用户名: 密码: 验证码:
晶须制备研究与镁资源开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶须是已知固体形态中强度最大的形态之一,用作材料的增强,用途广泛,晶须的制备和应用处于世界的研究前沿。本文系统地探讨了制备MgO晶须常用的两种方法,助熔剂水解法和前体分解法,发明了新的晶须制备方法并成功应用于MgO晶须和ZnS晶须制备。本文还研究了碱式氯化镁晶须和Mg(OH)_2晶须的制备。这些制备方法亦可推广至其它晶须(包括纳米晶须)的制备过程。
     本课题是国家“十一五”科技支撑计划项目“钾镁盐矿生态化开发系统工程研究”中的一部分,重点研究钾镁盐矿的镁资源开发利用问题。从该钾镁矿的实际出发,依据相平衡数据,提出了适合矿情的制备六水氯化镁的工艺,并在小试实验中制备了合格的工业级产品,研究了原料组成和蒸发终点对产品质量的影响。
     在助熔剂水解法的研究中,系统地研究了实验原料、温度、助熔剂和气体流动状况对MgO晶须生长的影响,并对工艺进行了优化,显著提高了晶须产品的收率和质量。根据文献中热力学和熔盐性质的数据,研究了反应平衡,分析了反应过程,并结合实验中的系统研究,确定了助熔剂法中晶须的生长机理,并根据熔盐结构推测了助熔剂的作用。
     根据上述机理,提出了制备晶须的绿色新工艺,成功制备了MgO晶须。对新工艺进行了热力学上的分析,在实验中研究了温度对晶须生长的影响。应用新工艺还成功制备了ZnS晶须,并对该反应进行了热力学分析,研究了助熔剂对晶须生长的影响。利用分子模拟软件Cerious2对ZnS晶须形貌进行了预测分析,根据晶体生长的理论模型探讨了ZnS晶须特殊形貌的成因。
     在前体法中,系统地考察了碱式氯化镁晶须和Mg(OH)_2晶须作为MgO晶须前体的制备方法。借鉴镁水泥中碱式氯化镁的形成机理,对碱式氯化镁晶须的形成机理进行了详细分析。成功地利用Mg(OH)_2、Ca(OH)_2和MgCl2溶液为原料制备出了碱式氯化镁晶须,并对碱式氯化镁和Mg(OH)_2晶须的制备和转化工艺进行了优化。利用XRD、SEM和TEM研究了晶须转化前后的晶体结构和形貌。
     率先采用XRD和化学滴定分别考察了以Mg(OH)_2和Ca(OH)_2为原料时碱式氯化镁晶须的生长动力学以及转化成Mg(OH)_2晶须的动力学,并结合晶体结构进行了理论分析。
     以上研究内容国内外尚未见文献报导。
Crystal whisker is one of the strongest known forms of solid and has been widely employed as reinforcing additive of composite materials. At present, the preparation and application of whisker are in the frontier of research and development of materials around the world. Two conventional methods were systematically studied in the preparation of MgO whiskers: the method of hydrolysis of MgCl_2 with flux and the method of decomposition of precursor whiskers. A novel method was developed to prepare crystal whiskers and successfully applied in the preparation of MgO whiskers and ZnS whiskers. Besides, the investigation was also made on the preparation of magnesium hydroxychloride whiskers and Mg(OH)_2 whiskers. These methods can also be applied in the preparation of other crystal whiskers, including nanowhiskers.
     The research project is one of the national eleventh five-year scientifical supporting and planning projects, named as systematical engineering study of ecological exploitation of KCl and MgCl_2·6H_2O minerals and focuses on deep exploitation of magnesium minerals. The crystallization process of MgCl_2·6H_2O was developed based on the fact of the minerals and phase equilibrium data from literature and qualified products of MgCl_2·6H_2O were prepared in laboratory. The effects of the composition of raw materials and the end-point of evaporation were investigated on the quality of product.
