用户名: 密码: 验证码:
继电保护失效概率及对输电系统运行可靠性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继电保护失效概率模型是输电系统运行可靠性评估研究的重要部分,相关基础理论和应用技术是值得深入研究的前沿性课题。
     首先,论文分析了微机继电保护系统中软件和硬件的结构及工作原理,阐述了两类失效的机理,其中第二类失效条件概率与继电保护原理和电网实时状态紧密相关,论文重点对其算法进行了系统性的研究。然后计及继电保护的影响,提出了一次设备的实时停运概率算法。用电气连通性分析和最优削负荷方法计算一次设备停运后果,此后计算电网中后备保护动作的概率来评估导致连锁故障的可能性。最后提出了继电保护运行可靠性指标,并研究了输电系统运行可靠性在线监测和评估系统的总体方案。
     论文的主要内容如下:
     (1)定义继电保护系统硬件失效为第一类失效,定义由于继电保护配置与电网实时运行方式不配合而产生的失效为第二类失效。区分两类不同的失效机理,提出了等效的多重化配置的继电保护系统可靠性模型。用统计方法计算第一类拒动、误动概率,而根据继电保护构成方案和电网状态计算第二类拒动、误动概率,其中考虑到各种短路故障类型所占百分比的影响,并且以条件概率明确反映继电保护隐蔽性故障所具有的特征。上述研究解决了以往只能够把继电保护系统等效成系统元件,由统计数据估计其失效概率的问题,为进行计及继电保护系统影响的输电系统运行可靠性评估提供了理论依据和算法支持。
     (2)差动保护、方向比较闭锁保护、距离保护、电流和零序电流保护是输电系统中变压器和输电线路的常用继电保护。根据继电保护的原理和配置方案,研究实时短路故障状态下各种继电保护第二类拒动、误动概率的算法:1.基于阻抗继电器在阻抗复平面上的圆动作特性,推导距离保护不启动概率的分布表达式;2.根据电流和零序电流保护的灵敏系数和保护范围,提出第二类拒动、误动概率分布模型;3.基于变压器差动保护的动作特性曲线和灵敏度要求,推导不启动概率的分布表达式,阐述根据差动量和制动量变化区域计算第二类拒动、误动概率的方法;4.分析闭锁信号启动方式和不灵敏元件的保护范围对方向比较闭锁保护第二类拒动、误动概率的综合影响。
     (3)考虑天气、潮流、继电保护等因素,建立输电线路、变压器的运行可靠性模型,计算其单独停运和相关停运的实时概率,将所研究的电网模型细化到变电站结构,结合设备状态解析法与输电系统网络拓扑分析,提高了构建实时预想故障集合的效率。就该集合中的事件,用电气连通性分析和最优削负荷方法评估其对电网的影响程度,预测发生连锁故障的可能性,并提出一套新的可靠性指标描述连锁反应的规模。
     (4)在论文中提出了输电系统运行可靠性在线监测和评估系统的总体方案,分别确定了调度中心继电保护装置信息管理服务器与工作站、一次系统信息管理服务器、运行可靠性分析计算子系统和可视化信息显示子系统的功能,讨论了从变电站综合自动化系统和调度SCADA系统获取所需信息的方式。最后,以6节点的可靠性测试系统IEEE RBTS为评估对象,展示了继电保护失效概率、一次设备实时停运概率和连锁故障条件概率的计算步骤和该实例的部分考虑继电保护影响的运行可靠性数据。
Failure probability model of relay protection is an important aspect of the reliability evaluation for power transmission system operation, so correlative basic theories and application technologies are leading topics which is worthy of being deeply studied.
     Firstly, the framework and principle of software and hardware in microprocessor relay protection system are analyzed, and two types of failure mechanism are expatiated. Considering the close relationship between relay protection principles, real-time condition of power grids and second-type failure conditional probability, the algorithm is systematical researched. Secondly, in view of the impact of relay protection, the algorithm of real-time outage probability of primary components is put forward. Then the effect of outages is estimated based on electric connectivity analysis and optimal load curtailment, after that cascading failure possibility through calculating trip probability of backup protection is evaluated. Finally, a set of operational reliability indices of relay protection are proposed. At the same time, a framework of online reliability supervision and evaluation system of power transmission system is designed.
