用户名: 密码: 验证码:
多晶硅及碲化镉薄膜光伏材料关键制备技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏材料需要兼顾较高的光电转换效率和较低成本的工业化生产的要求,而多晶硅薄膜兼具体硅的优异光电性能及非晶硅薄膜的低成本的优点,而且资源丰富没有毒性,又拥有高的转化效率的潜力;CdTe为直接能隙半导体,与太阳光谱接近理想的匹配,因此有较高的转化效率,且由于CdTe太阳电池结构简单,制备方法多样,也具低成本、便于大面积生产的特点。因此多晶硅薄膜太阳电池和碲化镉薄膜太阳电池很有可能成为未来市场的主导产品。
     但是,多晶硅薄膜太阳电池和碲化镉薄膜太阳电池某些关键工艺还存在一些问题,使得这两种薄膜太阳电池距离满足廉价光伏材料的目标还有一定差距。本论文就针对多晶硅薄膜太阳电池后氢化处理工艺、铝诱导晶化工艺和碲化镉薄膜太阳电池中的背接触等关键工艺进行研究,试图从材料研究角度,使其满足光伏产业高转换效率和低成本的要求。
     文中具有创新性的研究包括以下内容:
     (1)针对SPC法制备的CSG多晶硅薄膜太阳电池,其晶界和晶粒内部常含有的大量的缺陷态,严重影响其制备的器件性能和稳定性,需要进行后氢等离子钝化处理。当前使用该方法的多,但是对其微观机制深入揭示的较少。我们利用OES谱的直接观察将H等离子基元行为与被钝化物质关联起来,并对钝化后材料进行红外光谱、霍尔迁移率、拉曼光谱、吸收谱等手段的测试与详细分析,对其发挥关键作用的后氢化处理的等离子基元的表现及其与工艺(气压,温度,功率等)相结合,考察其微观效果,以期对氢化处理的物理机制进行探讨。发现氢化处理的开始阶段,氢等离子体的钝化作用占主导地位,H有能力进入薄膜内与硅键合,薄膜内的氢多以Si-H键形式存在的时候,其霍尔迁移率得到提高;而过长的氢化时间会使刻蚀和轰击作用更加明显,薄膜内Si-H2的数目明显增多,使薄膜的电学性能下降。氢化与多晶硅材料本身及其缺陷态类型有关。多晶硅材料氢化前所含的缺陷态数目越多,能够钝化的缺陷态就越多,霍尔迁移率提高的幅度就越大,氢化效果越明显。PE-SPC晶化的样品其缺陷态类型主要为晶界等处存在的大量悬挂键所造成的缺陷态,只需较低能量的H。实现钝化;而LP-SPC晶化样品以晶格缺陷为主,需要较高能量的Hβ和Hγ才能有效钝化其缺陷态;LP-MIC晶化样品主要含Ni杂质有关的缺陷态,能量适中的H*对其钝化效果更为明显。
     利用这样的机理我们优化衬底温度、辉光功率和腔体压强等工艺参数,550℃10W 500 m Torr条件下PE-SPC poly-Si霍尔迁移率提高了84.9%;550℃10W 300m Torr条件下LP-MIC poly-Si霍尔迁移率提高了50.1%;550℃10W1200m Torr条件下LP-SPC poly-Si霍尔迁移率提高了56.7%。
     (2)针对于使用Al诱导晶化的多晶硅电池,其实际效率低于理论值的主要原因是晶化多晶硅的内部含有残留的金属Al,成为复合中心,从而影响其制备的器件性能和稳定性。为此我们开发了溶液铝诱导晶化技术及氢等离子体铝诱导晶化技术,以期降低晶化工艺存在残留金属Al的浓度:前者利用控制铝溶液的浓度来控制非晶硅表面覆盖的铝含量,达到既能有效晶化又能减少晶化硅中金属残留的目的;后者将铝诱导晶化的退火过程在氢等离子体的气氛中进行来达到降低晶化工艺存在残留金属Al浓度的目的。另外这两种技术都试图以开辟更为廉价的电池制造工艺。前者省去真空过程,简化工艺。后者将铝诱导晶化的退火过程在氢等离子体的气氛中进行,这样可以将传统的退火与后氢化处理工艺合二为一。这样可以简化工艺,降低成本。通过实验发现它还能降低退火时间,克服铝诱导晶化低温时退火时间较长的缺点。利用这两种晶化方法制备多晶硅薄膜都尚属首次。
     (3)针对CdTe薄膜太阳电池,其背接触问题成为目前实际制备的CdTe太阳电池效率与理论预期值相比有较大差距的主要原因之一。另外,CdCl2后处理在CdTe太阳电池的制备中起着重要作用。对此我们利用碳糊成膜法,将含Cu、Te的CdCl2浆状悬浊液涂覆在CdTe表面,进行一次后退火,将传统的CdCl2后处理和形成CuxTe缓冲层工艺合二为一。实验发现碳糊成膜法能达到使CdTe薄膜结晶、CdS和CdTe之间互溶的目的,实现CdCl2后处理的作用;形成CuxTe缓冲层,达到改善背接触的目的;此外,其制备的CdTe太阳电池含较少的Cu,能提高电池性能。碳糊成膜工艺制备CdTe太阳电池没有使用强酸也不包含真空过程,简单易行,可以较显著地降低成本,适合大面积生产。此种方法制备CdTe太阳电池背接触也尚属首次。
Photovoltaics has the potential to become a major source of energy and to have a significant and beneficial effect on the global environment. In order for photovoltaics to realize that potential, PV must become standardized products that are inexpensive, durable, and efficient. Until today only two kinds of material have shown a definite potential as the primary material used for PV power generation:poly-Si thin film and CdTe thin film. Poly-Si thin film has both advantages of amorphous silicon and mono-crystalline silicon. Its low cost of and high mobility and great stability give its possibility of application in large area solar cell. And CdTe has an energy gap of 1.45 eV, very well suited to absorb the solar light spectrum. The energy gap is direct, resulting in an absorption coefficient for visible light of>10-5 cm-1, so that the absorber layer need only be a few micon thick to absorb 90% of light above the band gap. By now numerous low-cost deposition technologies could prepare large area CdTe solar cells.
     However, there are some limit in preparing poly-si thin film and CdTe thin film solar cells.