     In the study of the method of hydrolysis with flux, the optimization of reaction conditions was performed and the effects of reactants, temperature and the nature of flux were systematically investigated. The yield and quality of crystal whiskers had been improved greatly after optimization.The reaction equilibrium and process were analyzed according to the thermodynamic data and the properties of molten salt reported in literature. The growth mechanism of MgO whiskers prepared by hydrolysis was brought forward based on experimental investigation and theoretical analysis. The role of flux was explained based on the structure of molten salt.
     According to the crystal whisker growth mechanism, a novel green method was invented to prepare crystal whiskers and MgO whiskers were prepared successfully. The new process was thermodynamically analyzed and the effects of temperature and flux were investigated on the growth of MgO whiskers in experiments. ZnS whiskers were also prepared with the novel method. The preparation reaction was thermodynamically analyzed and the effects of flux and temperature were investigated on the growth of crystal whiskers. Theoretical prediction of ZnS morphology was performed with molecular simulation software Cerious2 and the special morphology of ZnS whiskers was analyzed based on crystal growth theories.
     The method of decomposition of precursors has been researched, in which magnesium hydroxychloride whiskers and magnesium hydroxide whiskers were used as the precursors to prepare MgO whiskers. Learning from the formation mechanism of magnesium hydroxychloride in magnesium cement, a detailed analysis was made on the growth mechanism of magnesium hydroxychloride whiskers. Magnesium hydroxychloride whiskers were prepared successfully with Mg(OH)_2, Ca(OH)_2 and magnesium chloride solution and the process of the preparation and transformation of magnesium hydroxychloride whiskers is optimized. XRD, SEM and TEM studies were performed on the morphology and crystal structure of crystal whiskers before and after transformed to MgO whiskers.
     The growth and transformation kinetics of magnesium hydroxychloride whiskers were investigated with chemical titration and XRD for the first time and the transformation was analyzed based on crystal structures of crystal whiskers.
     All the contents above have never been reported at present.
引文
[1] Levitt A P, Whisker Technology, New York: John Wiley & Sons, Inc., 1970.1-13
    [2] Brenner S S, Growth and Properties of" Whiskers", Science, 1958, 128(3324): 569-575.
    [3]李武,无机晶须,北京:化学工业出版社, 2005.1-2
    [4] Yang P, Lieber C M, Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities, Science, 1996, 273(5283): 1836-1840.
    [5] Appell D, Nanotechnology: Wired for success, Nature, 2002, 419(6907): 553-555.
    [6]李广宇,李子东,晶须的性能及其应用进展,热固性树脂, 2000, 15(2): 48-51.
    [7] Wei G C, Becher P F, Development of SiC-Whisker-Reinforced Ceramics, Am. Ceram. Soc. Bull., 1985, 64(2): 298-304.
    [8]张玉龙,先进复合材料制造技术手册,北京:机械工业出版社, 2003.550-560
    [9]李慧青,张淑芬,新型增强材料—硼酸镁晶须,化工新型材料, 2001, 29(1): 16-18.
    [10]徐兆瑜,晶须的研究和应用新进展,化工技术与开发, 2005, 34(2): 11-17.
    [11] Yuan Y S, Wong M S, Wang S S, Superconducting properties of MgO-whisker reinforced BPSCCO composite, Physica C, 1995, 250(3): 247-255.
    [12] Yuan Y S, Wong M S, Wang S S, Mechanical behavior of MgO-whisker reinforced (Bi,Pb)2Sr2Ca2Cu3Oy high-temperature superconducting composite, J. Mater. Res., 1996, 11(7): 1645-1652.
    [13] Adamopoulos N, Evetts J E, Yan Y, et al., An experimental study of flux pinning and flux dynamics in a system with two types of pinning centre, Physica C, 1995, 242(1): 68-80.
    [14] Selvamanickam V, Bamberger E, Martin P M, et al., Improved strain tolerance in aligned-MgO-whisker reinforced (Bi, Pb)2Sr2Ca2Cu3O10 tapes, IEEE Trans. Appl. Supercond., 1995, 5(2): 1826-1829.
    [15] Chen M, Glowacka D, Soylu B, et al., Texture and critical current anisotropy in composite reaction textured MgO whisker/Bi-2212 multilayer structures, IEEE Trans. Appl. Supercond., 1995, 5(2): 1467-1470.