     The main contents in detail are included in the following:
     (1)The so-called first-type failure results from hardware of relay protection system, and that relay protection scheme is not compatible with real-time condition of power grids results in the so-called second-type failure. Based on these definitions, an equivalent reliability model of multiple relay protection system is proposed in view of two different failure mechanisms. The probabilities of first-type failure operation and false operation are gotten through a statistic method. At the same time, the second-type ones is worked out according to relay protection scheme and condition of power grids while the percentage of various short-circuit faults is considered. The characteristic of hidden relay protection failures is definitely showed through these conditional probabilities. So the problem is resolved that in the past relational research relay protection is considered as equivalent component of power system, and its failure probability has to be guesstimated according to the statistic, and power transmission system operational reliability evaluation has got the support of theory and algorithm.
     (2)Differential protection, direction protection, distance protection, zero-sequence current protection and phase current protection are usually used in power transmission system. Based on the principle and scheme of various relay protection, the probabilities of first-type failure operation and false operation during real-time short circuit in power grids are work out: 1. The formulae of inaction probability distribution are deduced based on the circle performance characters of various impedance relays. 2. According to the real-time sensitivity and coverage of zero-sequence current protection or phase current protection, the models of second-type failure probability distribution are set up. 3. Based on the tripping curve and required minimal sensitivity of transformer differential protection, the formulae of the inaction probability distribution are deduced, the algorithm of the second-type failure probability according to the real-time span of differentia quantity and restraint quantity is expatiated. 4. Both of the block signal startup-mode and coverage of direction protection affect the second-type failure probability.
     (3)The operational reliability models of transmission line and transformer are put forward considering the impact of weather, power flow and relay protection,and the real-time probability of the single and correlated outage occurrences can be worked out. Thereafter, considering substation structure in power grids model, an efficient method of founding predictive contingency set is studied through combining device state analysis and power transmission system topology. Electrical connectivity analysis and optimal load curtailment algorithm are used to reveal how the occurrences in the set affect power system, and forecast the possibility of cascading failure. In addition a new set of reliability indices are proposed to describe the scale of cascading failure.
     (4) The main framework of online reliability supervision and evaluation system of power transmission system is designed, which includes protection device message management server and work station in dispatching center, primary system message management server, operational reliability analysis sub-system, visual message displaying sub-system. The functions of these parts and methods of getting messages from integrated autoimmunization system of substation and SCADA systems are discussed. Lastly an application is clarified using IEEE RBTS of six nodes to show the approach of calculating the probability of relay protection failure, primary component outage and cascading failure. As a result, partial data of operational reliability indices considering the effect of relay protection are shown.
引文
[1]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18): 1-5.
    [2]郭永基.加强电力系统可靠性的研究和应用[J].电力系统自动化,2003,27(19): 1-5.
    [3] Li Wenyan. Risk assessment of power systems– models, methods and applications[M]. IEEE Press and Wiley & Sons, USA and Canada, 2005.
    [4]郭永基.可靠性工程原理[M].北京:清华大学出版社,2001.
    [5]国家电力监管委员会电力可靠性管理中心.电力可靠性技术与管理[M].北京:中国电力出版社,2007.
    [6]郭永基.电力系统及电力设备的可靠性[J].电力系统自动化,2001,25(17): 53-56.
    [7] Rei A.M, Leite da Silva A.M, Jardim J.L, Mello J.C.O. Security modeling for power system reliability evaluation[J]. IEEE Transactions on Power Systems, 2000, 15(1): 189 - 195.
    [8] Levi V.A, Nahman J.M, Nedic D.P. Static and dynamic aspects in bulk power system reliability evaluations[J]. IEEE Transactions on Power Systems, 2001, 16(1): 29 - 37.
