用户名: 密码: 验证码:
Hamilton能量函数方法研究及其在电力系统稳定控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统是典型的高维非线性动态系统,目前尚不能完全了解其复杂动力学行为的各种特性,特别是电力系统稳定性已成为关系国计民生的重要研究课题之一。随着我国特高压战略的逐步推进,互联电网的规模愈加庞大,发生系统稳定性破坏事故的影响将难以估计。而近十年来北美、巴西、印度等地频频发生的大停电事故时刻为我们敲响警钟。基于能量函数法的暂态稳定性分析是非线性理论在电力系统中较为成功的应用之一,由于能够定量地给出系统的稳定程度并避免了复杂的数值积分,这种方法尤其适用于在线稳定评估,它与时域仿真法相辅相成共同构成了电力系统稳定分析的有效手段。
     电力系统稳定分析的最终目的在于系统镇定控制,进而提高电网的稳定性。现有的能量函数法多适用于较为简单的模型,在模型精度、理论深度和系统稳定控制器设计等方面仍需不断完善和发展,而Hamilton系统理论方法为其提供了有力的数学分析工具。本文基于广义受控Hamilton系统理论探讨计及转移电导和发电机励磁及FACTS装置的电力系统稳定控制和各控制器间的协调控制问题;并利用自治Hamilton系统周期解理论分析电力系统低频振荡现象,通过引入交直流互联系统的能量函数研究抑制低频振荡的直流附加阻尼控制器的设计方法,进而研究HVDC与TCSC的协调控制问题。本论文的主要研究内容和结果总结如下。
     在广义Hamilton系统理论框架内提出了一种具有更为一般形式的伪广义Hamilton系统结构,在Hamilton能量函数基础上通过构造系统局部Lyapunov函数成功设计了可使系统渐近稳定的控制器,并引入无源性理论,提出一种保证系统具有L2干扰抑制特性的鲁棒控制策略,给出了若干定理、条件和判据。在上述理论基础上,将所提出的系统框架和控制器设计方法应用于含转移电导和发电机励磁的多机系统简化网络模型,基于“能量平衡+阻尼注入”的思想提出一种发电机励磁控制器设计方法,所提出的控制策略理论依据清晰,具有明确的物理含义;进而将含不确定扰动因素的电力系统模型表示成伪广义Hamilton系统形式,给出一种满足L2性能准则的发电机励磁鲁棒控制策略;最后用数值仿真分别验证了所提出的两种控制器设计方法的正确性和有效性。
     利用广义Hamilton系统的内在结构特性实现电力系统发电机励磁和TCSC、SVC等FACTS装置的协调控制。首先针对孤立大型发电厂往远方负荷中心送电且输电线加装TCSC的应用场景,通过引入系统等效电纳的虚拟控制输入,在单机无穷大系统基础上完成了系统广义耗散Hamilton实现,以系统暂态能量下降为控制目标给出了保证系统渐近稳定的反馈控策略,利用系统的内在结构特性直接实现了发电机励磁和TCSC间的协调控制,对某典型工程示例进行数值仿真,结果验证了本文所提出控制方法的有效性;进而考虑含SVC和发电机励磁的简化网络模型,将SVC的动态过程包含在时变的系统导纳阵中,给出了多机系统伪广义耗散Hamilton实现,构造系统的局部Lyapunov函数并利用L2增益干扰抑制方法设计了发电机励磁和SVC的鲁棒协调控制器,并将控制策略表示为可量测的形式,最后用3机9节点系统算例仿真验证本文所提出协调控制策略的正确性和有效性。
     将Hamilton系统理论应用到电力系统低频振荡分析和抑制这一领域。首先以单机无穷大系统作为研究对象,通过构造系统Hamilton能量函数给出自治Hamilton系统模型,利用Hamilton系统周期解理论分析简单电力系统的低频振荡频率特性,为从非线性系统角度解释低频振荡机理提供了新的思路;进而研究交直流互联电网的低频振荡抑制问题,基于惯性中心等值法建立了区域互联电网的等值系统模型,通过定义具有系统振荡能量概念的Hamilton函数给出了系统的广义Hamilton实现,从降低系统振荡能量角度出发给出HVDC附加阻尼控制器设计方法,利用HVDC的快速功率调制能力快速平息系统振荡;最后研究交直流互联电网在并列交流线路中装设TCSC的情形,给出含TCSC模型的交直流系统Hamilton实现,利用系统的内在结构性质给出HVDC和TCSC的协调控制策略,从而有效提高交直流互联电网抑制区间低频振荡的能力。
Power system is a typical high-dimensional nonlinear dynamic system. The variouscharacteristics of the complex dynamical behavior therein have not been fully grasped.The stability of the power system has been one of the essential research topics for a longtime. With the implementation of the Ultra-High Voltage planning in China, the scale ofthe interconnected grid becomes increasingly large, therefore it is unbearable when theinstability accident occurred in power system. However, the frequent blackouts in NorthAmerica, Brazil, India and other places over the past decade always remind us to pay moreattention on power system stability problems. The transient stability analysis based onenergy function method is a successful application of the nonlinear theory in powersystem, which is able to quantitatively evaluate the stability and is particularly suitable forfast online stability assessment. Along with the time-domain simulation method, these twomethods are powerful tools for power system stability analysis.