    [16] Levitt A P, Whisker Technology, New York: John Wiley & Sons, Inc., 1970.176-176
    [17]李文光,开发泰国,老挝钾盐矿产资源,中国地质, 1998, (9): 47-48.
    [18]李静,碱式氯化镁晶须的合成,硕士学位论文,河北工业大学, 2003
    [19]张大海,冯丽娟,李先国等,镁盐晶须的研究进展,海湖盐与化工, 2004, 33(1): 4-8.
    [20] Hulse C O, Formation and Strength of Magnesia Whiskers, J. Am. Ceram. Soc., 1961, 44(11): 572-575.
    [21] Wolff E G, Coskren T D, Growth and morphology of magnesium oxide whiskers, J. Am. Ceram. Soc., 1965, 48(6): 279-285.
    [22] Sandulov D V, Sokolova A N, Lokhmatova R A, mechanical properties of filamentary crystals of MgO, Neorg. Mater., 1976, 12(7): 1315-1317.
    [23] Brubaker B D, Fibrous magnesium oxide production from a magnesium salt and an auxiliary salt, America, US3711599, 1973.
    [24]王万平,张懿,一种制备氧化镁晶须的方法,中国, CN1463922, 2003.
    [25]胡庆福,镁化合物生产与应用,北京:化学工业出版社, 2004.386-399
    [26]牛自得,程芳琴,李宝存,水盐体系相图及其应用,天津:天津大学出版社, 2002.250-252
    [27] Silcock H L, Solubilities of inorganic and organic compounds(volume 3 part 1), New York: Pergamon, 1979.1091-1114
    [28] Brubaker B D, Ductile Magnesium Oxide Whiskers, J. Am. Ceram. Soc., 1967, 50(11): 624-624.
    [29] Hayashi S, Saito H, Growth of magnesia whiskers by vapor phase reactions, J. Cryst. Growth, 1974, 24-25(8): 345-349.
    [30]李武,无机晶须,北京:化学工业出版社, 2005.29-31
    [31] Levitt A P, Whisker Technology, New York: John Wiley & Sons, Inc., 1970.157-195
    [32]吴华武,制备氧化镁晶须的工艺和设备,功能材料, 1995, 26(2): 177-179.
    [33] Patnaik P, Handbook of Inorganic Chemicals, New York: McGraw-Hill, 2003.529-531
    [34] Patnaik P, Handbook of Inorganic Chemicals, New York: McGraw-Hill, 2003.510-516
    [35]周相廷,张兴利,陈汝芬等,氧化镁晶须的制备,河北师范大学学报(自然科学版), 1997, 21(1): 76-82.
    [36]山田雅治,西山敦,大日向义宏等, Magnesia whisker preperation useful as ceramic reinforcing agent - by dehydrating and firing mixture containing magnesium and/or calcium sulphate other magnesium salt hydrate and halogencompound, Japan, JP1313399, 1988.
    [37]西山敦,山田雅治,大日向义宏等, Magnesia whisker for reinforcing and insulating material - having non-circular cross-sectional shape, JP1313400-A, 1988.
    [38] Yoshihiro O, Masaharu Y, Production of mangesia whisker and device thereof, Japan, JP2083299, 1990.
    [39]西山敦,山田雅治,大日向义宏等, Magnesia whiskers manufacture - involves roast sintering mixture of magnesium salt(s) and halide then calcining, Japan, JP2149499-A, 1988.
    [40]山田雅治,西山敦,大日向义宏等, Apparatus for producing magnesia whisker, Japan, JP3159999, 1991.
    [41] Kimio Y, Masao O, Production of magnesia whisker, Japan, JP63166715, 1988.
    [42] Gilman J J, Direct Measurements of the Surface Energies of Crystals, J. Appl. Phys., 1960, 31(12): 2208-2218.
    [43] Fernández-GarcíáM, Martín A, Hanson J C, et al., Nanostructured Oxides in Chemistry: Characterization and Properties, Chem. Rev., 2004, 104(9): 4063–4104.