     To begin with, as for CSG poly-si solar cells, poly-Si thin films always have grain boundary defects and intra-grain defects after they crystillized, which severely affect the performances and stabilities of the devices made of such poly-Si. The hydrogen passivation is one of the most effective methods to passivate the defects in poly-Si devices. However, by now, although Hydrogen Passivation was applied abroad, the passivation mechanism was not clear completely yet. In this dissertation, we studied the hydrogen passivation of different poly-Si thin films which were prepared by metal induced crystallization (MIC) or solid phase crystallization (SPC) using different amorphous silicon thin films as precursors. We investigated in-situ optical emission spectroscopy (OES) of hydrogen plasma during passivation, and characterized the corresponding electrical and optical properties of passivated poly-Si thin films. Based on the measurement results of OES and the electrical and optical properties of poly-Si, it was found that different hydrogen plasma radicals acted in different roles in hydrogen passivation. We found that the reaction between hydrogen radicals in plasma and poly-Si depend on the defect type in crystallized poly-Si. For LP-SPC poly-Si, in which the major defects were intra-grain defects, higher energy radicals Hp and Hγwere needed to perform the passivation effectively. For PE-SPC poly-Si, in which the major defects were the dangling bond defects in grain boundaries, low energy radicals Ha can passivate them effectively. For LP-MIC poly-Si, which contains many defects relative to Ni impurity, H* radicals with middle energy were suitable to passivate these kind of defects.
     We also optimized the hydrogen passivation process. After passivation 20 minutes at reaction pressure of 800 millitorr, RF active power of 10w and substrate temperature of 550℃, the hall mobility of PE-SPC poly-Si increased by 84.9%; At reaction pressure of 300 millitorr, RF active power of 10w and substrate temperature of 550℃, the hall mobility of LP-MIC poly-Si increased by 50.1%; At reaction pressure of 1200 millitorr, RF active power of lOw and substrate temperature of 550℃, the hall mobility of LP-SPC poly-Si increased by 50.1%.
     In addition, as for AIC poly-si solar cells, poly-Si thin films always have Al impurity as recombination center after crystillization, which affect the performances and stabilities of the devices made of such poly-Si. So we developed solution-based aluminum-induced crystallization technology and aluminum induced crystallization assisted by hydrogen plasma technology which had never been reported. The former technology could control Al content by controling aluminum concentration in salt solution, and the latter put the annealing process of AIC in hydogen plasma to reduce Al impurity. Furthermore, both technology were low-cost. The former technology could aviod vacuum pocess, and the latter could integrate the crystallization and passivation into one process. What's more, analyzed by Raman spectroscopy, SIMS and Hall mobility, we found that it could not only reduce the annealing time of AIC but also enhance the performance of crystallized poly-Si.
