用户名: 密码: 验证码:
铬系耐磨合金凝固组织性能控制关键技术基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬系铸铁是工程中应用广泛的一种耐磨材料。高硬度碳化物与不同基体组成“复合材料体系”的性能和使用寿命主要受控于碳化物的结构、尺寸、形态、分布及基体组织的成分、结构等因素。所以凝固组织中碳化物结构、尺寸、形态、分布及基体组织的成分、结构控制一直为铬系铸铁多年研究的热点和难点问题。本文基于凝固理论和铬系铸铁的液态结构和性能特点探讨凝固组织中碳化物形核、长大机理和基体的凝固行为,在此基础上进而研究其性能特征,以期为今后开发高性能的铬系耐磨铸铁奠定基础。
     论文取得了以下创新成果:
     (1)以金属凝固形核理论为指导,以高铬铸铁中碳原子位于M_7C_3型碳化物四面体或八面体间隙为基本出发点,通过计算和推导建立了过共晶高铬铸铁初生碳化物的形核模型。高铬铸铁初生碳化物晶体结构为六方点阵,熔体中的四面体和八面体原子团簇存在向六方多面体晶核合并的热力学内在条件,由四面体合并成六方形多面体的驱动力远大于八面体合并成六方形多面体的驱动力,同时形核也受动力学条件影响,八面体间隙大于四面体间隙,为Fe,Cr所构成的原子团簇捕获碳原子提供了有利条件。体系中存在着四面体和八面体的竞争形核。
     (2)对铬系铸铁碳化物析出热力学条件及动力学机制进行了深入研究,碳化物固液界面微观结构对碳化物类型转变及生长方式有重要影响。Jackson因子随Cr含量的增加而增加,碳化物生长固液界面光滑程度增加,降低了网状M3C型碳化物的“疯长”程度。Cr量的增加改变了铸铁液态原子结构,提高了铁液共晶转变温度而降低了铁液导热系数,加剧了碳化物晶格畸变程度。解释了在不同凝固条件下铬系铸铁碳化物类型发生临界转变的内在原因,初步揭示了过共晶高铬铸铁初生碳化物的生长过程。运用周期键链理论、传热和传质原理解释了初生M_7C_3型碳化物的生长机制。认为初生碳化物在初始生长阶段以平界面形式向液体中生长,当沿碳化物某一面凝固潜热散热快而熔体中C原子来不及扩散至碳化物界面时,碳化物以向内包抄形式生长。过共晶高铬铸铁的最终形态不仅与碳化物晶体内部结合键、各个晶面间的相对生长速率和晶体缺陷等因素有关,在很大程度上也受生长环境的影响。冷却速度快时碳化物向内包抄的面积小,容易长成实心状,冷却慢时则呈现L型、U型或六方形状。
     (3)研究铬系铸铁在H_2SO_4水溶液和石英砂形成PH3.5的浆料中的冲刷腐蚀磨损行为,结果表明:磨屑中是否具有大量的Cr_2O_3与试样含Cr量有关,而且影响其腐蚀磨损抗力。在本课题实验条件下,含Cr量分别为10%、12%和15%试样,冲刷腐蚀磨损后磨屑几乎没有检测到Cr_2O_3,其冲刷腐蚀耐磨抗力小;含Cr量为23%和28%的试样,冲刷腐蚀磨损后磨屑检测到大量的Cr_2O_3,的,其冲刷腐蚀耐磨抗力大。
     (4)在静态热碱腐蚀条件下,凝固速度对腐蚀抗力的影响主要取决于其对碳化物与基体间的腐蚀电位差和晶界能双重作用机制的竞争结果。凝固速度的提高,基体成分更加均匀,降低了碳化物与基体的腐蚀电位差,提高了合金腐蚀抗力;同时凝固速度提高使凝固组织更加细小,导致晶界面积和晶界能增加,增加了晶间腐蚀敏感性,降低了合金腐蚀抗力。在本课题的试验条件下,含Cr量为15%的试样,随着腐蚀的进行,凝固速度的提高,晶界能增加占主导地位,降低了腐蚀抗力;而含Cr量分别为10%、12%、23%和28%的试样,随着凝固速度增加,成分的均匀性使其晶间的腐蚀电位差的减小占主导,从而提高腐蚀抗力。
Chromium cast iron is used widely as a wear-resistant materials. The service life ofcomposite system with high hardness carbides and different matrix was dominated bythe structure,size, morphology, distribution of carbides. The studies for many years havebeen foucus on the structure, size, morphology, distribution of carbides and thecomposition and microstructure control of the matrix. Based on solidification theoryand liquid structure and property of chromium cast iron, the nucleation and growthmechanism of carbides and solidification behavior of matrix were discussed. Theproperty characteristics was further studied on the basics of microstructure in order tolay the foundations for the future development of chromium cast iron with highproperty.
     The innovative achievements of the paper were as follows:
     (1) Guided by the metal solidification nucleation theory and started with carbonatoms in tetrahedral or octahedral interstice of carbides, the nucleation model of primarycarbides of hypereutectic high chromium cast iron was builded by calculation andderivation. The primary carbide crystal structure of high chromium cast iron ishexagonal lattice, the tetrahedral and octahedral clusters might merge to six polyhedracrystal nucleus from thermodynamic consideration. The driving force of tetrahedronatomic cluster combined into six polyhedra crystal nucleus was much larger than that ofeight polyhedron atomic cluster. However, the nucleation was influence by kineticsconditions. The fact of octahedral interstice greater than tetrahedral interstice providedadvantageous conditions to Fe and Cr clusters trapping carbon atom.The melt existed incompetitive nucleation between tetrahedral and octahedral.