    [44]化学工业时报,1992. 2. 15: 2123.
    [45]化学工业时报,1992. 2. 25: 2124.
    [46]陈新民,张平民,叶大陆,氯化镁水合物热分解的综合研究,中南大学学报(自然科学版), 1979, (1): 15-26.
    [47] Shoval S, Yariv S, The effect of alkali-chloride on the thermal hydrolysis of hydrated magnesium chloride, Thermochim. Acta, 1985, 92(9): 819-822.
    [48] Shoval S, Yariv S, Kirsh Y, et al., The effect of alkali halides on the thermal hydrolysis of magnesium chloride and magnesium bromide, Thermochim. Acta, 1986, 109(1): 207-226.
    [49] Patnaik P, Handbook of Inorganic Chemicals, New York: McGraw-Hill, 2003.529-990
    [50]周宁波,陈白珍,何新快等,铵光卤石气固反应法制备无水氯化镁,应用化学, 2005, 22(8): 874-878.
    [51] Soylu B, Adamopoulos N, Glowacka D M, et al., Composite reaction texturing of superconducting ceramic composites, Appl. Phys. Lett., 1992, 60(25): 3183-3185.
    [52] Amelinckx S, The characterization of defects in crystals, J. Cryst. Growth, 1974, 24-25(10): 6-10.
    [53] Kashani-Nejad S, Ng K W, Harris R, MgOHCl thermal decomposition kinetics,Metall. Mater. Trans. B, 2005, 36(1): 153-157.
    [54] Savinkova E I, Lelekova R P, Brayalovskaya V L, Crystallization of magnesium oxide from a hydrolyzed melt of MgCl2 -KCl-NaCl, Zh. Prikl. Khim., 1977, 50(10): 2155-2157.
    [55] Bridgeman O C, Aldrich E W, Vapor Pressure Tables for Water, J. Heat Transfer, 1964, 86: 279-286.
    [56] Apelblat A, Korin E, The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 227 K to 323 K, J. Chem. Therm., 1998, 30(1): 59-71.
    [57] Trentler T J, Hickman K M, Goel S C, et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science, 1995, 270(5243): 1791-1794.
    [58] Paul B, Arthur H, Method of growing magnesium oxide whiskers, America, US3630691, 1971.
    [59] Altman R L, Vaporization of Magnesium and its Reaction with Alumina, J. Phys. Chem., 1963, 67(2): 366-369.
    [60]胡庆福,镁化合物生产与应用,北京:化学工业出版社, 2004.11-150
    [61] Byrappa K, Ohachi T, Crystal Growth Technology, New York: Springer, 2003.25-50
    [62] Evans C C, Whisker, London: Mills & Boon Limited, 1972.30-45
    [63] Levitt A P, Whisker Technology, New York: John Wiley & Sons, Inc., 1970.47-119
    [64] Levitt A P, Whisker Technology, New York: John Wiley & Sons,Inc., 1970.15-46
    [65] Evans C C, Whisker, London: Mills & Boon Limited, 1972.14-29
    [66] Wada H, Sakane K, Kitamura T, et al., The reaction sequence in the synthesis of aluminium borate whiskers, J. Mater. Sci., 1996, 31(2): 537-544.
    [67] Brooker M H, A Raman spectroscopic study of the structural aspects of KMgCl and CsMgCl as solid single crystals and molten salts, J. Chem. Phys., 1975, 63(7): 3054-3061.
    [68] Berger L I: properties of solids. in Lide D R CRC Handbook of Chemistry and Physics: 87th Ddition. Boca Raton: CRC, 2006, vol 12, 10-12.
    [69] Chase M W, NIST-JANAF Thermochemical Tables, Washington, D.C.: American Chemical Society, 1998
    [70]李元高,张全茹, KCl—MgCl2—LiCl及CaCl2—MgCl2—NaCl熔盐系中MgCl2活度的简化亚正规模型化工冶金, 2000, 21(3): 252-256.