    [9]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估[J].中国电机工程学报,2003,23(3): 20-25.
    [10]王德生,胡小正.电力系统运行可靠性评估[J].电网技术,1988,12(3): 41-46
    [11]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.
    [12]丁明,李生虎,吴红斌.基于充分性和安全性的电力系统运行状态分析和量化评价[J].中国电机工程学报,2004,24(4): 43-49.
    [13]赵渊,周念成,谢开贵.大电力系统可靠性评估的灵敏度分析[J].电网技术,2005,29(24): 25-30.
    [14]程林,孙元章,郑望其.超大规模发输电系统可靠性充裕度评估及其应用[J].电力系统自动化,2004,28(11): 75-78.
    [15]刘海涛,程林,孙元章.交直流系统可靠性评估[J].电网技术,2004,28(23): 27-31.
    [16]丁明,黄凯,李生虎.交直流混合系统的概率稳定性分析[J].中国电机工程学报,2002,22(8): 11-15.
    [17]赵渊,周家启,周念成.发输电系统可靠性评估的启发式就近负荷削减模型[J].电网技术,2005,29(23): 34-39.
    [18]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估[J].中国电机工程学报,2005,25(25): 118-122.
    [19]程林,何剑,孙元章.线路实时可靠性模型参数对电网运行可靠性评估的影响[J].电网技术,2006,30(13): 8-13.
    [20]冯永青,张伯明,吴文传.基于可信性理论的电力系统运行风险评估(一)运行风险的提出与发展[J].电力系统自动化,2006,30(11): 17-23
    [21]冯永青,吴文传,孙宏斌.现代能量控制中心的运行风险评估研究初探[J].中国电机工程学报,2005,25(13): 73-79.
    [22] R.Billinton. Composite system reliability evaluation[J]. IEEE, 1969, PAS-88: 276 - 281.
    [23] U.S.-Canada Power system outage task force. Final report[EB/OL]. https://reports.energy.gov/, March 31, 2003.
    [24] Zhang Baohui, Wang Liyong, Zhang Wenhao, Zhou Decai, Yao Feng, Ren Jinfeng, Xie Han, Yu Gang-liang. Implementation of power system security and reliability considering risk under environment of electricity market[C]. Transmission and distribution conference and exhibition: Asia and pacific, 2005 IEEE/PES. 15-18 Aug 2005: 1 - 6.
    [25] Monroy J.J.R, Kita H, Tanaka E, Hasegawa J. Market mechanism for transmission reliability[C]. Transmission and distribution conference and exhibition: Asia and Pacific, 2002 IEEE/PES. 6-10 Oct 2002, Vol.2: 864 - 869.
    [26] Cheng J.W.M, McGillis D.T, Galiana F.D. Power system reliability in a deregulated environment[C]. Electrical and computer engineering, 2000 Canadian Conference on, 7-10 Mar 2000, Vol.2: 765 - 768.
    [27]王锡凡,王秀丽,别朝红.电力市场条件下电力系统可靠性问题[J].电力系统自动化,2000,24(8): 19-22.
    [28]王韶,周家启.双回平行输电线路可靠性模型[J].中国电机工程学报,2003,23(9): 53-56.
    [29]金海峰,熊信艮,吴耀武.基于相似性原理的短期负荷预测方法[J].电力系统自动化,2001,25(23): 45-48.
    [30]贾春娟.低压供电可靠性故障模拟算法研究[J].电力系统自动化,2004,28(2): 76-78.
    [31]刘柏私,谢开贵,马春雷,徐德超,周家启,周念成.复杂中压配电网的可靠性评估分块算法[J].中国电机工程学报,2005,25(4): 40-45.
    [32]牛辉,程浩忠,张焰,陈陈.电网扩展规划的可靠性和经济性研究综述[J].电力系统自动化,2000,24(1): 51-56.
    [33] Stojkov M, Nikolovski S, Mikulicic V. Estimation of electrical energy not supplied in reliability analysis of distribution networks[C]. Electrotechnical conference 2004 MELECON. Proceedings of the 12th IEEE Mediterranean. 12-15 May 2004, Vol.3: 967 - 970.