     (2) The thermodynamic behavior of carbide precipitation and growthmorphology of carbides were thoroughly investigated. The microstructure ofcarbides-liquid interface had an important influence on carbide type changes and growthpatterns. Jackson factor increases with the increase of Cr content, the smoothnessdegree of the carbide in the carbides-liquid interface was increased accordingly, leadingto the decrease of net M3C carbides soaring level. Added Cr changed the liquid atomicstructure of cast iron, raised the eutectic transition temperature and decreased thethermal conductivity in iron liquid. Which aggravated the carbide lattice distortiondegree.The intrinsic reasons for carbide type critical transition in different solidificationconditions were explained. The growth process of primary carbide of hypereutectic highchromium cast iron was elementarily revealed. The growth mechanism of primarycarbides was explained by periodic bond chain theory, heat and mass transmissionprinciples. It was believed that the primary carbides grew in form of planar interface inthe initial growth stage in liquid. Carbides outflanked inward growth when latent heat ofsolidification quickly dissipated along certain sides of carbides and C atoms wasdifficult to diffuse to the carbides-liquid interface. The carbides morphology not onlyhad relationship with internal bond of carbides, the relative growth rate of variousplanes and crystal defects, but also largely depended on the growth environment. Rapidcooling rate led to small area of outflanking inward carbides, the carbides morphologywas easy to grow into a solid shape. Slow cooling rate led to L-shaped, U-shaped orhexagonal shape carbides.
     (3) It is useful to ascertain whether there existed a larger number of Cr_2O_3filmunder H2SO4(PH=3.5)and quartz sand erosion-corrosion wear conditions. The presenceof a larger number of Cr_2O_3film was associated with Cr contents. The number of Cr_2O_3film had a marked influence on the improvement of corrosion wear resistance. Underthe experiment conditions, Cr_2O_3was hardly detected as for the samples of white castirons containing10wt.%Cr,12wt.%Cr and15wt.%Cr after erosion-corrosion wearexperiments, which had a poor corrosion wear resistance. As for high chromium castirons containing23wt.%Cr and28wt.%Cr, a larger number of Cr_2O_3existed ingrinding chips, which improved corrosion wear resistance of the two kinds of alloys.
     (4) The influence of solidification rate on the corrosion resistance was mainly depended on the competition between potential difference between carbides and matrixand grain-boundary energy under the alkali static corrosion resistance conditions. Theincrease of solidification rate led to elements homogeneously distributed in matrix andfiner size. Correspondingly, potential difference between carbides and matrix wasdecreased and the corrosion resistance of alloys was improved. Meanwhile, the finermicrostructure increased the grain boundary area and grain boundary energies, soincreased the sensitivity of grain boundary, which resulted in the increase of corrosionresistance. Under the experiment conditions, the increase of grain boundary energiesowing to the increase of solidification rate was mainly recognized in15wt.%Cr whitecast iron with the experiment going on, which decreased the corrosion resistance. As for10wt.%Cr,12wt.%Cr,23wt.%Cr and28wt.%Cr white cast iron, the decrease ofpotential difference between carbides and matrix was dominant for the whole corrosionprocess with increase of solidification rate, so the corrosion resistance was improved.
引文
[1]张伯明.造手册第1卷铸铁[M].北京:机械工业出版社,2002:512.
    [2] Pearce J T H. Structure and Wear Performance of Abrasion Resistant Chromium White CastIrons[J]. Transactions of the American Foundrymen's Society,1984,92:599-622.
    [3] E.Albertin, A. Sinatora.Effect of carbide fraction and matrix microstructure on the wear of castiron balls tested in a laboratory ball mill.Wear,2001,250(1):492-501.
    [4] X.J. Wu, J.D. Xing, H.G. Fu, X.H. Zhi, Effect of titanium on the morphology of primary M7C3carbides in hypereutectic high chromium white iron. Materials Science and EngineeringA,2007,457:180-185.
    [5] R.J. Llewellyn, S.K. Yick, K.F. Dolman. An investigation of the wear behaviours of white castirons under different compositions.Material and Design.2006,27(6):437-445.
    [6] Nieman G W, Weertman J R, Siegel R W. Micro-hardness of nanocrystalline palladium andcopper produced by inert-gas condensation[J]. Scripta Metallurgica,1989,23(12):57-64.
    [7] Radulovic M, Fiset M, Peev K. The influence of vanadium on fracture toughness and abrasionresistance in high chromium white cast irons[J]. Journal of materials science,1994,29(19):5085-5094.
    [8] Fiset M, Peev K, Radulovic M. The influence of niobium on fracture toughness and abrasionresistance in high-chromium white cast irons[J]. Journal of materials science letters,1993,12(9):615-617.
    [9]关绍康.材料成型基础[M].长沙:中南大学出版社,2009:6
    [10]傅恒志,魏炳波,郭景杰.凝固科学技术与材料[J].中国工程科学,2003,5(8):1-16.
    [11] Kossel W. Nachrichten von der Gesellschaft der Wissenschaften zu G ttingen[J].Mathematisch-Physikalische Klasse,1927,1927:135-143
    [12] Stranski I N, Totomanow D. Rate of formation of (crystal) nuclei and the Ostwald step rule[J].Zeitschrift für Physikalische Chemie,1933,163:399-408.