    [71] Janz G J, Tomkins R P T, Allen C B, et al., Molten salts: Volume 4, part 2, chlorides and mixtures–elkectrical conductance, density, viscosity, and surface tension data, J. Phys. Chem. Ref. Data, 1975, 4(4): 871-1178.
    [72] Parks G A, Surface and interfacial free energies of quartz, J. Geophys. Res., 1984, 89(6): 3997-4008.
    [73] J.Hulliger, Chemistry and Crystal Growth, Angew. Chem. Int. Ed. Engl, 1994, 33(2): 143-162.
    [74] Hildenbrand D L, Hall W F, Ju F, et al., Vapor Pressures and Vapor Thermodynamic Properties of Some Lithium and Magnesium Halides, J. Chem. Phys., 1964, 40(10): 2882-2890.
    [75] Ng K W, Kashani-Nejad S, Harris R, Kinetics of MgO chlorination with HCl gas, Metall. Mater. Trans. B, 2005, 36(3): 405-409.
    [76] Smirnov M V, Guseva L T, The solubility product of magnesium oxide in molten potassium chloride Containing its chloride, Rasplavy, 1992, (3): 48-53.
    [77] Mu J, Perlmutter D D, Thermal decomposition of inorganic sulfates and their hydrates, Ind. Eng. Chem. Proc. Des. Dev., 1981, 20(4): 640-646.
    [78] L’vov B V, Ugolkov V L, Kinetics of free-surface decomposition of magnesium and barium sulfates analyzed thermogravimetrically by the third-law method, Thermochim. Acta, 2004, 411(1): 73–79.
    [79] Lau K H, Cubicciotti D, Hildenbrand D L, Effusion studies of the thermal decomposition of magnesium and calcium sulfates, J. Chem. Phys., 1977, 66: 4532.
    [80]吕云阳,王文绍,刘颂禹等,无机化学丛书,第六卷.卤素铜分族锌分族:科学出版社, 1995.651-755
    [81]王泽和,异军突起的海上红外眼,百科知识, 1994, (11): 52-53.
    [82] Guiton T A, Pantano C G, Synthesis of ZnS whiskers, Solid State Ionics 1989, 32/33: 506-513.
    [83] Czekaj C L, Rau M S, Geoffroy G L, et al., An organometallic route to micron-sized whiskers of zinc sulfide, Inorg. Chem., 1988, 27(19): 3267-3269.
    [84]程乃良,牛四通,徐桂英,纯物质热化学数据手册(上下卷):北京:科学出版社, 2003.403-1845
    [85]仲维卓,华素坤,晶体生长形态学,北京:科学出版社, 1999.198-210
    [86] Simov S, Morphology of hollow crystals of II–VI compounds, J. Mater. Sci., 1976, 11(12): 2319-2332.
    [87]李法强,盐湖镁基晶须MOS和MgO的材料化学研究,博士学位论文,中国科学院青海盐湖研究所, 2004
    [88] Kohei M, Naoki T, Magnesia particle used as filler such as rubber, plastic,resin, coating material and paper, has tubular shape structure, Japan, JP2004175644-A, 2004.
    [89] Wei Z, Qi H, Ma P, et al., A new route to prepare magnesium oxide whisker, Inorg. Chem. Comm., 2002, 5(2): 147-149.
    [90]王万平,张懿,碳酸盐热解法制备氧化镁晶须,硅酸盐学报, 2002, 30(Z1): 93-95.
    [91] Green J, Calcination of precipitated Mg(OH)2 to active MgO in the production of refractory and chemical grade MgO, J. Mater. Sci., 1983, 18(3): 637-651.
    [92]王瑜,碱式氯化镁晶须的合成,硕士学位论文,河北工业大学, 2002
    [93]田军,超声波在碱式氯化镁结晶中的应用,哈尔滨商业大学学报(自然科学版), 2005, 21(2): 221-222.
    [94]王世栋,褚敏雄,孙庆国,卤水-氨法碱式氯化镁晶须的制备及影响因素的研究,海湖盐与化工, 2006, 35(2): 1-3.