    [34]万国成,任震,田翔.配电网可靠性评估的网络等值法模型研究[J].中国电机工程学报,2003,23(5): 48-52.
    [35]任震,陈碧云.一类复杂输电网络改进的可靠性评估模型[J].电力系统自动化,2005,29(5): 26-30.
    [36]任震,梁振升,黄雯莹.交直流混合输电系统可靠性指标的灵敏度分析[J].电力系统自动化,2004,28(14): 33-36.
    [37]唐子烨,马宪国.电力系统整体可靠性研究[J].上海理工大学学报,2005,27(2): 127-130.
    [38]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15): 6-12.
    [39]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探[J].电力系统自动化,2001,25(15): 25-28.
    [40]杨莳百,丁明.大型电力系统可靠性技术(四)[J].电力系统自动化,1994,18(1): 58-62.
    [41]杨为东,徐政,韩祯祥.电力系统灾变防治研究中的一些问题[J].电力系统自动化,2000,24(6): 7-12.
    [42]孙光辉,毕兆东,赵希才,陈松林,沈国荣.电力系统在线安全稳定评估及决策技术的研究[J].电力系统自动化,2005,29(17): 81-84.
    [43]张鹏,郭永基.电压骤降的可靠性评估新方法[J].电力系统自动化,2002,26(8): 20-24.
    [44] Bouffard F, Galiana F.D. An electricity market with a probabilistic spinning reserve criterion [J]. IEEE Transactions on Power Systems, 2004, 19(1): 300 - 307.
    [45] Chow J.H, De Mello W, Cheung K.W. Electricity market design: an integrated approach to reliability assurance[J]. Proceedings of the IEEE, 2005, 93(11): 1956 - 1969.
    [46]王钢,丁茂生,李晓华,肖霖.数字继电保护装置可靠性研究[J].中国电机工程学报,2004,24(7): 47-52.
    [47] Kangvansaichol K, Pittayapat P, Eua-Arporn B. Optimal routine test intervals for pilot protection schemes using probabilistic methods[C]. Developments in power system protection, Seventh international conference on (IEE), 9-12 April 2001: 254– 257.
    [48] Xingbin Yu, Singh C. A practical approach for integrated power system vulnerability analysis with protection failures[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1811– 1820.
    [49] Tan J.C, Crossley P.A, Hall I, Farnell J, Gale P. Intelligent wide area back-up protection and its role in enhancing transmission network reliability[C]. Developments in power system protection, Seventh international conference on (IEE), 9-12 April 2001: 446– 449.
    [50] Wang H, Thorp J.S. Optimal locations for protection system enhancement: a simulation of cascading outages[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 528– 533.
    [51] Bloemhof G.A, Leitloff V. Simulating protection systems: effects on voltage dips and reliability, a case study [C]. Developments in Power System Protection, Seventh international conference on (IEE), 9-12 April 2001: 258– 261.
    [52] Allan R, Billinton R. Probabilistic assessment of power systems[J]. Proceedings of the IEEE, 2000, 88(2): 140– 162.
    [53] Propst J.E, Doan D.R. Improvements in modeling and evaluation of electrical power system reliability[J]. IEEE Transactions on Industry Applications, 2001, 37(5): 1413– 1422.
    [54] Zhaoxia Xie, Manimaran G, Vittal V, Phadke A.G, Centeno V. An information architecture for future power systems and its reliability analysis[J]. IEEE Transactions on Power Systems, 2002, 17(3): 857– 863.
    [55]陆波,唐国庆.基于风险的安全评估方法在电力系统中的应用[J].电力系统自动化,2000,24(22):61–64.
    [56] Levi V.A, Nahman J.M, Nedic D.P. Security modeling for power system reliability evaluation[J]. IEEE Transactions on Power Systems, 2001, 16(1): 29 - 37.