    [13] Frank F C. The influence of dislocations on crystal growth[J]. Discussions of the FaradaySociety,1949,5:48-54.
    [14] Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure oftheir surfaces[J]. Mathematical and Physical Sciences,1951,243(866):299-358.
    [15] Bruce Chalmers. Principles of solidification[M]. RE Krieger Publishing Company,1977,154.
    [16]大野笃美著,刑建东译.金属的凝固理论、实践与应用[M].北京:冶金工业出版社,1986:114.
    [17] Jackson K A, Hunt J D. Lamellar and rod eutectic growth[J]. Aime Metall Society Transaction,1966,236:1129-1142.
    [18]介万奇,傅恒志,周尧和.多元多相合金凝固理论模型的研究进展[J].中国材料进展,2010,29(6):1-11.
    [19] Gebhardt B, HalmT, Hoyer W. The structure of liquid Ga In alloys[J]. Journal ofnon-crystalline solids,1995,192:306-308.
    [20] Lovesey S W.Theory of Neutron Scattering from Condensed Matter[M].Oxford: ClarendonPress,1984,78.
    [21]陆坤权,刘寄星.软物质物理学导论[M].北京:北京大学出版社,2006,85.
    [22] http://wenku.baidu.com/view/c449bdf504a1b0717fd5ddb4.html
    [23]介万奇.多组元合金的凝固热力学原理[J],中国材料进展,2012,31(12):35-39.
    [24] Buhler T, Fries S G.AThermodynamicAssessment of theA1-Cu-Mg Ternary System[J].Journal of Phase Equilibria,1998,19:317-333.
    [25] Hillert M. The Compound Energy Formalism[J].Journal ofAlloys and Compounds,2001,320:161-170
    [26] Weast R C,Astle M J,Beger W H.CRC Handbook of Chemistry and Physics[M].NewYork,CRC Press,1992,43-46.
    [27]余永宁.金属学原理[M].北京:冶金工业出版社,2000:174.
    [28]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,2007:227.
    [29] Y.Lian,F.M.Richter, E.B.Watson. Diffusion in silicate melts: II.Multicomponent diffusion inCao-Al2O3-SiO2at1500℃and1Gpa[J]. Geochimica et cosmochimica Acta,1996,60:5021-5035.
    [30] de Groot S. R,Mazur P. Non-Equilibrium Thermodynamics[M].North-holland publishing,1962:85.
    [31] Cooper AR. Model for multi-component diffusion[J]. Physica and Chemistry of Glasses,1965,6:55-61.
    [32] Darken L. S. Diffusion, mobility and their interrelation through free energy in binary metallicsystems[J]. Transaction Metallurgical Society,1948,175:184-201.
    [33] Lasaga A. C. Multicomponent exchange and diffusion in silicates[J]. Geochim. Cosmochim.Acta,1979,43:455-469.
    [34] Lasaga A. C. Manning J. R. Cross terms in the thermodynamic diffusion equations formulticomponent alloys[J]. Metallurgical Transactions A,1970,1:499-505.
    [35] J.O.Andersson, J.Agren. Models for Numerical Treatment of Multicomponent diffusion insimple phase[J]. Journal ofApplied Physics,1992,72(4):1350-1355.
    [36]郝石坚.铬白口铸铁及其生产技术[M],北京:冶金工业出版社,2011:10.
    [37]王春景,邓宏运.高铬铸铁生产及应用实例[M].北京:化学工业出版社,2011:56.
    [38] X.H. Tang, R. Chung, C.J. Pang, D.Y. Li, B. Hinckley, K. Dolman. Microstructure of high (45wt.%) chromium cast irons and their resistances to wear and corrosion[J]. Wear,2011,271:1426-1431.
    [39] Hawk J A, Wilson R D, Dogan O N. Laborator y wear testing of terrous alloys andcomposites[J].AFS Transactions,1998,106:651-656.
    [40] Dogan O N, Hawk J A. Three Types of wear of26Cr white cast iron[J]. AFS Transaction,1998,106:625-631.
    [41]吴晓俊,邢建东,符寒光,智小慧.高铬白口铸铁初生碳化物细化的研究进展[J].铸造,2006,55(10):999-1003.
    [42] Rivlin V G.14: Critical review of constitution of carbon-chromium-iron andcarbon-iron-manganese systems [J]. International Materials Reviews,1984,29(1):299-328.
    [43]Austin C R. Alloys in the Ternary System Iron-Chromium-Carbon[J]. Journal of Iron and SteelResearch,International,1923,108(2):235-262.
    [44] Pepperhoff W, Buehler H E, Dautzenberg N. About Constitution of the Cromium-Iron-CarbonSystem in the Domain of Technical Ferrochromium[J]. Arch. Eisenhuettenwes,1962,33(9):611-616.
    [45] Bungardt K, Kunze E, Horn E. Investigation of the Constitution of the Iron-Chromium-CarbonSystem[J]. Arch. Eisenhuttenwes.,1958,29(3):193-203.
    [46] R.S.Jackson,TheAustenite liquidus surface and constitutional diagram for the Fe-Cr-CMetastable Systen[J]. Journal of Iron and Steel Research,International,1970,208:163-167.
