atmospheric Water Vapor Using the Global Positioning System [J]. Journal of Geophysical Research,1992,97:15787-15801.
    [16]Bevis, M., S. Businger, S. Chiswell, et al. GPS meteorology:Mapping zenith wet delays onto precipitable water [J]. Journal of Application Meteorology,1994,33:379-386.
    [17]Bi, Y. M., J. T. MAO, and C. C. LI. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS [J]. Advances in Atmospheric Sciences,2006,23(4):551-560.
    [18]Boehm, J. and H. Schuh. Vienna Mapping Functions in VLBI Analysis [J]. Geophysical Research Letters,2004,31 (1):101603.1-101603.4
    [19]Boehm, J., P. J. Mendes Cerveira, H. Schuh, et al. The Impact of Tropospheric Mapping Functions Based on Numerical Weather Models on the Determination of Geodetic Parameters[C]. IAG Proceedings, Cairns,2005
    [20]Boehm, J., B. Werl and H. Schuh. Troposphere Mapping Functions for GPS and VLBI from ECMWF Operational Analysis Data [J]. Journal of Geophysical Research,2006,111, B02406.
    [21]Boehm, J., A. Niell, P. Tregoning, et al. Global Mapping Function (GMF):A New Empirical Mapping Function Based on Numerical Weather Model Data [J]. Geophysical Research Letters,2006,33(7):L07304.
    [22]Bosser, P., O. Bock, C. Thorn, et al. A case study of using Raman lidar measurements in high-accuracy GPS applications [J]. Journal of Geodesy,2010,84(4):251-265.
    [23]Bosy, J., W. Rohm, A. Borkowski, et al. Integration and verification of meteorological observations and NWP model data for the local GNSS tomography [J]. Atmospheric Research,2010,96(4):522-530.
    [24]Braun, J., C. Rocken and R. Ware. Validation of line-of-sight water vapor measurements with GPS [J]. Radio Science,2001,36:459-472.
    [25]Braun, J., C. Rocken and J. Liljegren. Comparisons of Line-of-sight Water Vapor Observations Using the Global Positioning System and A Pointing Microware Radiometer [J]. Journal of Atmospheric and Oceanic Technology,2003,20:606-612.
    [26]Braun, J. and C. Rocken. Water vapor tomography within the planetary boundary layer using GPS [C]. Proceedings of the International Workshop on GPS Meteorology: Ground-based and space-borne applications, Japan.2003,3-09-1-3-09-4.
    [27]Braun, J. Remote sensing of atmospheric water vapor with the global positioning system [D]. University of Colorado at Boulder,2004.
    [28]Brown, S., C. Ruf, S. Keihm, et al. Jason microwave radiometer performance and on-orbit calibration [J]. Marine Geodesy,2004,27(1-2):199-220.
    [29]Brown, S. A Novel Near-Land Radiometer Wet Path-Delay Retrieval Algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer [J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(4):1986-1992.
    [30]Byun, S.H., Y. Bar-Sever and G. Gendt. The new tropospheric product of the international GNSS service[C]. Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Sept.13-16,2005, Long Beach, CA.
    [31]Byun, S. H. and Y. E. Bar-Sever. A new type of troposphere zenith path delay product of the international GNSS service [J]. Journal of Geodesy,2009,83:367-373.
    [32]Calais, E., J. Y. Han, C. DeMets, et al. Deformation of the North American plate interior from a decade of continuous GPS measurements [J]. Journal of Geophysical Research, 2006, Vol. 111, B06402.
    [33]Cao, Y. C., Y. Q. Chen and P. W. Li. Extraction of Slant Wet Delay and Three Dimensional Wet Refractivity Tomography by GPS [C]. Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Sept. 13-16,2005, Long Beach, CA:261-268.
    [34]Cao, Y. C., Y. Q. Chen and P. W. Li. Wet Refractivity Tomography with an Improved Kalman-Filter Method [J]. Advances in Atmospheric Sciences,2006,23(5):693-699.
    [35]Cardellach, E., D. Behrend, G. Runi, et al. The use of GPS buoys in the determination of oceanic variables [J]. Earth Planets Space,2000,52:1113-1116.
    [36]Chadwell, C. D. and Y. Bock. Direct Estimation of Absolute Precipitable Water in Oceanic Regions by GPS Tracking of a Coastal Buoy [J]. Geophysical Research Letters,2001,28 (19):3701-3704.