     The ultimate purpose of stability analysis of power system is stabilization control. Thecurrently available energy function methods are mostly based on simple models. It needsto be further studied on the accuracy of the model, the theoretical depth and the stabilitycontroller design with the Hamilton system theory which can provide as a powerfulmathematical tool. Based on generalized controlled Hamiltonian system theory, thestabilization control and coordinated control of the generator excitation and FACTSdevices in power system considering transfer conductance are investigated in this thesis.Then the periodic solution theory of autonomous Hamilton system is used for theoreticalanalysis of the low frequency oscillation phenomenon in power system. The energyfunction of the AC/DC interconnected power system is used to design the HVDCsupplementary damping controllers that can help to suppress low-frequency oscillation.And then the coordination between HVDC and TCSC damping controllers is studied. Themain research contents and results are summarized as following.
     Based on the generalized Hamilton system theory, a new system structure with more general form, named pseudo-generalized Hamiltonian system, is proposed. The localLyapunov function of the newly presented system is constructed based on Hamiltonenergy function and the stabilization controller is proposed for asymptotically stability atthe equilibrium point. Then the passivity theory is introduced for designing the robustcontroller with L2disturbance attenuation characteristics. Some theorem, conditions andcriterion for the new system structure are illustrated. The system framework and thecontroller design method are applied to the simplified network model of multi-machinepower system with transfer conductance and generator excitations. A generator excitationcontroller based on energy balance and damping injection is proposed, which has a clearphysical meaning. Then the actual power system considering uncertainties is expressed asthe pseudo-generalized Hamilton system and a robust excitation controller with L2disturbance attenuation criteria is proposed. Numerical experiments verify the correctnessand validity of the two proposed controller design methods.
     The intrinsic structural characteristics of the generalized Hamiltonian system are usedfor coordinated control of power system generator excitation and FACTS devices. Firstly,for the particular scene of long distance power transmission from isolated large powerplants to load center, TCSC can be installed in transmission lines to strength systemstability. By introducing the virtual control input of the equivalent susceptance, the singlemachine infinite bus system is presented into generalized dissipation Hamilton system.The direct feedback control strategy is presented, aiming to reduce the transient energyand make the system asymptotically stable. The coordination between the excitation andTCSC is directly realized with the internal structure. A typical engineering examplesimulation shows the control strategy is effective. Secondly, based on the simplifiednetwork model of multi-machine power system with SVCs, the pseudo generalizeddissipation Hamilton realization is achieved with the dynamics of SVCs being consideredin time-varying system admittance matrix. The Lyapunov function of the system isconstructed and the robust coordinated control of excitation and SVC is designed via L2disturbance attenuation method. The strategy can be approximately expressed as ameasurable form. A numerical example illustrates the correctness and effectiveness of thecontrol design method.
     The analysis and control of the low-frequency oscillation in power system are studiedvia Hamilton theory. Firstly, based on the lossless single machine infinite bus powersystem model and a two interconnected power system equivalent model, the autonomousHamiltonian system is realized by constructing Hamiltonian energy function. The periodicsolution theory of autonomous Hamilton system is illustrated and used in analyzing powersystem low frequency oscillation properties. Then, the low-frequency oscillation ofAC-DC interconnected power grid is discussed. Based on the two machine equivalentmodel with inertia center equivalence method, the generalized Hamilton system is realizedby defining the oscillation Hamilton function with the oscillation energy concept. Acontrol strategy aiming to reduce system oscillation energy is proposed which takesadvantage of the HVDC fast power modulation capability to damp low frequencyoscillation. Lastly, the Hamiltonian energy function considering the deviation potentialenergy of TCSC installed in the parallel AC line is constructed. The coordination ofHVDC and TCSC supplementary damping controllers, both for reducing the oscillationenergy of the system, are designed using the internal structure properties to strength theability for damping low-frequency oscillations.
引文
[1]万秋兰,单渊达.对应用暂态能量函数法分析电力系统暂态稳定性的评价[J].电力系统自动化,2001,25(06):57-59.
    [2]薛禹胜.运动稳定性量化理论:非自治非线性多刚体系统的稳定性分析[M].南京:江苏科学技术出版,1999.
    [3] Machowski, J., Bialek, J. W., Bumby, J. R., et.al. Power system dynamics: stability andcontrol [M]. Wiley,2008.