    [47] Griffing N R, Forgeng W D, Healy G W. C-Cr-Fe liquidus surface[J]. Trans. AIME,1962,224:148-159.
    [48] Storms E K. The refractory carbides[M]. NewYork:Academic Press,1967:124.
    [49] Sudsakorn Inthidech, Khatawut Boonmak, Prasonk Sricharoenchai.Effect of RepeatedTempering on Hardness and RetainedAustenite of High Chromium Cast Iron ContainingMolybdenum[J]. Materials Transactions,2010,51(7):1264-1271.
    [50] I. R. Sare, B. K. Arnold. The influence of heat treatment on the high-stress abrasion resistanceand fracture toughness of alloy white cast irons[J], Metallurgical and Materials Transactions. A.1995,26(7):1785-1793.
    [51]华小珍,周贤良,叶张建,云志国.低铬白口铸铁的组织与磨粒磨损性能[J].热加工工艺技术与装备,2005,12:31-32.
    [52] J.D.B.Demello, M.Durand-Charre. Abrasion mechanisms of white cast iron II: Influence of themetallurgical structure of V-Cr white cast irons[J], Materials Science and Engineering,1986,78:127-134
    [53]刘克明,王福明,郝经伟,余煌.钒对中铬白口铸铁组织和性能的影响[J].北京科技大学学报,2004,26(6):604-607.
    [54] Baik HK, Loper CR. The influence of niobium on the solidification structure of Fe-C-Cralloys[J]. AFS Trans,1988,96:405-412.
    [55] Xiaohui Zhi,Jiandong Xing,Hanguang Fu, Bing Xiao,Effect of niobium on the as-castmicrostructure of hypereutectic high chromium cast iron[J].Materials Letters,2008,62:857-860.
    [56] Mirjana Filipovic, Zeljko Kamberovic, Marija Korac, Milorad Gavrilovski. Microstructure andmechanical properties of Fe-Cr-C-Nb white cast irons[J]. Materials and Design,2013,47:41-48.
    [57] Xiaojun Wu, Jiandong Xing, Hanguang Fu, Xiaohui Zhi.Effect of titanium on the morphologyof primary M7C3carbides in hypereutectic high chromium white iron[J]. Materials Scienceand EngineeringA,2007,457:180-185.
    [58] R.J. Chung, X. Tanga, D.Y. Li, B. Hinckley, K. Dolman Effects of titanium addition onmicrostructure and wear resistance of hypereutectic high chromium cast ironFe-25wt.%Cr-4wt.%C[J]. Wear,2009(267):356-361.
    [59]Yefei Zhou, Yulin Yang, JianYang, Feifei Hao, Da Li, Xuejun Renc, QingxiangYang,Effect ofTi additive on (Cr, Fe)7C3carbide in arc surfacing layer and its refined mechanism[J]. AppliedSurface Science,2012,258:6653-6659.
    [60]Yinhu Qu,Jiandong Xing,Xiaohui Zhi.Effect of cerium on the as-cast microstructure of ahypereutectic high chromium cast iron[J].Materials Letters,2008,(62):3204-3207.
    [61]刑建东,陆文华,王小同,在不同磨料磨损条件下高铬铸铁磨损过程的研究,西安交通大学学报,1982,16,NO5,115-124.
    [62] Mirjana Filipovic, Zeljko Kamberovic,Marija Korac. Solidification of High Chromium WhiteCast IronAlloyed with Vanadium[J].Materials Transactions,2011,52(3):386-390.
    [63]Arnoldo Bedolla-Jacuinde.Microstructure of Vanadium-, niobium-and titanium-alloyedhigh-chromium white cast irons[J].Interinal Journal of Cast Metals Research,2011,13:343-361.
    [64]Yezhe Lv, Yufu Sun, Jingyu Zhao, Guangwen Yu, Jingjie Shen, Sumeng Hu. Effect of tungstenon microstructure and properties of high chromium cast iron[J]. Materials and Design,2012,(2):48-53.
    [65] S.H. MousaviAnijdan, A. Bahrami, N. Varahram, P. Davami. Effects of tungsten onerosion–corrosion behavior of high chromium white cast iron[J]. Materials Science andEngineeringA,2007,(454-455):623-628.
    [66] Ta ginY, Kaplan M, Yaz M. Investigation of effects of boron additives and heat treatment oncarbides and phase transition of highly alloyed duplex cast iron[J]. Materials&design,2009,30(8):3174-3179.
    [67] Zhongli Liu, Yanxiang Li, Xiang Chen, Kaihua Hu. Microstructure and mechanical propertiesof high boron white cast iron[J]. Materials Science and EngineeringA,2008(486):112-116.
    [68] Havva Kazdal Zeytin, HakanYildirim,Banu Berme, Selim Duduoglu. Effect of boron and heattreatment on mechanical properties of white cast iron for mining application[J].Journal of Ironand Steel Research,International,2011,18(11):31-39.
    [69] Tiancheng Zhang, D.Y. Li. Effect of alloying yttrium on corrosion–erosion behavior of27Crcast white iron in different corrosive slurries[J]. Materials Science and EngineeringA,2002,325:87–97
    [70]张承甫,龚建森,黄杏蓉.液态金属的净化与变质[M].上海:上海科学技术出版社.1989:104.
    [71]张景辉,李大军,潘金虎.应用键参数函数选择变质剂及其在高铬铸铁上应用的试验研究[J].铸造,1989,11:7-11.