    [37]Champollion, C., F. Masson, M.-N. Bouin, et al. GPS Water Vapor Tomography: Preliminary Results from the ESCOMPTE Field Experiment [J]. Atmospheric Research, 2005,74:253-274.
    [38]Chen, K. Real-time precise point positioning and its potential applications [C]. Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Sept.21-24,2004. Long Beach, CA.
    [39]Chiang, K., W. Peng, Y. Yeh, et al. Study of alternative GPS network meteorological sensors in Taiwan:case studies of the plum rains and typhoon Sinlaku [J]. Sensors,2009,9: 5001-5021.
    [40]Davis, J., T. Herring, I. Shapiro, et al. Geodesy by Radio Interferometry:Effects of Atmospheric Modeling Errors on Estimates of Baseline Length [J]. Radio Sci.,1985,20(6): 1593-1607.
    [41]Davis, J. L., G. Elgered, A. E. Niell, et al. Ground-based measurement of gradients in the wet radio refractivity of air [J]. Radio Sci.,1993,28(6):1003-1018.
    [42]De Haan, S. and H. Van Der Marel. Observing three dimensional water vapour using a surface network of GPS receivers[J]. Atmospheric Chemistry and Physics Discussions, 2008,8:17193-17235.
    [43]Deeter, M. N. A new satellite retrieval method for precipitable water vapor over land and ocean [J]. Geophysical Research Letters,2007,34, L02815.
    [44]Deng, Z., M. Bender, G. Dick, et al. Retrieving tropospheric delays from GPS networks densified with single frequency receivers [J]. Geophysical Research Letters,2009,36, L19802.
    [45]Deng, Z., M. Bender, F. Zus, et al. Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers[J]. Radio Science,2011,46, RS6007.
    [46]Dick, G., G. Gendt and C. Reigber. First experience with near real-time water vapor estimation in a German GPS network [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2001,63(12):1295-1304.
    [47]Dodson, A. H., W. Chen, N.T. Penna, et al. GPS estimation of atmospheric water vapour from a moving platform [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2001, 63(12):1331-1341.
    [48]Duan, J. P., M. Bevis, P. Fang, et al. GPS meteorology:direct estimation of the absolute value of precipitable water [J]. Journal of Applied Meteorology,1996,35 (6):830-838.
    [49]Elosegui, P. and J. Davis. Accuracy assessment of GPS slant-path determinations [C]. Proceedings of the International Workshop on GPS Meteorology, Tsukuba, Japan.2003.
    [50]Eresmaa, R., H. Jarvinen, S. Niemela, et al. Asymmetricity of ground-based GPS slant delay data [J]. Atmospheric Chemistry and Physics,2007,7:3143-3151.
    [51]Fan, S., Y. Liu, C. Xu, et al. GPS Kinematic Precise Point Positioning Based on Sequential Least Squares Estimation[C]. Proceedings of Geoinformatics 2010, Beijing, China,2010.
    [52]Flores, A. Atmospheric tomography using satellite radio signals [D]. Catalunya, Barcelona, October 1999.
    [53]Flores, A., G. Ruffini and A. Rius.4D Tropspheric Tomography Using GPS Slant Wet Delays [J]. Annales Geophysicae,2000,18:223-234.
    [54]Flores, A., L. P. Gradinarsky, P. Elosegui, et al. Sensing atmospheric structure:Tropospheric tomographic results of the small scale GPS campaign at the Onsala Space Observatory [J]. Earth, planets and space,2000,52(11):941-945.
    [55]Flores, A., J. V. G. De Arellano, L. P. Gradinarsky, et al. Tomography of the lower troposphere using a small dense network of GPS receivers[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):439-447.
    [56]Fujita, M., F. Kimura, K. Yoneyama, and M. Yoshizaki. Verification of precipitable water vapor estimated from shipborne GPS measurements [J]. Geophysical Research Letters, 2008, VOL35, L13803.
    [57]Fund, F., L. Morel, A. Mocquet, et al. Assessment of ECMWF-derived tropospheric delay models within the EUREF Permanent Network [J]. GPS solutions,2011,15(1):39-48.
    [58]Gao, Y. and X. Shen. Improving ambiguity convergence in carrier phase-based precise point positioning[C]. Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001),11-14 September,2001, Salt Lake City, USA.