    [4]刘笙,汪静.电力系统暂态稳定的能量函数分析[M].上海:上海交通大学出版社,1996.
    [5] Anderson, P. M., Fouad, A. A. Power system control and stability [M]. Wiley-India,2008.
    [6] Sun, Y. Z., Song, Y. H., Li, X. Novel energy-based Lyapunov function for controlled powersystems [J]. IEEE Trasacition on Power Engineering Review,2000,20(5):55-57.
    [7]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11+16.
    [8]曾鸣,李红林,薛松,等.系统安全背景下未来智能电网建设关键技术发展方向——印度大停电事故深层次原因分析及对中国电力工业的启示[J].中国电机工程学报,2012,32(25):175-181+24.
    [9]曾鸣,李娜,董军,等.基于大安全观的电网运行管理关键技术——关于印度大停电的思考[J].电力系统自动化,2012,36(16):9-13.
    [10]何斌.微分代数方程Hamilton系统及其在电力系统稳定控制中的应用研究[博士学位论文].上海,上海交通大学,2007.
    [11]石访,王杰.伪广义哈密顿理论及其在多机电力系统非线性励磁控制中的应用[J].中国电机工程学报,2011,31(19):67-74.
    [12]黄柳强,郭剑波,卜广全,等. FACTS协调控制研究进展及展望[J].电力系统保护与控制,2012,40(05):138-147.
    [13]刘玉常,王玉振.基于能量控制暨广义哈密顿控制系统研究新进展[J].山东大学学报(工学版),2009,39(03):47-55.
    [14]王玉振.广义Hmilton控制系统理论----实现、控制与应用[M].北京:科学出版社,2007.
    [15]高磊,张文朝,濮钧,等.华北-华中-华东特高压联网大区模式下低频振荡模式的频率特性[J].电网技术,2011,35(05):15-20.
    [16]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(01):1-7.
    [17]韩志勇,贺仁睦,徐衍会,等.基于能量角度的共振机理电力系统低频振荡分析[J].电网技术,2007,31(08):13-16.
    [18]王振华,王本利.自由运动双摆的周期性及其解析[J].吉首大学学报(自然科学版),2007,28(01):63-69+84.
    [19]卢强,梅生伟,孙元章.电力系统非线性控制[M].北京:清华大学出版社,2008.
    [20]程代展.非线性系统的几何理论[M].北京:科学出版社,1988.
    [21]葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用[J].中国电机工程学报,2001,21(04):2-5+11.
    [22]李春文,刘艳红,陈铁军,等.基于逆系统方法的广义非线性系统控制及电力系统应用[J].控制理论与应用,2007,24(05):799-802.
    [23]马幼捷,周雪松,迟正刚.基于直接反馈线性化理论的微机非线性励磁控制器[J].控制理论与应用,1997,14(06):857-861.
    [24] Wang, Y., Hill, D. J., Middleton, R. H., et.al. Transient stability enhancement and voltageregulation of power systems [J]. IEEE Transactions on Power Systems,1993,8(2):620-627.
    [25]王杰,陈陈.电力系统中微分代数模型的非线性控制[J].中国电机工程学报,2001,21(8):15-18,23.
    [26] Jie, W., Chen, C., La Scala, M. Parametric adaptive control of multimachine power systems withnonlinear loads [J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2004,51(2):91-100.
    [27]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007.
    [28]王杰,陈陈.多机电力系统参数自适应控制设计的模型与应用[J].中国电机工程学报,2002,22(7):49-53.
    [29]王杰,吴华,等.多机电力系统参数自适应控制的设计理论与方法[J].中国电机工程学报,2002,22(5):5-9.
    [30] Lu, Q., Mei, S., Hu, W., et.al. Decentralised nonlinear H∞excitation control based on regulationlinearization [J]. IEE Proceedings-Generation Transmission and Distribution,2000,147(4):245-251.
    [31]廖晓昕.稳定性的理论、方法和应用[M].武汉:华中理工大学出版社,2004.
    [32]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [33]阮青松.基于能量函数的电力系统暂态稳定性分析[硕士学位论文].成都,西南交通大学,2006.
    [34] Chiang, H. D. Study of the existence of energy functions for power systems with losses [J].IEEE Transactions on Circuits and Systems,1989,36(11):1423-1429.
    [35]刘峰.基于微分代数模型的电力系统非线性控制[博士学位论文].北京,清华大学,2004.
    [36] Pai, M. Energy function analysis for power system stability [M]. Boston: Kluwer AcademicPublishers,1989.
    [37]刘峰.电力系统结构保留模型及上界函数法暂态稳定域构建的研究[博士学位论文].杭州,浙江大学,2005.
    [38]李威.大电网暂态稳定控制优化研究[博士学位论文].杭州,浙江大学,2003.