    [72] Guo Erjun,Hao Feifei Guo Erjun,W ang Liping,Huan gYongchang. Effects of Rare Earths andA1on Structure and Performance of High Chromium Cast Iron Containing Wolfram[J]. Jouranlof Rare Earths,2006,24:238-242.
    [73] HAO Feifei, LI Da, DAN Ting, REN Xuejun, LIAO Bo. Effect of rare earth oxides on themorphology of carbides in hardfacing metal of high chromium cast iron[J].2011,29(2):168-171.
    [74] HOUYuncheng, WANG You, PAN Zhaoyi, YU Lili.Influence of rare earth nanoparticles andinoculants on performance and microstructure of high chromium cast iron[J]. Journal of rareearths,2012,30(3):283-288.
    [75] X. Zhi, J. Xing, H. Fu, Y. Gao.Effect of fluctuation and modification on microstructure andimpact toughness of20wt.%Cr hypereutectic white cast iron[J].Mat.-wiss. u. Werkstofftech.2008,39(6):391-393.
    [76]柳青.高铬铸铁中碳化物的变质处理[D].山东:山东大学,2011.
    [77] L.R. Shen, K. Wang, J. Tie, H.H. Tong, Q.C. Chen.Modification of high-chromium cast ironalloy by N and Ti ion implantation[J].Surface&Coatings Technology,2005,196:349-352.
    [78]皇志富,刑建东,高义民.半固态过共晶高铬铸铁的制备及组织定量分析[J].铸造技术,2004,(25):10-14.
    [79]A. Wiengmoon, T. Chairuangsri,N. Poolthong. Electron microscopy and hardness study of asemi-solid processed27wt%Cr cast iron[J]. Materials Science and EngineeringA,2008,480:333-341.
    [80] Poolthong N, Nomura H, Takita M. Effect of heat treatment on microstructure and properties ofsemi-solid chromium cast iron[J]. Materials Transactions,2004,45(3):880-887.
    [81] Poolthong N, Nomura H. Effect of alloying elements on structure and mechanical properties ofsemi-solid processed cast iron[J]. International Journal of Cast Metals Research(UK),2003,15(5):523-530.
    [82]唐祈峰.过共晶高铬铸铁半固态流变挤压成形组织与性能研究[D].昆明:昆明理工大学,2007.
    [83]杨昭,张海峰,王爱民,丁炳哲,胡壮麒.半固态挤压形成高铬铸铁梯度组织材料[J].金属学报,2003,39(2):164-1
    [84]陈葵,高文理,吴有伍.Cr15高铬铸铁固液混合铸造的组织研究[J].铸造,2006,55(4):341-344.
    [85]何建军,陈振华,陈荐,陈葵.固液混合铸造高铬铸铁合金的耐磨性能的研究[J].矿冶工程,2008,28(3):106-109.
    [86]高文理,黄雅妮,何建军.固液混合铸造对高铬铸铁抗拉强度的影响[J].湖南大学学报(自然科学版),2006,33(4):85-88.
    [87] O.N. Dogan, J.A. Hawk. Effect of carbide orientation on abrasion of high Cr white cast iron[J],Wear,1995,189:136-142.
    [88]苏俊义,周庆德,贾育丁.定向凝固高铬铸铁耐磨性的初探[J],西安交通大学学报,1983,17(4):59-64.
    [89]符寒光.定向凝固高铬铸铁抗冲击磨损研究[J].机械工程材料,1995,19(1):34-37.
    [90]叶小梅,蒋业华,李祖来.定向凝固高铬铸铁Cr28的组织和腐蚀磨损性能[J].铸造技术,2006,27(9):78-81.
    [91]王金华.悬浮铸造[M].北京:国防工业出版社,1982:156.
    [92]杨滨.悬浮铸造对低铬白口铸铁组织及性能的影响[J].南昌大学学报,1993,15(3):83-87.
    [93]李秋书,刘卯生.悬浮铸造对高铬白口铸铁组织和性能的影响[J].太原重型机械学院学报,2002,1:56-59.
    [94]A.H. Kasama, A.J. Mourisco, C.S. Kiminami, W.J. Botta F, C. Bolfarini.Microstructure andwear resistance of spray formed high chromium white cast iron[J]. Materials Science andEngineeringA,2004,375-377:589-59.
    [95] Zhang Limin, Liu Bangwu, Yu Hongying, Sun Dongbai.Rapidly solidified non-equilibriummicrostructure and phase transformation of plasma cladding Fe-based alloy coating[J].SurfCoat Technol2007,201:5931–6.
    [96] Zhang Limin, Sun Dongbai, Yu Hongying. Characteristics of plasma cladding Fe-based alloycoatings with rare earth metal elements[J]. Materials Science and Engineering A,2007,452-453:619-624.
    [97] Satoh T. Rapid solidification of high chromium cast iron and properties of PM alloys[J]. JapanSoc Powder/Powder Metal,2001,48(12):810-815.
    [98]Yongxiang Dai, MinYang, Changjiang Song, Qingyou Han, Qijie Zhai. Solidification structureof C2.08Cr25.43Si1.19Mn0.43Fe70.87powders fabricated by high pressure gas atomization[J].Materials Characterization,2010,61:116-122.
    [99] Jun Wang, Cong Li, Haohuai Liu.The precipitation and transformation of secondary carbides ina high chromium cast iron [J].Materials Characterization,2006(56):73-78.