    [59]Gao, Y. and X. Shen. A new method for carrier-phase-based precise point positioning [J]. Journal of the Institute of Navigation,2002,49(2):109-116.
    [60]Gendt, G., G. Dick, C. Reigber, et al. Near real time GPS water vapor monitoring for numerical weather prediction in Germany [J]. Journal of the Meteorological Society of Japan,2004,82(1B):361-370.
    [61]Gradinarsky, L.P., R. Haas, G. Elgered, et al. Wet path delay and delay gradients inferred from microware radiometer, GPS and VLBL Observations [J]. Earth Planets Space,2000, 52(10):695-698.
    [62]Gradimarsky, L. P. and P. Jarlemark. Ground-Based GPS Tomography of Water Vapor: Analysis of Simulated and Real Data [J]. Journal of the Meteorological Society of Japan, 2004,82(1 B):551-560.
    [63]Guerova, G., E. BROCKMANN, J. QUIBY, et al. Validation of NWP Mesoscale Models with Swiss GPS Network AGNES [J]. Journal of Applied Meteorology,2003, 42(1):141-150.
    [64]Ha, J., K. D. Park, K. Kim, et al. Comparison of atmospheric water vapor profiles obtained by GPS, MWR, and radiosonde [J]. Asia-Pacific Journal of Atmospheric Sciences,2010, 46(3):233-241.
    [65]Hammond, W. C. and W. Thatcher. Northwest Basin and Range tectonic deformation observed with the global positioning system,1999-2003[J]. Journal of Geophysical Research,2005,110, B10405.
    [66]Hatanaka, Y. Estimation of Troposphere Delay and Accuracy of GEONET Solutions[C]. Proceedings of International Workshop of GPS Meteorology,2003.
    [67]Herring, T. A. Modeling atmospheric delays in the analysis of space geodetic data [C]. Proceedings of the Symposium on Refraction of Transatmospheric Signals in Geodesy, May 19-22,1992, Hague, Netherlands:157-164.
    [68]Hirahara, K. Local GPS tropospheric tomography [J]. Earth, planets and space,2000, 52(11):935-939.
    [69]Huang, C. Y., Y. A. Liou, C. C. Chiang, et al. Reconstruction of 3-D Wet Refractivity Structure of the Troposphere Using Simulated GPS Measurements[J]. Journal of Photogrammetry and Remote Sensing,2005,10(3):275-286.
    [70]Iwabuchi, T. and C. Rocken. A new GPS-enhanced high resolution weather service [C]. Proceedings of the 21th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Sept.16-19,2008, Savannah, GA:843-851.
    [71]Jin, S. and J. Wang. Impact of stochastic modeling on GPS-derived ZTD estimations [C]. Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Sept.21-24,2004, Long Beach, CA.
    [72]Kouba, J and P. Heroux. Precise point positioning using IGS orbit and clock products [J]. GPS Solutions,2001,5(2):12-28.
    [73]Kouba, J. A possible detection of the 26 December 2004 great Sumatra-Andaman islands earthquake with solutions products of the international GNSS service [J]. Studia Geophysica et Geodaetica,2005,49(4):463-483.
    [74]Koulali, A., D. Ouazar, O. Bock, et al. Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco [J]. Atmospheric Research,2012,104-105:273-291.
    [75]Li, Z., J.-P. Muller, and P. Cross. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements [J]. Journal of Geophysical Research,2003,108(D20),4651.
    [76]Liou, Y. A., Y. T. Teng, T. Van Hove, et al. Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes [J]. Journal of Applied Meteorology,2001,40(1):5-15.
    [77]Liu, Y. Remote Sensing of Atmospheric Water Vapor using GPS Data in the Hong Kong Region [D]. Hong Kong:The Hong Kong Polytechnic University,2000.
    [78]Liu, Y., H. B. Iz and Y. Q. Chen. Calibration of zenith hydrostatic delay model for local GPS application [J]. Radio Science,2000,35(1):133-140.
    [79]Liu, Y., H. B. Iz and Y. Q. Chen. Precise determination of dry zenith delay for GPS meteorological application [J]. Acta Geodaetica et Cartographica Sinica,2000,29(2): 172-180.
    [80]Macdonald, A. E., Y. Xie and R. Ware. Diagnosis of three-dimensional water vapor using a GPS network [J]. Monthly Weather Review,2002,130:386-397.