    [39] Naoto, K., Muneaki, H. Transient stability analysis of multimachine power system byLyapunov's direct method [C]. In Decision and Control including the Symposium on AdaptiveProcesses, Dec.1981,464-470.
    [40] Bretas, N. G., Alberto, L. F. C. Lyapunov function for power system's with transfer conductances:Extension of the invariance principle [J]. IEEE Transactions on Power Systems,2003,18(2):769-777.
    [41] Seiler, P., Topcu, U., Packard, A., et.al. Parameter-Dependent Lyapunov Functions for LinearSystems With Constant Uncertainties [J]. IEEE Transactions on Automatic Control,2009,54(10):2410-2416.
    [42] Tingshu, H., Thibodeau, T., Teel, A. R. A Unified Lyapunov Approach to Analysis ofOscillations and Stability for Systems With Piecewise Linear Elements [J]. IEEE Transactionson Automatic Control,2010,55(12):2864-2869.
    [43] Vaidya, U., Mehta, P. G. Lyapunov Measure for Almost Everywhere Stability [J]. IEEETransactions on Automatic Control,2008,53(1):307-323.
    [44] Fouad, A. A. A., Vittal, V., Ni, Y. X., et.al. Direct transient stability assessment with excitationcontrol [J]. IEEE Transactions on Power Systems,1989,4(1):75-82.
    [45]刘国贤,林宪枢,杨奇逊.基于能量函数的多机系统暂态过程励磁控制研究[J].中国电机工程学报,1997,17(04):49-53.
    [46] Sun, Y. Z., Li, X., Zhao, M., et.al. New Lyapunov function for transient stability analysis andcontrol of power systems with excitation control [J]. Electric Power Systems Research,2001,57(2):123-131.
    [47]李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用[M].北京:科学出版社,2007.
    [48]王玉振,程代展.广义哈密顿实现及其在基于能量的准Lyapunov函数构造中的应用[J].控制理论与应用,2002,19(04):511-515.
    [49] Liu, Y.-H., Li, C.-W., Wang, Y.-Z. Decentralized excitation control of multi-machine multi-loadpower systems using Hamiltonian function method [J]. Acta Automatica Sinica,2009,35(Compendex):919-925.
    [50] Ortega, R., van der Schaft, A., Maschke, B., et.al. Interconnection and damping assignmentpassivity-based control of port-controlled Hamiltonian systems [J]. Automatica,2002,38(4):585-596.
    [51] Maschke, B., Ortega, R., van der Schaft, A. J. Energy-based Lyapunov functions for forcedHamiltonian systems with dissipation [J]. IEEE Transactions on Automatic Control,2000,45(8):1498-1502.
    [52]王玉振,程代展,李春文.广义Hamilton实现及其在电力系统中的应用[J].自动化学报,2002,28(05):745-753.
    [53] Wang, Y. Z., Cheng, D. Z., Li, C. W., et.al. Dissipative Hamiltonian realization and energy-basedL-2-disturbance attenuation control of multimachine power systems [J]. IEEE Transactions onAutomatic Control,2003,48(8):1428-1433.
    [54]马进,席在荣,梅生伟,等.基于Hamilton能量理论的发电机汽门与励磁非线性稳定控制器的设计[J].中国电机工程学报,2002,22(05):88-93.
    [55] Ortega, R., Galaz, M., Astolfi, A., et.al. Transient stabilization of multimachine power systemswith nontrivial transfer conductances [J]. IEEE Transactions on Automatic Control,2005,50(1):60-75.
    [56] Hao, J., Wang, J., Chen, C., et.al. Nonlinear excitation control of multi-machine power systemswith structure preserving models based on Hamiltonian system theory [J]. Electric PowerSystems Research,2005,74(3):401-408.
    [57] Hao, J., Chen, C., Shi, L. B., et.al. Nonlinear decentralized disturbance attenuation excitationcontrol for power systems with nonlinear loads based on the Hamiltonian theory [J]. IEEETransactions on Energy Conversion,2007,22(2):316-324.
    [58] He, B., Zhang, X. B., Zhao, X. Y. Transient stabilization of structure preserving power systemswith excitation control via energy-shaping [J]. International Journal of Electrical Power&Energy Systems,2007,29(10):822-830.
    [59]曾正,刘涤尘,廖清芬,等.广域系统低频振荡多扰动的稳定域机理[J].华中电力,2010,23(04):1-6.
    [60] Demello, F. P., Concordi.C. Concepts of Synchronous Machine Stability as Affected byExcitation Control [J]. IEEE Transactions on Power Apparatus and Systems,1969,88(4):316-322.
    [61]王铁强,贺仁睦,王卫国,等.电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(02):22-26.
    [62]王宝华,杨成梧,张强.电力系统分岔与混沌研究综述[J].电工技术学报,2005,20(07):1-10.