    [100] E. Albertin, F. Beneduce, M. Matsumoto, I. Teixeira. Optimizing heat treatment and wearresistance of high chromium cast irons using computational thermodynamics[J].Wear,2011,271:1813-1818.
    [101]A. wiengmoon,T.chairuangsri,J.T.H.pearceA. A.Microstructural Study of Destabilised30wt%Cr-2.3wt%C High Chromium Cast Iron[J].ISIJ International,2004,44(2):396-401.
    [102] Xiaohui Zhi, Jiandong Xing, Yimin Gao.Effect of heat treatment on microstructure andmechanical properties of a Ti-bearing hypereutectic high chromium white cast iron[J].Materials Science and EngineeringA,2008,487:171–179.
    [103] Liu Hao-huai,Wang Jun,Yang Hong-shan.Effect of Cryogenic Treatment on Property of14Cr2Mn2V High Chromium Cast Iron Subjected to Subcritical Treatment[J].Journal of IronAnd Steel Research,International,2006,13(6):43-48.
    [104] Hong-ShanYang, Jun Wang, Bao-Luo Shen, Hao-Huai Liu.Effect of cryogenic treatment onthe matrix structure and abrasion resistance of white cast iron subjected to destabilizationtreatment[J].Wear,2006,261:1150-1154.
    [105] Liu H H,Wang J Shen B L.Effects of deep cryogenic treatment on property of3Cr13Mo1V1.5high chromium cast iron [J]. Materials&Design,2007,28,(3):1059-1064.
    [106]齐彦昌.激光雕刻仿生非光滑表面耐磨性的研究[D].昆明理工大学,2006.
    [107]王自东,胡汉起.单相合金凝固界面形态稳定非线性动力学理论[J].中国科学E辑,1997,27(2):102-107.
    [108]李双明,刘林,李晓历,傅恒志.包晶合金定向凝固平界面前沿的形核分析[J].金属学报,2004,40(1):20-26.
    [109]赵素,李金富,刘礼,周尧和.溶质截留对过冷共晶生长过程的影响[J].金属学报,2008,44(11):1335-1339.
    [110]陈福义,介万奇.Al-Cu-Zn合金溶质分凝的热力学模型[J].金属学报,2003,39(6):597-600.
    [111]张瑞杰,王晓颖,介万奇.Al2Si2Mg三元合金的溶质分凝及其对凝固过程的影响[J].中国有色金属学报,2003,13(6):1483-1487.
    [112]周刚,王文皓,李依依.微量元素在Ni基合金凝固过程中分配行为的模拟[J].金属学报,2000,36(5):472-476.
    [113]陈福义,介万奇.利用短程序改进一熔体的热力学模型[J].金属学报,2003,39(6):601-604.
    [114]陈红圣,祖方遒,陈杰,邹丽.熔体过热对Sn-Bi40合金熔体结构转变及凝固组织的影响[J].中国科学E辑:技术科学,2009,39(1):141-145.
    [115]耿兴国,陈光,傅恒志.熔体过热对定向凝固界面形态稳定性的影响[J].金属学报,2002,38(3):225-229.
    [116]肖树龙.钛合金低成本氧化物陶瓷型壳熔模精密铸造技术研究[D].哈尔滨:哈尔滨工业大学博士论文,2007.
    [117] S.D. Carpenter,D. Carpenter X-ray diffraction study of M7C3carbide within a high chromiumwhite iron[J]. Materials Letters,2003,57:4456–4459.
    [118]李玉清,(Cr,Fe)7C3中面缺陷的研究中国科学(E辑)26(6),1996,496-500.
    [129]汪孟春,刘志民,王续宝,徐志辉.钨铬合金白口铸铁中碳化物三维形貌及结晶特征[J].材料科学与工艺,1993,1(2):75-79.
    [120]郝石坚.高铬耐磨铸铁[M].北京:煤炭工业出版社,1993:126.
    [121] Liming Lu, Hiroshi Soda, Alexander McLean, Microstructure and mechanical properties ofFe-Cr-C eutectic composites [J]. Materials Science and Engineering,2003(A347):214.
    [122]李玉清,吴逸贵,李炎,陈全德.高铬铸铁中(Fe.Cr)7C3型碳化物的孪晶与层错的研究[J].洛阳工学院学报,1990,11(2):74-77.
    [123]李玉清,汪慈榕,顾兆丰.Cr27高铬铸铁中的M7C3[J].金属学报,1992,28(6):255-261.
    [124]阴世河,姜炳焕.变质处理对改善铬26白口铁性能的研究[J].铸造,1987,(7):17-20.
    [125] LeskoA, Navara E. Microstructural characterication of high-carbon feerochromium[J].Materials Characterization,1996,36(3):79-356.
    [126]胡汉起,沈宁福,姚山.金属凝固原理[M].北京:机械工业出版社,2000:93.
    [127] J.J. Coronado. Effect of (Fe,Cr)7C3carbide orientation on abrasion wear resistance andfracture Toughness[J]. Wear,2011,270:287-293.
    [128]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002:45.
    [129] Zhi X, Xing J, Fu H. Effect of titanium on the as-cast microstructure of hypereutectic highchromium cast iron[J]. Materials Characterization,2008,59(9):1221-1226.
    [130] Maratray F. Choice of appropriate compositions for chromium-molybdenum white irons[J].AFS Trans,1971,79:121-124.