    [57] Bono R, Alexander R, Dorman A, YongJin Kim, Reisdorf J. Analyzing reliability - a simple yet rigorous approach[J]. IEEE Transactions on Industry Applications, 2004, 40(4): 950 - 957.
    [58] Lammintausta M, Hirvonen R, Lehtonen M. Modeling of power system components for reliability analysis[C]. Power Tech Conference Proceedings, IEEE Bologna, 23-26 June 2003, Vol.4: 6.
    [59] Leite da Silva A.M, Cassula A.M, Billinton R, Manso L.A.F. Integrated reliability evaluation of generation transmission and distribution systems[J]. Generation, Transmission and Distribution, IEE Proceedings, 2002, 149(1): 1– 6.
    [60]霍利民,朱永利,范高锋,刘军,苏海锋.一种基于贝叶斯网络的电力系统可靠性评估新方法[J].电力系统自动化,2003,27(5):36–40.
    [61]张沛.基于概率的可靠性评估方法[J].电力系统自动化,2005,29(4):92–96.
    [62]任震,万官泉,黄金凤,黄雯莹,高志华.电力系统可靠性原始参数的改进预测[J].电力系统自动化,2003,27(4):37–40.
    [63] Wenyuan Li. Incorporating aging failures in power system reliability evaluation[J]. IEEE Transactions on Power Systems, 2002, 17(3): 918– 923.
    [64] Dong J, Koval D.O, Zuo M.J. Impact of circuit breaker failure modes on the reliability of the gold book standard network[J]. IEEE Transactions on Industry Applications, 2005, 41(5): 1323– 1328.
    [65]雷秀仁,任震,黄雯莹.处理配电系统可靠性评估不确定性的未确知数学方法[J].电力系统自动化,2005,29(17):28–33.
    [66] Kim J.O, Singh C, Including Uncertainty in LOLE Calculation Using Fuzzy Set Theory[J]. IEEE Transactions on Power Systems, 2002, 17(1): 19– 25.
    [67] Farahat M.A, Al Shammari B.M. Power system reliability evaluation and quality assessment by fuzzy logic technique[C]. 39th International Universities Power Engineering Conference, 6-8 Sept 2004, Vol.1: 478– 483.
    [68] Abdelaziz A.R, Gouda S.A.M. A geno-fuzzy optimization of power system reliability[C]. 10th Mediterranean Electro technical Conference, MELECON, 2000, Vol.3: 991– 994.
    [69]陈永进,任震,黄雯莹.考虑天气变化的可靠性评估模型与分析[J].电力系统自动化,2004,28(21):17–21.
    [70]丁明,戴仁昶,洪梅,徐先勇.影响输电网可靠性的气候条件模拟[J].电力系统自动化,1997,21(1):18–20.
    [71] Bollen M.H.J. Effects of adverse weather and aging on power system reliability[C]. Industrial and Commercial Power Systems Technical Conference, IEEE Annual Meeting, 7-11 May 2000: 63– 68.
    [72] Dong J, Koval D.O, Zuo M.J. Impact of circuit breaker failure modes on the reliability of the gold book standard network[J]. IEEE Transactions on Industry Applications, 2005, 41(5): 1323– 1328.
    [73] Yajing Gao, Ming Zhou, Gengyin Li, Yuekui Huang, Limin Xiao, Rui Li. Monte Carlo Simulation Based Available Transmission Capability Calculation[C]. Transmission and Distribution Conference and Exhibition: Asia and Pacific, IEEE/PES, 15-18 Aug 2005: 1 - 6.
    [74]丁明,李生虎.可靠性计算中加快蒙特卡罗仿真收敛速度的方法[J].电力系统自动化,2000,24(12):16–19.
    [75]程林,郭永基.暂态能量函数法用于可靠性安全性评估[J].清华大学学报(自然科学版),2001,41(3):5–8.
    [76] Borges C.L.T, Falcao D.M, Mello J.C.O, Melo A.C.G. Composite reliability evaluation by sequential Monte Carlo simulation on parallel and distributed processing environments[J]. IEEE Transactions on Power Systems, 2001, 16(2): 203– 209.