    [81]MacMillan, D. S. Atmospheric gradients from very long baseline interferometry observations [J]. Geophysical Research Letters,1995,22:1041-1044.
    [82]Macpherson, S. R., G. Deblonde, J. M Aparicio, et al. Impact of NOAA ground-based GPS observations on the Canadian regional analysis and forecast system[J]. Monthly Weather Review,2008,136(7):2727-2746.
    [83]Mao, H., J. T. Mao, Y. M. Bi, et al. Constructing temporal and spatial water vapor figures by GPS remote sensing along slant rays [J]. Science in China Series D(Earth Sciences), 2007,50(2):296-305.
    [84]Mendes, V. B., G. Prates, L. Santos, et al. An Evaluation of the Accuracy of Models of the Determination of the weighted Mean Temperature of the Atmosphere[C]. ION 2000 National Technical Meeting, Anaheim, Calif,26-28 Jan.2000.
    [85]Miidla, P., K. Rannat and P. Uba. Some problems in water vapor tomography [C].5th WSEAS Int. Conf. on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT, Tenerife, Spain, December 14-16,2007:321-328.
    [86]Miidla, P., K. Rannat and P. Uba. Simulated studies of water vapour tomography [J]. WSEAS Transactions on Environment and Development,2008,4(3):181-190.
    [87]Miidla, P., K. Rannat and P. Uba. A Mathematical Model of Troposphere Water Vapor Tomography[C].2009 Second International Conference on Environmental and Computer Science, IEEE,2009:183-187.
    [88]Nicholson, N. A., S. Skone, M. E. Cannon, et al. Regional tropospheric tomography based on real-time double difference observables [C]. Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Sept.13-16,2005, Long Beach, CA.
    [89]Niell, A. E. Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths [J]. Journal of Geophysical Research,1996,101 (B2):3227-3246
    [90]Niell, A. E. Improved atmospheric mapping functions for VLBI and GPS [J]. Earth Planets Space,2000,52:699-702.
    [91]Niell, A. E., A. J. Coster, F. S. Solheim, et al. Comparison of measurememts of atmospheric wet delay by Radisonde, Water Vapor Radiometer, GPS, and VLBI [J]. Journal of Atmospheric and Oceanic Technology,2001,18(6):830-850.
    [92]Niell, A. E. Preliminary evaluation of atmospheric mapping functions based on numerical weather models [J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 2001,26(6-8):475-480.
    [93]Nilsson, T. and L. Gradinarsky. Water vapor tomography using GPS phase observations: Simulation results [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(10): 2927-2941.
    [94]Nilsson, T., L. Gradinarsky and G. Elgered. Water vapour tomography using GPS phase observations:Results from the ESCOMPTE experiment [J]. Tellus,2007,59A:674-682.
    [95]Nilsson, T. and G. Elgered. Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data [J]. Journal of Geophysical Research,2008,113, D19101.
    [96]Noguchi, W., T. Yoshihara, T. Tsuda, et al. Time-height distribution of water vapor derived by moving cell tomography during Tsukuba GPS campaigns[J]. Journal of the Meteorological Society of Japan,2004,82(1B):561-568.
    [97]Notarpietro, R., M. Gabella and G. Perona. Tomographic reconstruction of neutral atmospheres using slant and horizontal wet delays achievable through the processing of signal observed from small GPS networks [J]. Ital. J. Remote Sens,2008,40(2):63-74.
    [98]Notarpietro, R., M. Cucca, M. Gabella, et al. Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks [J]. Advances in Space Research,2011, 47(5):898-912.
    [99]Peng, W. C., Y. H. Lee, K. W. Chiang, et al. The study of Typhoon path in Taiwan region using precise point positioning technigue[C]. Proceedings of the 21th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), 16-19, September 2008, Savannah, GA.
    [100]Perler, D., A. Geiger and F. Hurter.4D GPS water vapor tomography:new parameterized approaches [J]. Journal of Geodesy,2011,85:539-550.
    [101]Ray, J. and K. Senior. Geodetic techniques for time and frequency comparisons using phase and code measurements [J]. Metrologia,2005,42(4):215-232.
    [102]Rius, A., G. Ruffini and L. Cucurull. Improving the vertical resolution of ionospheric tomography with GPS occultations [J]. Geophysical Research Letters,1997,24: 2291-2295.