    [63]徐衍会,贺仁睦,韩志勇.电力系统共振机理低频振荡扰动源分析[J].中国电机工程学报,2007,27(17):83-87.
    [64]杨慧敏.区域电网低频振荡特性分析与抑制方法的研究[博士学位论文].武汉,华中科技大学,2009.
    [65]余一平,闵勇,陈磊,等.基于能量函数的强迫功率振荡扰动源定位[J].电力系统自动化,2010,34(05):1-6.
    [66] Dobson, I., Zhang, J. F., Greene, S., et.al. Is strong modal resonance a precursor to power systemoscillations [J]. IEEE Transactions on Circuits and Systems I-Fundamental Theory andApplications,2001,48(3):340-349.
    [67]张卫东,张伟年.电力系统混沌振荡的参数分析[J].电网技术,2000,24(12):17-20.
    [68]邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究[J].中国电机工程学报,1997,17(06):32-35+39.
    [69]刘美菊.电力系统混沌动力学行为分析与控制研究[博士学位论文].沈阳,沈阳农业大学,2009.
    [70]戚军.基于广域测量系统的电力系统低频振荡时滞阻尼控制[博士学位论文].杭州,浙江大学,2009.
    [71]薛禹胜,徐伟,万秋兰.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15):1-5+15.
    [72]鞠平,谢欢,孟远景,等.基于广域测量信息在线辨识低频振荡[J].中国电机工程学报,2005,25(22):56-60.
    [73] Jin, L., Ancheng, X., Jinping, W., et.al. A new node contribution factors for the low frequencyoscillations of power system based on the PMU's data and HHT [C]. In Critical Infrastructure(CRIS),20105th International Conference on, Sep,2010,1-6.
    [74]李鹏,徐光虎,刘春晓,等.从时频角度重新审视南方电网的区间功率振荡[J].电力系统自动化,2010,34(22):18-23.
    [75]赵辉.电力系统低频振荡阻尼机理及控制策略研究[博士学位论文].天津,天津大学,2006.
    [76]吴复霞,吴浩,韩祯祥,等.电力系统非线性模式分析方法的比较[J].中国电机工程学报,2007,27(34):19-24.
    [77]王杰,陈陈.结构保持电力系统分岔与稳定控制[M].北京:科学出版社,2009.
    [78]陈刚,何潜,段晓,等.电力系统低频振荡分析与抑制综述[J].南方电网技术,2010,4(03):17-22.
    [79]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [80] Wang, H. F., Swift, F. J., Li, M. Indices for selecting the best location of PSSs or FACTS-basedstabilisers in multimachine power systems: A comparative study [J]. IEEProceedings-Generation Transmission and Distribution,1997,144(2):155-159.
    [81]孙勇.电力系统附加阻尼控制器的优化配置与设计方法研究[博士学位论文].哈尔滨,哈尔滨工业大学,2009.
    [82] Abido, M. A. Optimal design of power-system stabilizers using particle swarm optimization [J].IEEE Transactions on Energy Conversion,2002,17(3):406-413.
    [83] Wang, Z., Chung, C. Y., Wong, K. P., et.al. Robust power system stabiliser design undermulti-operating conditions using differential evolution [J]. IET Generation Transmission&Distribution,2008,2(5):690-700.
    [84] Shayeghi, H., Shayanfar, H. A., Jalilzadeh, S., et.al. Multi-machine power system stabilizersdesign using chaotic optimization algorithm [J]. Energy Conversion and Management,2010,51(7):1572-1580.
    [85] Eslami, M., Shareef, H., Mohamed, A., et.al. Damping of Power System Oscillations UsingGenetic Algorithm and Particle Swarm Optimization [J]. International Review of ElectricalEngineering-Iree,2010,5(6):2745-2753.
    [86] AlRashidi, M. R., El-Hawary, M. E. A Survey of Particle Swarm Optimization Applications inElectric Power Systems [J]. IEEE Transactions on Evolutionary Computation,2009,13(4):913-918.
    [87]徐桂芝,武守远,王宇红,等.用TCSC装置抑制电力系统低频振荡的研究[J].电网技术,2004,28(15):45-47+56.
    [88]杨晓东,房大中,刘长胜,等.阻尼联络线低频振荡的SVC自适应模糊控制器研究[J].中国电机工程学报,2003,23(01):55-63.
    [89] Simoes, A. M., Savelli, D. C., Pellanda, P. C., et.al. Robust Design of a TCSC OscillationDamping Controller in a Weak500-kV Interconnection Considering Multiple Power FlowScenarios and External Disturbances [J]. IEEE Transactions on Power Systems,2009,24(1):226-236.