    [77]王锡凡,王秀丽.随机生产模拟及其应用[J].电力系统自动化,2003,27(8):10–15.
    [78]张少华,余志伟,李渝曾,钟德成,黄杰波.结合可中断合同交易的电力系统随机生产模拟[J].中国电机工程学报,2005,25(22):12–20.
    [79]刘磊,管晓宏.基于改进标准钟方法和全时域仿真的电力系统安全性评估[J].中国电机工程学报,2004,24(1):11–17.
    [80]吴开贵,吴中福.基于敏感度分析的电网可靠性算法[J].中国电机工程学报,2003,23(4):53–56.
    [81]万国成,任震,吴日升,何毅思.混合法在复杂配电网可靠性评估中的应用[J].中国电机工程学报,2004,24(9):92–98.
    [82]郭琦,张伯明,王守相,赵传霖.基于计算机集群的电力系统暂态风险评估[J].电网技术,2005,29(15):13–17.
    [83]钟波,周家启,赵渊.大电力系统可靠性评估的软计算模型[J].电工技术学报,2005,20(6):46–51.
    [84] Wendai Wang, Furlong E.R, Arno R.G, Vassiliou P, Ogden D. Apply simulation technique via reliability block diagram to Gold Book Standard Network[C]. Industrial and Commercial Power Systems, IEEE Technical Conference, 4-8 May 2003: 38– 49.
    [85] Wendai Wang, Loman J.M, Arno R.G, Vassiliou P, Furlong E.R, Ogden D. Reliability block diagram simulation techniques applied to the IEEE Std.493 standard network[J]. IEEE Transactions on Industry Applications, 2004, 40(3): 887 - 895.
    [86]孙宏斌,张伯明.能量管理系统中的电力信息学[J].电力系统自动化,2002,26(2):1–4
    [87]崔沅,程林,孙元章,黎雄,彭疆南,钟志安,张剑云.电力系统实时决策系统中的实时通信[J].电力系统自动化,2002,26(8):6–10.
    [88]黄建华,全零三.变电站高压电气设备状态检修的现状及其发展[J].电力系统自动化,2001,25(16):56–61.
    [89]许婧,王晶,高峰,束洪春.电力设备状态检修技术研究综述[J].电网技术,2000,24(8):48–52.
    [90] Bertsch J, Kaba M, Quaintance W, Rehtanz C. Enhanced reliability and other benefits with online security assessment[C]. Developments in Power System Protection, Seventh International Conference on (IEE), 9-12 April 2001: 246– 249.
    [91] Shahidehpour M. Operational reliability: objective or constraint[C]. Power Engineering Society Summer Meeting, 2002 IEEE, Vol.2: 625– 628.
    [92] Savulescu S.C. A Metric for Quantifying the Risk of Blackout[C]. Power Systems Conference and Exposition, IEEE PES, 10-13 Oct 2004, Vol.3: 1661– 1664.
    [93] Billinton R, Xiaosu Tang. Predicting bulk electricity system performance indices[C]. Electrical and Computer Engineering, Canadian Conference on, 7-10 March 2000, Vol.2: 750– 754.
    [94]史慧杰,葛斐,丁明.输电网络运行风险的在线评估[J].电网技术,2005,29(6):43–48.
    [95]史慧杰,葛斐,丁明.实时电网运行状态可靠性评估方案研究[J].福建电力与电工,2004,24(1):1–4.
    [96] W Li, J.K. Korczynski. Risk evaluation of transmission system operation modes and its application at British Columbia[J]. Transmission Corporation, IEE Proceedings in Generation Transmission Distribution, 2003, 151(5): 658 - 664.
    [97] Y.V. Makarov, R.C. Hardiman. On Risk-based Indices for Transmission Systems[C]. Power Engineering Society General Meeting, IEEE, 13-17 July 2003, Vol.2: 46– 52.
    [98] Ming Ni, James D.McCalley, Vijay Vittal. Online Risk-Based Security Assessment[J]. IEEE Transactions on Power Systems, 2003, 18(1): 258– 265.