    [103]Rocken, C., R. Ware, T. Van Hove, et al. Sensing atmospheric water vapor with the global positioning system [J]. Geophysical Research Letters,1993,20 (23):2631-2634.
    [104]Rocken, C., T. Van Hove, J. Johnson, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology [J]. Journal of Atmospheric and Oceanic Technology,1995, 12(3):468-478.
    [105]Rocken, C., T. Van Hove, and R. Ware. Near real-time GPS sensing of atmospheric water vapor [J]. Geophysical Research Letters,1997,24(24),3221-3224.
    [106]Rocken, C., J. Braun, C. Meertens, et al. Water vapor tomography with low cost GPS receivers [C].8th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ, U.S.,1998.
    [107]Rocken, C., J. Braun, T. Van Hove, et al. Developments in ground-based GPS Meteorology[C]. Proceeding of International Workshop on GPS Meteorology, Japan,2003, 1-01-1-6.
    [108]Rocken, C., J. Johnson, T. Van Hove, et al. Atmospheric Water Vapor and Geoid Measurements in the Open Sea with GPS [J]. Geophysical Research Letters,2005,32:1-3.
    [109]Rocken, C., T. Iwabuchi, Z. Lukes, et al. Precise positioning of ships and buoys in the open ocean-Results from a 3-month scientific Indian Ocean cruise and a tsunami buoys off Japan's coast[C]. Proceedings of the 21th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008),16-19, September 2008, Savannah, GA.
    [110]Rohm, W. and J. Bosy. Local tomography troposphere model over mountains area [J]. Atmospheric Research,2009,93(4):777-783.
    [111]Rohm, W. and J. Bosy. The verification of GNSS tropospheric tomography model in a mountainous area [J]. Advances in Space Research,2011,47(10):1721-1730.
    [112]Rohm, W. The precision of humidity in GNSS tomography [J]. Atmospheric Research, 2012,107:69-75.
    [113]Schuler, T., Posfay, A., Hein, G.W., et al. A global analysis of the mean atmospheric temperature for GPS water vapor estimation[C]. Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT.
    [114]Schuler, T. and E. Krueger. Atlas of GPS-based water vapor estimation in the Baltic Sea [EB/OL]. Institute of Geodesy and Navigation, University FAF Munich, online: http://137.193.32.1/research/docs/iwv baltimos kinematic.pdf
    [115]Schuler, T. GNSS meteorology on moving platforms-Advances and limitations in kinematic water vapor estimation [J]. InsideGNSS,2006,4:56-60.
    [116]Seko, H., S. Shimada, H. Nakamura, et al. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front [J]. Earth, planets and space,2000,52(11):927-933.
    [117]Seko, H., H. Nakamura, Y. Shoji, et al. The Meso-y scale Water Vapor Distribution Associated with a Thunderstorm Calculated from a Dense Network of GPS Reveivers [J]. Journal of the Meteorological Society of Japan,2004,82(1B):569-586.
    [118]Seco, A., P. Gonzalez, F. Ramirez, et al. GPS Monitoring of the Tropical Storm Delta along the Canary Islands Track, November 28-29,2005 [J]. Pure and applied Geophysics, 2009,166(8):1519-1531.
    [119]Shoji, Y., H. Nakamura, T. Iwabuchi, et al. Tsukuba GPS dense net campaign observation: Improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals [J]. Journal of the Meteorological Society of Japan,2004,82(1B):301-314.
    [120]Shoji, Y. A Study of Near Real-time Water Vapor Analysis Using a Nationwide Dense GPS Network of Japan [J]. Journal of the Meteorological Society of Japan,2009,87(1): 1-18.
    [121]Skone, S. and V. Hoyle. Troposphere Modeling in a Regional GPS Network [J]. Journal of Global Positioning Systems,2005,4(1-2):230-239.
    [122]Smith, C.D., N. Nicholson, S. Skone, et al. Evaluating regional atmospheric water vapour estimates derived from GPS and short-range forecasts of the Canadian Global Environmental Multiscale model in southern Alberta [J]. Atmosphere-Ocean,2008,46(4): 455-471.
    [123]Solbrig, P. Untersuchungen uber die Nutzung Numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems [D]. Germany:Institute of Geodesy and Navigation, University FAF Munich,2000.
    [124]Song, S., W. Zhu, J. Ding, et al.3D water-vapor tomography with Shanghai GPS network to improving forecasted moisture field [J]. Chinese Science Bulletin,2006,51(5):607-614.