    [90] Shayeghi, H., Shayanfar, H. A., Jalilzadeh, S., et.al. TCSC robust damping controller designbased on particle swarm optimization for a multi-machine power system [J]. Energy Conversionand Management,2010,51(10):1873-1882.
    [91] Du, W., Wu, X., Wang, H. F., et.al. Feasibility study to damp power system multi-modeoscillations by using a single FACTS device [J]. International Journal of Electrical Power&Energy Systems,2010,32(6):645-655.
    [92]黄方能.利用UPFC提高电力系统阻尼的研究[博士学位论文].上海,上海交通大学,2008.
    [93] He, J., Lu, C., Wu, X., et.al. Design and experiment of wide area HVDC supplementary dampingcontroller considering time delay in China southern power grid [J]. IET Generation Transmission&Distribution,2009,3(1):17-25.
    [94]徐光虎,孙衢,陈陈. HVDC模糊协调阻尼控制器的设计[J].电力系统自动化,2004,28(12):18-23.
    [95] Yong, L., Rehtanz, C., Ruberg, S., et.al. Assessment and Choice of Input Signals for MultipleHVDC and FACTS Wide-Area Damping Controllers [J]. IEEE Transactions on Power Systems,2012,27(4):1969-1977.
    [96] Chompoobutrgool, Y., Vanfretti, L., Ghandhari, M. Survey on power system stabilizers controland their prospective applications for power system damping using Synchrophasor-basedwide-area systems [J]. European Transactions on Electrical Power,2011,21(8):2098-2111.
    [97]李鹏,吴小辰,李立浧,等.南方电网广域阻尼控制系统及其运行分析[J].电力系统自动化,2009,33(18):52-56+101.
    [98]戚军,刘兆燕,江全元.考虑时滞影响的电力系统广域集中励磁控制[J].电网技术,2009,33(07):42-46.
    [99]戚军,江全元,曹一家.采用时滞广域测量信号的区间低频振荡阻尼控制器设计[J].电工技术学报,2009,24(06):154-159.
    [100]陈柔伊,张尧,钟庆,等.抑制区间振荡的自适应模糊广域阻尼控制设计[J].中国电机工程学报,2009,24(31):14-20.
    [101]马燕峰,赵书强.基于在线辨识和区域极点配置法的电力系统低频振荡协调阻尼控制[J].电工技术学报,2012,27(09):117-123.
    [102] Yassami, H., Darabi, A., Rafiei, S. M. R. Power system stabilizer design using Strength Paretomulti-objective optimization approach [J]. Electric Power Systems Research,2010,80(7):838-846.
    [103]杨培宏,刘文颖,张继红. PSS和TCSC联合抑制互联电网低频振荡[J].电力系统保护与控制,2011,39(12):11-16.
    [104] Shayeghi, H., Safari, A., Shayanfar, H. A. PSS and TCSC damping controller coordinated designusing PSO in multi-machine power system [J]. Energy Conversion and Management,2010,51(12):2930-2937.
    [105]邹德虎,王宝华. SVC与发电机励磁的逆推Terminal滑模协调控制[J].电网技术,2011,35(04):108-111.
    [106]何斌,张秀彬,赵兴勇.多机系统中励磁与SVC的协调控制[J].电工技术学报,2008,23(12):152-159.
    [107] Chaudhuri, B., Pal, B. C. Robust damping of multiple swing modes employing global stabilizingsignals with a TCSC [J]. IEEE Transactions on Power Systems,2004,19(1):499-506.
    [108] Majumder, R., Chaudhuri, B., Pal, B. C. Implementation and test results of a wide-areameasurement-based controller for damping interarea oscillations considering signal-transmissiondelay [J]. IET Generation Transmission&Distribution,2007,1(1):1-7.
    [109] Li, Y., Rehtanz, C., Rueberg, S., et.al. Wide-Area Robust Coordination Approach of HVDC andFACTS Controllers for Damping Multiple Interarea Oscillations [J]. IEEE Transactions onPower Delivery,2012,27(3):1096-1105.
    [110] Cai, L. J., Erlich, I. Simultaneous coordinated tuning of PSS and FACTS damping controllers inlarge power systems [J]. IEEE Transactions on Power Systems,2005,20(1):294-300.
    [111]朱红萍,罗隆福.直流调制策略改善交直流混联系统的频率稳定性研究[J].中国电机工程学报,2012,32(16):36-43.
    [112]李兴源,陈凌云,颜泉,等.多馈入高压直流输电系统非线性附加控制器的设计[J].中国电机工程学报,2005,25(15):16-19.
    [113] Xiang, D. W., Ran, L., Bumby, J. R., et.al. Coordinated control of an HVDC link and doubly fedinduction generators in a large offshore wind farm [J]. IEEE Transactions on Power Delivery,2006,21(1):463-471.
    [114]黄琳.稳定性理论[M].北京:北京大学出版社,1992.
    [115]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008.