    [99] Ming Ni, James D.McCalley, Vijay Vittal. Software Implementation of Online Risk-Based Security Assessment[J]. IEEE Transactions on Power Systems, 2003, 18(3): 1165– 1172.
    [100] Zhaohong Bie, Xifan Wang. Evaluation of power system cascading outages. Power System Technology 2002 Proceedings. PowerCom 2002. International Conference on. 13-17 Oct 2002, Vol.1: 415– 419.
    [101]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8–16.
    [102]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1–6.
    [103]贺家李,郭征,杨晓军,李永丽.继电保护的可靠性与动态性能仿真[J].电网技术, 2004, 28(9): 18–22.
    [104]曾克娥.电力系统继电保护装置运行可靠性指标探讨[J].电网技术, 2004, 28(14): 83-85.
    [105]王钢,丁茂生,李晓华,肖霖.数字继电保护装置可靠性研究[J].中国电机工程学报, 2004, 24(7): 47-52.
    [106]熊小伏,欧阳前方,周家启,田娟娟.继电保护系统正确切除故障的概率模型[J].电力系统自动化,2007,31(7):12–15.
    [107] Xingbin Yu, Chanan Singh. Power system reliability analysis considering protection failures [J]. Power Engineering Society Summer Meeting, 2002 IEEE. 25-25 July 2002, Vol.2: 963-968.
    [108]林湘宁,何战虎,刘世明,杨春明,刘沛.复式电流比例差动保护判据的可靠性评估[J].中国电机工程学报, 2001, 21(7): 99-102.
    [109]索南加乐,张怿宁,焦在滨.分段比率制动的电流差动保护[J].电力系统自动化,2006, 30(17):54-58.
    [110]尹项根,邰能灵,杨书富.标积制动量的应用与分析[J].中国电机工程学报, 2000, 20(1): 85-88.
    [111]徐习东,颜伟林.基于波形识别的变压器自适应比率差动保护原理[J].电力系统自动化, 2002,26(23):37-41.
    [112]陆于平,李玉海,李鹏,袁宇波.差动保护灵敏度与启动电流、制动系数和原理之间的关系[J].电力系统自动化, 2002, 26(8):51-55.
    [113]李晓华,张哲,尹项根,邰能灵,陈德树.故障分量比率差动保护整定值德选取[J].电网技术, 2001, 25(4): 47-50.
    [114]王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社, 1996, 1-109
    [115]索南加乐,张怿宁,焦在滨.分段比率制动的电流差动保护[J].电力系统自动化,2006,30(17):54-58.
    [116] Billinton R, Aboreshaid S. Security evaluation of composite power systems[J]. IEEE Proceedings- Generation, Transmission and Distribution, 1995, 142(5): 511-516.
    [117] Billinton R, Khan E. A security based approach to composite power systems reliability evaluation[J]. IEEE Trans on PWRS, 1992, 7(1): 65-71.
    [118] Porretta B, Neudorf E G. Conceptual Framework for Evaluation and Interpretation of the Reliability of Composite Power Systems. IEEE Trans on PWRS, 1995, 10(2): 1094~1103.
    [119]水利电力部西北电力设计院.电力工程电气设计手册-电气一次部分[M].北京:水利电力出版社, 1989.
    [120]熊信银主编.发电厂电气部分(第三版)[M].北京:中国电力出版社, 2004.
    [121]王湘中,黎晓兰.基于关联矩阵的电网拓扑辨识[J].电网技术, 2001, 25(2): 10-12.
    [122]储俊杰.变电所一次主接线电气连通性分析的数学模型[J].电力系统自动化,2003,27(1):31-33.
    [123]邵振国,林智敏,林韩,黄道姗.在线安全预警中的预想事故生成[J].电力系统自动化,2008,32(7):15-18.
    [124] R.Billinton, S.Kumar, etc. A Reliability Test System for Educational Purposes-Basic Data[J]. IEEE Transactions on Power Systems, 1989, 4(3): 1238-1244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700