    [131] C. Scandiana, C. Boherb, J.D.B. de Mello. Effect of molybdenum and chromium contents insliding wear of high-chromium white cast iron: The relationship between microstructure andwear[J]. Wear,2009,267:401-408.
    [132] Turnbull D, Vonnegut B. Nucleation catalysis[J]. Industrial and Engineering ChemistryResearch,1952,44:1292-1298.
    [133] Bramfitt B L. The effect of carbides and nitride additions on the heterogeneous nucleationbehavior of liquid iron[J]. Metallurgical and Materials Transactions B,1970,1(7):1987-1995.
    [134]毛裕文.冶金熔体[M].北京:冶金工业出版社,1994:97
    [135]李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982:108.
    [136]翟启杰.铸铁物理冶金理论与应用[M].北京:冶金工业出版社,1995:139.
    [137]武建军,孙继兵,李香芝.机械工程材料[M].北京:国防工业出版社,2004:95.
    [138] De boer F R,Boom R,Mattens W C M. Cohesion in Metals.Amsterdam[M]. North-hollandPublishing corporation.1988:151.
    [139] M.A.Moore,F.S.King. Abrasive wear of brittle solids[J]. Wear,1980,60(1):123-140.
    [140] Toyohisa Yamamoto, Mikael Olsson, Sture Hogmark. Three-body abrasive wear of ceramicmaterials[J]. Wear,1994,174(2):21-31.
    [141] K.H. ZumGahr. Fracture analysis of white cast iron[J]. Metallkde,1981,71:103-109.
    [142] Dogan ON. Columnar to equiaxed transition in high Cr white iron castings[J]. ScriptaMaterialia,1996,35:163-168.
    [143] Carpenter SD, Carpenter D, Pearce JTH. XRD and electron microscope study of an as-cast26.6%chromium white iron microstructure[J]. Materials Chemistry Physics,2004,85:32-40.
    [144]Adler Thomas A, Dogan ON. Erosive wear and impact damage of high-chromium white castirons[J]. Wear,1999,225-229:174-180.
    [145] S.W. Watson, B.W. Madsen, S.D. Cramer. Wear corrosion study of white castirons[J].Wear,1995,181:469-475.
    [146] B.T. Lu, J.L. Luo, S. Chiovelli. Corrosion and wear resistance of chrome white irons-acorrelation to their composition and microstructure[J]. Metallurgical and MaterialsTransactions A,2006,37:3029-3038.
    [147] R.S. Jackson. Austenite liquidus surface and constitutional diagramfor Fe-Cr-C metastablesystem[J]. Journal of the Iron and Steel Institute,1970,208:163-167.
    [148] Ogi K, Matsubara Y, Matsuda K. Eutectic Solidification of High-Chromium CastIron-Mechanism of Eutectic Growth[J].American Foundrymen's Society, Transactions,1981,89:197-204.
    [149] Matsubara Y, Ogi K, Matsuda K. Eutectic Solidification of High-Chromium CastIron--Eutectic Structures and Their Quantitative Analysis[J]. American Foundrymen's Society,Transactions,1981,89:183-196.
    [150]徐祖耀李鹏兴.材料科学导论[M].上海:上海科学技术出版社,1986:108.
    [151] Horvay G. The tension field created by a spherical nucleus freezing into its less denseundercooled melt[J]. International Journal of Heat and Mass Transfer,1965,8(2):195-243.
    [152] Temkin D E. Crystallization processes[J]. Consultants Bureau, NewYork,1966:15.
    [153]陈璟琚.合金高铬铸铁及其应用[M].北京:冶金工业出版社,2011:145.
    [154]曹磊.熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究[D].哈尔滨:哈尔滨工业大学博士论文,2010
    [155]周继扬.铸铁彩色金相学[M].北京:机械工业出版社,2002:193.
    [156]傅恒志.先进材料定向凝固[M].北京:科学出版社,2008:17.
    [157]刘全坤.材料成形基本原理[M].北京:机械工业出版社,2005:105.
    [158]姜丹.AZ31镁合金锻造变形的组织与性能研究[D].重庆:重庆大学硕士论文,2008.
    [159]王磊.材料的力学性能[M].沈阳市:东北大学出版社,2007:116.
    [160] X.H. Tang, R. Chung, D.Y. Li. Variations in microstructure of high chromium cast irons andresultant changes in resistance to wear corrosion and corrosive wear[J]. Wear,2009,267:116-121.
    [161]周庆德,饶启昌,苏俊义,铬系抗磨铸铁(论文汇编)[C].西安:西安交通大学出版社,1987:50-56.
    [162] F.Maratray,Usseglio-Nanot R. Factors Affecting the Structure of Chromium and ChromiumMolgbedeumWhite Irons[M],Climax Molybdenum Co,1970.
    [163]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003:85.
    [164]王松年.摩擦学原理及应用[M].北京:中国铁道出版社,1990:117.
    [165] R.J. Llewellyn, S.K. Yick, K.F. Dolman, Scouring erosion resistance of metallic materials usedin slurry pump service[J]., Wear,2004,256:592-599.
    [166]徐增华.金属耐蚀材料[J].腐蚀与防护,2000,(1):46-48.
    [167]王凤平.腐蚀电化学原理方法及应用[M].北京:北京化学工业出版社2008:21.
    [168]付原科.新型耐磨耐蚀高铬铁合金的研发[D].哈尔滨:哈尔滨理工大学,2006.