    [125]Tao, W., Y. Gao, and Y. Zhang. Real-time water vapor sensing/measurements with precise point positioning algorithm and Canadian geodetic (GPS) network[C]. Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Sept.25-28,2007, Fort Worth, TX.
    [126]Tao, W. Near real-time GPS PPP-inferred water vapor system development and evaluation [D]. Canada:University of Calgary,2008.
    [127]Troller, M., A. Geiger, E. Brockmann, et al. Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks [J]. Geophysical Journal International,2006,167(2):509-520.
    [128]Troller, M., A. Geiger, E. Brockmann, et al. Tomographic Determination of the Spatial Distribution of Water Vapor Using GPS Observations [J]. Advances in Space Research, 2006,37(12):2211-2217.
    [129]Tsuda, T., K. Heki, S. Miyazaki, et al. GPS meteorology project of Japan-Exploring frontier of geodesy [J]. Earth Planets Space,1998,50(1):1-5.
    [130]Yuan, L. L., R. A. Anthes, R. H. Ware, et al. Sensing climate change using the Global Positioning System [J]. Journal of Geophysical Research,1993,98(D8):14925-14937.
    [131]Walpersdorf, A., M.-N. Bouin, O. Bock, et al. Assessment of GPS data for meteorological applications over Africa:Study of error sources and analysis of positioning accuracy [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2007,69:1312-1330.
    [132]Wang, J., L. Zhang, A. Dai, et al. A near-global,2-hourly data set of atmospheric precipitable water from ground-based GPS measurements [J]. Journal of Geophysical Research,2007,112, D11107
    [133]Ware, R., Alber C, Rocken C, et al. Sensing Integrated Water Vapor along GPS Ray Paths [J]. Geophysical Research Letters,1997,24(4):417-420.
    [134]Ware, R., W. David, A. Seth, et al. SuomiNet:A Real-Time National GPS Network for Atmospheric Research and Education [J]. Bulletin of the American Meteorological Society, 2000,81(4):677-694.
    [135]Xie, Y., F. Wei, G. Chen, et al. Analysis of the 2008 heavy snowfall over South China using GPS PWV measurements from the Tibetan Plateau[J]. Annales Geophysicae,2010, 28(6):1369-1376.
    [136]Xu, G., C. Cui, W. Li, et al. Variation of GPS Precipitable Water over the Qinghai-Tibet Plateau:Possible Teleconnection Triggering Rainfall over the Yangtze River Valley [J]. Terrestrial, Atmospheric and Oceanic Sciences,2011,22(2):195-202.
    [137]Zhang, X. and O. Andersen. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning [J]. Journal of Geodesy,2006,80(4):171-176.
    [138]Zumberge, J., M. Heflin, D. Jefferson, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks [J]. Journal of Geophysical Research, 1997,102(B3):5005-5017.
    [139]Zumberge, J. and G. Gendt. The demise of Selective Availability and implications for the International GPS Service [J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy,2001,26(6-8):637-644.
    [140]毕研盟.应用全球定位系统(GPS)遥感大气水汽的研究[D].北京:北京大学,2006.
    [141]毕研盟,毛节泰,刘晓阳,等.应用地基GPS遥感倾斜路径方向大气水汽含量[J].地球物理学报,2006,49(2):335-342
    [142]毕研盟,毛节泰,李成才,等.利用GPS的倾斜路径观测暴雨过程中的水汽空间分布[J].大气科学,2006,30(6):1169-1176
    [143]毕研盟,毛节泰,毛辉.海南GPS网探测对流层水汽廓线的试验研究.应用气象学报,2008,19(4):412-419.
    [144]毕研盟,杨光林,聂晶.基于Kalman滤波的GPS水汽层析方法及其应用[J].高原气象,2011,30(1):109-114.
    [145]曹玉静,刘晶淼,梁宏等.基于地基GPS层析大气水汽资源的方法研究[J].自然资源学报,2010,25(10):1786-1796.
    [146]曹云昌,方宗义,夏青.GPS遥感的大气可降水量与局地降水关系的初步分析[J].应用气象学报,2005,16(1):54-59
    [147]曹云昌,陈永奇,李炳华.GPS测定大气绝对湿度廓线方法研究[J].仪器仪表学报,2006,27(6)(增刊):1132-1135.