    [95]李春忠,古庆山,程起林等,针状碱式氯化镁的合成及形态分析,华东理工大学学报(自然科学版), 2005, 31(3): 5.
    [96]任庆利,刘斌,陈维等,制备工艺对纤维状碱式氯化镁晶体的影响,绝缘材料, 2004, (2): 32.
    [97] Xia S, Xing P, Gao S, Studies on the basic compounds of magnesia cement: the thermal behaviour of magnesium oxychlorides, Thermochim. Acta, 1991, 183(5): 349-363.
    [98] Wei Q, Synthesis, properties and applications of nanorods and nanowires, PhD thesis, Harvard University, 2001
    [99]李武,无机晶须,北京:化学工业出版社, 2005.120-130
    [100] Altmaier M, Metz V, Neck V, et al., Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl. 4H2O (cr) in the system Mg-Na-H-OH-Cl-H2O at 25oC, Geochim. Cosmochim. Acta 2003, 67(19): 3595-3601.
    [101]胡金华,王伟宁,新型塑料增强剂——纤维状氧化镁的研制,辽宁化工, 1990, (1): 45-47.
    [102]王伟宁,王思嘉,高纯针状结晶氧化镁对聚丙烯的增强作用,塑料工业, 1991, (2): 46-48.
    [103]闫振甲,何艳军,镁水泥改性及制品生产实用技术,北京:化学工业出版社, 2006.8-25
    [104] Agron P A, Busing W R, Magnesium dichloride hexahydrate, MgCl2(H2O)6, by neutron diffraction, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, 41(1): 8-10.
    [105] Pye C C, Rudolph W W, An ab Initio and Raman Investigation of Magnesium(II) Hydration, J. Phys. Chem. A, 1998, 102: 9933-9943.
    [106] Kipouros G J, Sadoway D R, A thermochemical analysis of the production of anhydrous MgCl2, J. Light Metals, 2001, 1(2): 111-117.
    [107] Authors Catti M, Ferraris G, Hull S, et al., Static compression and H disorder in brucite, Mg (OH)2, to 11 GPa:a powder neutron diffraction study, Phys. Chem. Miner., 1995, 22(3): 200-206.
    [108] de Wolff P M, Walter-Levy L, The crystal structure of Mg2(OH)3(Cl, Br)(H2O)4, Acta Crystallogr., 1953, 6(1): 40-44.
    [109] Dehua D, Chuanmei Z, The formation mechanism of the hydrate phases in magnesium oxychloride cement, Cem. Concr. Res., 1999, 29(9): 1365-1371.
    [110] Christensen A N, Norby P, Hanson J C, Chemical Reactions in the System MgO-MgCl2-H2O Followed by Time-Resolved Synchrotron X-Ray Powder Diffraction, J. Solid State Chem. , 1995, 114(2): 556-559.
    [111] Phang S, R.H.Stokes, Density,Viscosity,Conductance and Transference Number of Concentrated Aqueous Magnasium Chloride at 25℃, J. Solution Chem., 1980, 9(7): 497-506.
    [112] Bilinski H, Matkovic B, Mazuranic C, et al., The Formation of Magnesium Oxychloride Phases in the Systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O, J. Am. Ceram. Soc., 1984, (4): 266-269.
    [113] Lewis D, Studies on the hydrolysis of metal ions: The hydrolysis of magnesium in chloride self-medium, Acta Chem. Scand., 1963, 45(17): 1891-1894.
    [114] Patnaik P, Handbook of Inorganic Chemicals, New York: McGraw-Hill, 2003.19-548
    [115] Green J, Calcination of precipitated Mg (OH)2 to active MgO in the production of refractory and chemical grade MgO, J. Mater. Sci., 1983, 18(3): 637-651.
    [116] Mel'gunov M S, Fenelonov V B, Mel'gunova E A, et al., Textural changes during topochemical decomposition of nanocrystalline Mg(OH)2 to MgO, J. Phys. Chem. B, 2003, 107(11): 2427-2434.
    [117]顾惕人,朱埗瑶,李外郎等,表面化学,北京:科学出版社, 1999.198-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700