    [169]徐坚,金属材料.腐蚀金属学及耐腐蚀金属材料[M].浙江科学技术出版社,1981:129.
    [170]刘钧泉,李卫,涂小慧.两种高铬铸铁在热强碱中的腐蚀行为[J].材料科学与工艺,2002,10(4):374-378.
    [171]刘钧泉,李卫,涂小慧.两种高铬铸铁在热强碱中受冲刷时的腐蚀行为[J].材料科学与工艺,2003,11(2):204-207.
    [172]陈庆军,胡林丽,周贤良,等.氢氧化钠溶液浓度对Fe-Cr-Mo-CB非晶合金涂层耐腐蚀性能的影响[J].稀有金属材料与工程,2012,41(001):152-156.
    [173]朱自勇,魏翔云.不同材料在高温碱液中的腐蚀行为[J].腐蚀科学与防护技术,1991,3(1):1-6.
    [174]陈合成.碱液腐蚀及防护技术[J].石油化工腐蚀与防护,2004,21(1):21-24.
    [175] http://www.waysvalve.com/news_detail.asp?class_id=2&id=38
    [176]杨熙珍,杨武,金属腐蚀.金属腐蚀电化学热力学:电位-PH图及其应用[M].化学工业出版社,1991.
    [177] Ishihara S, Goshima T, YoshimotoY, et al. The influence of the stress ratio on fatigue crackgrowth in a cermet[J]. Journal of materials science,2000,35(22):5661-5665.
    [178] Wislei R O, Celia M F, Amauri G. The role of macrostructural morphology and grain size onthe corrosion resistance of Zn and all castings[J]. Material Science Enginering,2005,402:22-32.
    [179]梁秋颖,孙洪津,孙玥.不同晶粒尺寸Cu-Ag合金在Na2SO4介质中腐蚀电化学行为研究[J].沈阳师范大学学报(自然科学版),2011,29(2).
    [180] Kalmykov V V, Razdobreev V G. Effect of the structure of carbon steel on its corrosion in3%NaCl solution under alternating immersion[J]. Protection of Metals,1999,35(6):598-599.
    [181] Di SchinoA, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion andtribological properties of high nitrogen stainless steels[J]. Journal of materials science,2003,38(15):3257-3262.
    [182]王玮,杨钢,赵吉庆,等.晶粒尺寸对Cr-Ni奥氏体不锈钢在硝酸中晶间腐蚀敏感性的影响[J].钢铁研究学报,2010,1:004.
    [183]陈小平,王向东,江社明,等.晶粒尺寸对耐候钢抗大气腐蚀性能的影响[J].材料保护,2005,38(7):14-17.
    [184] LiY, Wang F, Liu G. Grain size effect on the electrochemical corrosion behavior of surfacenanocrystallized low-carbon steel[J]. Corrosion,2004,60(10):891-896.
    [185] Birringer R, Hadjipanayis G C, Siegel R W. Nanophase Materials: Synthesis, Properties,Applications[J]. Proceedings NATO ASI, E260Kluwer Academic Publishers, Dordrecht,Netherlands,1994:157-180.
    [186] Jiang J Z, Gente C, Bormann R. Mechanical alloying in the Fe–Cu system[J]. MaterialsScience and Engineering:A,1998,242(1):268-277.
    [187] Laird G, Powell G LF. Solidification and solid-state transformation mechanisms in Si alloyedhigh-chromium white cast irons[J]. Metallurgical Transactions A,1993,24(4):981-988.
    [188] Fusheng H, Chaochang W. Modifying high Cr–Mn cast iron with boron and rare earth–Sialloy[J]. Materials science and technology,1989,5(9):918-924.
    [189] Shen J, Zhou Q D. Solidification behaviour of boron-bearing high-chromium cast iron and themodification mechanism of silicon[J]. Cast Metals,1988,1(2):79-85.
    [190]符寒光,陈补高,王业红.变质高铬合金筛板的研究[J].中国铸造装备与技术,2004,6:12-15.
    [191]古凤宝.钛资源综合利用[M].北京:人民日报出版社,1992:412.
    [192] SawamotoA, Ogi K, Matsuda K. Solidification Structures of Fe-C-Cr-(V--Nb--W)Alloys[J].Transactions of theAmerican Foundrymen's Society,1986,94:403-416.
    [193] Filipovic M, Romhanji E. Strain hardening of austenite in Fe–Cr–C–V alloys underrepeated impact[J]. Wear,2011,270:800-805.
    [194] P.Dupin and J.M.Schissler. Influence ofAdditions of silicon,molybdenum,vanadium andtungsten upon the structural evolution of the as-cast state of a high chromium cast iron(20%Cr,2.6%C)[J].AFS Transactions,1984,92:355-360
    [195] Dupin P, Schissler J M. Influence of Addition of Silicon, Molybdenum, Vanadium, andTungsten Upon the Structural Evolution of theAs-Cast State of a High-Chromium CastIron(20%Chromium,2.6%Carbon).(Retroactive Coverage)[J]. Transactions of theAmericanFoundrymen's Society,1984,92:355-360.
    [196]A. Bedolla-Jacuinde, R. Correa, J.G. Quezada.The effect of titanium on the wear behaviour ofa16%Cr white cast iron under pure sliding[J]. Wear,2007,263:808-820.
    [197]王仲珏,何义成,王小非.高铬白口铸铁复合变质的作用[J].铸造工程,2007,31(3):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700