    [148]曹云昌,陈永奇,李炳华,等.利用地基GPS测量大气水汽廓线的方法[J].气象科技,2006,34(3):241-245.
    [149]畅毅,房建雪,周敏,等.PPK技术作业模式与精度分析[J].全球定位系统,2009,34(1):33-37.
    [150]陈俊勇.地基GPS遥感大气水汽含量的误差分析[J].测绘学报,1998,27(2):113-118.
    [151]陈永奇,刘焱雄,王晓亚,等.香港实时GPS水汽监测系统的若干关键技术[J].测绘学报,2007,36(1):9-12.
    [152]戴吾蛟,丁晓利,朱建军.基于观测值质量指标的GPS观测量随机模型分析[J].武汉大学学报·信息科学版,2008,33(7):718-722.
    [153]丁金才.GPS气象学及其应用[M].北京:气象出版社,2009
    [154]范士杰.GPS精密单点定位的算法实现与精度分析[D].武汉:武汉大学,2004.
    [155]范士杰,刘焱雄,许才军,等.海上动态精密单点定位的精度分析[C].CPGPS 2010会议论文集,中国·上海,2010.08:684-689.
    [156]范士杰,刘焱雄,王振杰.日本3.11特大地震的GPS震时和震后响应[J].武汉大学学报·信息科学版,2012,37(2):191-194.
    [157]范士杰,刘焱雄,高兴国,等.海上动态GPS大气可降水量信息反演[J].中国石油大学学报(自然科学版),2012,36(3):84-87,92.
    [158]范士杰,刘焱雄,高兴国,等.顾及星间单差残差的GPS斜路径水汽含量估计[J].武汉大学学报·信息科学版,2012,37(7):834-838.
    [159]高兴国.海洋GNSS水汽信息遥感映射模型优化研究[D].青岛:国家海洋局第一海洋研究所,2010.
    [160]高兴国,刘焱雄,冯义楷,等GNSS对流层延时映射函数影响分析比较研究.武汉大学学报·信息科学版,2010,35(12):1401-1404.
    [161]葛茂荣,刘经南.GPS定位中对流层折射估计研究[J].测绘学报,1996,25(4):285-291
    [162]谷晓平,王长耀,王汶.GPS水汽遥感中的大气干延迟局地修订模型研究[J].热带气象学报,2004,20(6):697-703.
    [163]郭洁,李国平.地基GPS探测水汽的发展与气象业务应用[J].大地测量与地球动力学,2007,Vo1.27 Spec.:35-42.
    [164]何平,徐宝祥,周秀骥,等.地基GPS反演大气水汽含量的初步试验[J].应用气象学报,2002,13(2):179-183.
    [165]何锡扬.基于PPP技术的地基GPS大气水汽反演与三维层析研究[D].武汉:武汉大学,2010.
    [166]黄善琪,王解先,王小亚,等.LAMBDA方法在计算GPS信号斜路径水汽含量中的应用[J].天文学报,2009,50(1):60-68.
    [167]李成才,毛节泰.GPS地基遥感大气水汽总量分析[J].应用气象学报,1998,9(4):470-477.
    [168]李成才,毛节泰,李建国.全球定位系统遥感水汽总量[J].科学通报,1999,44(3):333-336.
    [169]李成才,毛节泰.地基GPS遥感大气水汽总量中的“静力延迟”和“湿延迟”[J].大气科学,2004,28(5):795-800.
    [170]李国平,黄丁发.GPS气象学研究及应用的进展与前景.气象科学,2005,25(6):651-661.
    [171]李国平,黄丁发,刘碧全.成都地区地基GPS观测网遥感大气可降水量的初步试验[J].武汉大学学报·信息科学版,2006,31(12):1086-1089.
    [172]李国平.地基GNSS遥感大气可降水量及其在气象中的应用研究[D].成都:西南交通大学,2007.
    [173]李建国,毛节泰,李成才,等.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J].气象学报,1999,5(3):283-292.
    [174]李黎,匡翠林,朱建军,等.水平梯度和映射函数对PPP对流层延迟估计的影响分析[J].工程勘察,2011,(5):52-56.
    [175]生延兴,徐宝徉,胡新康,等.用地基GPS观测站遥测大气含水量和可降水量的理 论基础与试验结果[J].中国科学(A辑),2000,(30):107-110.