    [116] Jakpattanajit, C., Hoonchareon, N., Yokoyama, A. A new coordinated control scheme of PSS andFACT devices for improving power system oscillations in multi-machine system [C]. In2010International Conference on Power System Technology (POWERCON2010), Hangzhou, China,Oct,2010,24-28.
    [117] Cheng, D., Xi, Z., Lu, Q., et.al. Geometric structure of generalized controlled Hamiltoniansystems and its application [J]. Science in China Series E: Technological Sciences,2000,43(4):365-379.
    [118] Wang, Y. Z., Li, C. W., Cheng, D. Z. Generalized Hamiltonian realization of time-invariantnonlinear systems [J]. Automatica,2003,39(8):1437-1443.
    [119] Wang, Y., Cheng, D., Ge, S. S. Approximate dissipative Hamiltonian realization and constructionof local Lyapunov functions [J]. Systems&Control Letters,2007,56(2):141-149.
    [120] Van der Schaft, A. J. L2-gain analysis of nonlinear systems and nonlinear state-feedbackH-infinity control [J]. IEEE Transactions on Automatic Control,1992,37(6):770-784.
    [121]林莉.基于直测功角及暂态能量函数法的同步发电机励磁保护与控制研究[博士学位论文].重庆:重庆大学,2007.
    [122] Hiskens, I. A., Hill, D. J. Energy functions, transient stability and voltage behaviour in powersystems with nonlinear loads [J]. IEEE Transactions on Power Systems,1989,4(4):1525-33.
    [123] Tsolas, N., Arapostathis, A., Varaiya, P. A structure preserving energy function for power systemtransient stability analysis [J]. IEEE Transactions on Circuits and Systems,1985,32(10):1041-1049.
    [124]房大中,宋文南,张尧.构造电力系统暂态能量函数新方法研究[J].中国科学E辑:技术科学,2003,33(11):1007-1012.
    [125] Noroozian, M., Ghandhari, M., Andersson, G., et.al. A robust control strategy for shunt andseries reactive compensators to damp electromechanical oscillations [J]. IEEE Transactions onPower Delivery,2001,16(4):812-817.
    [126] Sun, Y. Z., He, S., Ortega, R., et.al. Influence of transfer conductance on power system stabilitywith excitation control [C]. In2006Power Engineering Society General Meeting, IEEE: NewYork,2006,541-546.
    [127]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [128] Hsiao-Dong, C., Chia-Chi, C., Cauley, G. Direct stability analysis of electric power systemsusing energy functions: theory, applications, and perspective [J]. Proceedings of the IEEE,1995,83(11):1497-1529.
    [129] Shi, F., Wang, J. Stabilising control of multi-machine power systems with transmission lossesbased on pseudo-generalised Hamiltonian theory [J]. IET Control Theory and Applications,2012,6(2):173-181.
    [130]蒋平,栗楠. PSS和SVC联合抑制次同步振荡[J].电力自动化设备,2010,30(07):40-45.
    [131]蒋平,栗楠,顾伟,等. PSS和SVC联合抑制特高压网络低频振荡[J].电力自动化设备,2009,29(07):13-17.
    [132]谢惠藩,张尧,夏成军,等. SVC对特高压紧急直流功率支援的影响[J].电力自动化设备,2009,29(01):6-10.
    [133] Wang, Y., Tan, Y. L., Guo, G. Robust nonlinear co-ordinated excitation and TCSC control forpower systems [J]. IEE Proceedings-Generation Transmission and Distribution,2002,149(3):367-372.
    [134]李兴源,邵震霞,汤广福.多馈入高压直流输电系统的分散协调控制研究[J].中国电机工程学报,2005,25(16):8-12.
    [135]张琳. FACTS控制器间的交互影响分析及控制策略研究[博士学位论文].杭州,浙江大学,2007.
    [136]徐桂芝,李甲飞,武守远,等.成碧线220kV可控串补系统的控制策略和系统试验[J].电力系统自动化,2008,32(20):93-96.
    [137]石访,王杰.基于Hamilton能量函数的发电机励磁与TCSC协调控制[J].电力系统保护与控制,2012,40(15):24-28.
    [138]徐大鹏,李兴源,洪潮,等.基于最优变目标策略的TCSC与励磁系统协调控制[J].电网技术,2008,32(21):13-16+21.
    [139]陈菊明,梅生伟,卢强,等.多机系统中TCSC设备与发电机励磁的分散协调控制[J].清华大学学报(自然科学版),2001,41(4):136-141.
    [140] Kuiava, R., de Oliveira, R. V., Ramos, R. A., et.al. Simultaneous coordinated design of PSS andTCSC damping controller for power systems [C].2006IEEE Power Engineering SocietyGeneral Meeting, Montreal, Canada,2006,1-8.