    [176]李延兴,徐宝祥,胡新康,等.应用地基GPS技术遥感大气柱水汽量的试验研究[J].应用气象学报,2001,12(1):61-69.
    [177]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [178]粱丰,李成才,王迎春,等.应用区域地基全球定位系统观测分析北京地区大气总水汽量[J].大气科学,2003,27(2):236-244.
    [179]刘敏,郭鹏,叶其欣等.上海地区地基GPS水汽三维层析技术和初步应用[J].天文学报,2010,51(3):299-308.
    [180]刘焱雄,HBIz,陈永奇.地基GPS技术遥感香港地区大气水汽含量[J].武汉测绘科技大学学报,1999,24(3):245-248.
    [181]刘焱雄,范士杰,乔方利,等.2011年日本Mw 9.0级地震的GPS响应研究[J].海洋学报,2012,34(6):59-65.
    [182]毛辉,毛节泰,毕研盟,等.遥感GPS倾斜路径信号构筑水汽时空分布图[J].中国科学(D辑:地球科学),2006,36(12):1177-1186.
    [183]宁津生,刘经南,陈俊勇,等.现代大地测量理论与技术[M].武汉:武汉大学出版社,2006.
    [184]曲建光,赵丽萍,刘基余.利用GPS数据来评定Saastamoinen和Hopfield天顶湿延迟模型的精度[J].黑龙江工程学院学报(自然科学版),2006,20(1):1-5.
    [185]宋淑丽,朱文耀,程宗颐,等.GPS信号斜路径方向水汽含量的计算方法[J].天文学报,2004,45(3):338-346.
    [186]宋淑丽,朱文耀,丁金才,等.上海GPS网层析水汽三维分布改善数值预报湿度场.科学通报,2005,50(20):2271-2277.
    [187]宋淑丽,朱文耀,廖新浩.地基GPS气象学研究的主要问题及最新进展[J].地球科学进展,2004,19(2):250-259.
    [188]宋淑丽,朱文耀,丁金才,等.上海GPS综合应用网对可降水汽量的实时监测及其改进数值预报初始场的试验[J].地球物理学报,2004,47(4):631-638.
    [189]宋淑丽.地基GPS网对水汽三维分布的监测及其在气象学中的应用[D].上海:中国科学院上海天文台,2004.
    [190]王维,王解先.联合迭代重构算法在对流层水汽三维重构中的应用研究[J].大地测量与地球动力学,2011,31(6):100-103.
    [191]王晓亚,朱文耀,严豪建,等.地面GPS探测大气可降水量的初步结果[J].大气科学,1999,23(5):605-612.
    [192]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1996.
    [193]严豪健,符养,洪振杰,等.天基GPS气象学与反演技术[M].北京:中国科学技术 山版社,2007.
    [194]叶世榕,张双成,刘经南.精密单点定位方法估计对流层延迟精度分析[J].武汉大学学报.信息科学版,2008,33(8):788-791.
    [195]易重海,朱建军,陈永奇,等.顾及卫星钟差插值误差的GPS精密单点定位观测值随机模型[J].武汉大学学报·信息科学版,2010,35(10):1165-1168.
    [196]于胜杰,柳林涛,粱星辉.约束条件对GPS水汽层析解算的影响分析[J].测绘学报,2010,39(5):491-496.
    [197]于胜杰,柳林涛.利用选权拟合法进行GPS水汽层析解算[J].武汉大学学报·信息科学版,2012,37(2):183-186.
    [198]张化疑,刘焱雄,周兴华,等.渤海区域对流层加权平均温度研究[J].测绘信息与工程,2010,35(4):1-2.
    [199]张双成,叶世榕,万蓉,等.基于Kalman滤波的断层扫描初步层析水汽湿折射率分布.武汉大学学报·信息科学版.2008,33(8):796-800.
    [200]张双成,刘经南,叶世榕,等.顾及双差残差反演GPS信号方向的斜路径水汽含量[J].武汉大学学报·信息科学版,2009,34(1):100-104.
    [201]张小红,何锡扬,郭博峰,徐运.基于GPS非差观测值估计大气可降水量[J].武汉大学学报.信息科学版,2010,35(7):806-810.
    [202]朱庆林,赵振维,吴振森.精密单点定位方法测量对流层天顶延迟的精度改善[J].武汉大学学报·信息科学版,2009,34(9):1098-1101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700