    [141]陆冬良,张秀彬.基于Hamilton能量整形的多机电力系统励磁控制[J].电力系统保护与控制,2011,39(05):45-50.
    [142] Shi, F., Wang, J. Nonlinear Coordinated Control of HVDC and TCSC for Damping Inter-AreaOscillations of Parallel AC/DC Power System [J]. International Review of ElectricalEngineering-Iree,2012,7(6):3401-3407.
    [143]滕夏晨. SVC、TCSC与发电机励磁鲁棒非线性协调控制研究[硕士学位论文].西安:西安理工大学,2009.
    [144]阮映琴,王杰.静止无功补偿器与发电机励磁协调自适应控制[J].上海交通大学学报,2008,39(S1):216-219.
    [145] Ruan, Y. Q., Wang, H. The coordinated control of SVC and excitation of generators in powersystems with nonlinear loads [J]. International Journal of Electrical Power&Energy Systems,2005,27(8):550-555.
    [146] Kosterev, D. N., Taylor, C. W., Mittelstadt, W. A. Model validation for the August10,1996WSCC system outage [J]. IEEE Transactions on Power Systems, Aug,1999,14(3):967-974.
    [147]罗珂.基于输出预测和LMI方法的电力系统广域阻尼控制研究[D].博士,山东大学,2010.
    [148] Wei, D. Q., Luo, X. S. Passivity-based adaptive control of chaotic oscillations in powersystem [J]. Chaos Solitons&Fractals,2007,31(1):665-671.
    [149]杨东俊,丁坚勇,李继升,等.同步发电机非同期并网引起强迫功率振荡分析[J].电力系统自动化,2011,35(10):99-103.
    [150]余一平,闵勇,陈磊,等.周期性负荷扰动引发强迫功率振荡分析[J].电力系统自动化,2010,34(06):7-11+47.
    [151] Abed, E. H., Varaiya, P. P. Nonlinear oscillations in power systems [J]. International Journal ofElectrical Power&Energy Systems,1984,6(1):37-43.
    [152]龙以明.非线性哈密顿系统的周期解[J].中国科学基金,1995,9(1):22-28.
    [153]肖莉. Hamilton系统周期解和同宿轨道[D].博士,中南大学,2009.
    [154]赵建国,薛禹胜.南方电网综合防御框架的构思[J].南方电网技术,2008,2(01):1-7.
    [155] Mao, X. M., Zhang, Y., Guan, L., et.al. Improving power system dynamic performance usingwide-area high-voltage direct current damping control [J]. IET Generation Transmission&Distribution,2008,2(2):245-251.
    [156]周俊.交直流电网数字物理混合仿真技术的研究[D].博士,华中科技大学,2012.
    [157]杨帆,陈陈,王西田,等.基于李雅普诺夫函数的直流附加控制器设计[J].电网技术,2008,32(18):14-17.
    [158]朱礼营.切换混杂Hamilton系统的分析、综合及其应用[D].博士,山东大学,2007.
    [159] Fang, D. Z., Xiaodong, Y., Wennan, S., et.al. Oscillation transient energy function applied to thedesign of a TCSC fuzzy logic damping controller to suppress power system interarea modeoscillations [J]. IEE Proceedings-Generation Transmission and Distribution, Mar,2003,150(2):233-238.
    [160]张培云.哈密顿系统的周期解和弦解[D].硕士,清华大学,2004.
    [161] Bartsch, T., Szulkin, A. Hamiltonian systems: periodic and homoclinic solutions by variationalmethods [M]. Handbook of differential equations: ordinary differential equations,2006,277-146.
    [162] Rabinowitz, P. H. Periodic solutions of Hamiltonian systems [J]. Communications on Pure andApplied Mathematics,1978,31(2):157-184.
    [163]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报,2005,25(11):6-11.
    [164]刘高原.鲁棒稳定控制方法在交直流联合输电系统中的应用[D].上海交通大学,2008.
    [165]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [166] Weng, H., Xu, Z. Dynamic reduction of large-scale AC/DC power systems via retaining thetrunk network [J]. International Journal of Electrical Power&Energy Systems, Dec,2012,43(1):1332-1339.
    [167] Du, Z., Zhang, Y., Chen, Z., et.al. Integrated emergency frequency control method forinterconnected AC/DC power systems using centre of inertia signals [J]. IET GenerationTransmission&Distribution,2012,6(6):584-592.
    [168]兰洲,朱浩骏,甘德强,等.基于惯量中心动态信号的交直流互联系统稳定控制[J].电网技术,2007,31(6):14-18.
    [169]朱浩骏,兰洲,蔡泽祥,等.交直流互联系统鲁棒自适应直流功率调制[J].电力系统自动化,2006,30(7):21-26.
    [170] Kundur, P. Power system stability and control [M]. New York: McGraw-Hill,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700