     Finally, as for CdTe solar cells, the difficulty in making ohmic contact to p-CdTe is one of the greatest obstacles to achieve high efficiency. And maximum performance of CdTe solar cells can often be achieved only after CdCl2 treament. So we developed graphite-forming back contact technology. Analyzed by XRD and SIMS, we found this technology could not only form CuxTe layer but also lead to interdiffusion of CdTe and CdS simultaneously. In addition, this technology could reduce Cu impurity in CdTe, improving the performance of CdTe solar cells. We did't use acid and vaccum in the process. This simple technology has never been reported before either.
引文
[1]比尔·麦克基本.自然的终结,孙晓春、马树林等译.长春:吉林人民出版社,1997.1
    [2]D.M.Chapin, C.S.Fuller, G.L.Pearson. A new silicon p-n junction photoeell for converting solar radiation into electrieal Power. J.Appl..Phys.,1954(8):676
    [3]“十五”国家高科技发展计划能源技术领域专家委员会编.能源发展战略研究.北京:化学工业出版社,2007.2-3
    [4]张军.国际能源展望—未来国际能源市场分析与预测(至2025年).北京:科学文献出版社,2006.22-25
    [5]E.A.Alsema. Energy Requirements and CO2 Mitigation Potential of PV Systems. The BNL/NREL Workshop on PV and the Environment,1998 (2):100-102
    [6]Stole W. Engineering and Economic Evaluation of Central Station Photovoltaic Power Plants. Electric Power Research Institute,2002 (4):55-56.
    [7]陆海波.能源经济环境系统的可持续发展研究:[陆海波博士学位论文].天津:天津大学,2005
    [8]Hoffert. Enengy consume today and future. Nature,1998,395:881
    [9]丹尼斯·米都斯.增长的极限,李宝恒译长春:吉林人民出版社,1997:18-20
    [10]王长贵.世界光伏发电技术现状与发展趋势.新能源,2002,Vol.22(1):44-47
    [11]张扬,高辉.太阳能利用与环境可持续发展是统一框架下的系统工程—美洲百万太阳能屋顶计划启示.新能源,2000,Vol.22(9):51-54
    [12]I.Sakata, F.Aratani, K.Ishiyama, etal. PV Roadmap Toward 2030 in Japan.15th PVSEC,2005. 1031-1032
    [13]A.J.Waldau. PVNET European Roadmap of PV R&D. Italy:European Communities,2004. 215-217
    [14]P.D.Maycock. Cost and Technology Roadmaps for Cost Effective Silicon Photovoltaics. PV News,2003,22(5):601-602
    [15]崔选民主编.2007年中国能源发展报告社会.北京:科学文献出版社,2007.9-11
    [16]Energy Information Administration. Annual Energy Review 2007. Dallas:Amazon,2008. 10-16
    [17]J.Zhao, A.Wang, M.Green, etal, Novel 19.8% efficient'honeycomb'textured multicrystalline and 24.4% monocrystalline silicon solar cell, Applied Physics Letters, 1998,Vol.73:1991-1993.
    [18]A.Goetzberger, C.Hebling. Photovoltaicmaterials, Past, Present, future. Solar Energy Materials & Solar Cells,2002,(62):1-7
    [19]施正荣.晶体硅太阳能电池的现状和发展.中国第七届光伏会议论文集.杭州,2002.350-359
    [20]T.M. Btuton, N.B.Mason, S.Robertsetal. Towards 20% efficient silieon solar Solar Cells mnaufactured at 60MWp per annum.3rd World Conefrenee on Photovoltaic Energy Conversion (WCPEC-3) Abstracts of the Teehnical Program. Japan, Osaka:2003.1560-1567
    [21]Tao.M.. Crystallization silicon solar cells fabrication process flow. Interface,2008,17(4): 30-32
    [22]赵玉文,林安中.晶体硅太阳电池及材料.太阳能学报特刊,1999:85-87
    [23]D.Skinner. Partieipant Survey at the U.S NREL's.12th Wokrshop onCrystalline Silicon Solar Cell Materials and Proeesses, Colorado, Breckenbridge:2002.23-24
    [24]Andy Black. PV Energy payback VS PV Input Energy Due to Market Growth. Solar world Congress Orlando, Florida:2005.35-36
    [25]Emiliano Perezagua. A Vision for Photovoltaic Technology. Italy:Photovoltaic Technology Research Advisory Council European Commission,2005.2020-2025
    [26]Paul A.Basore. Large-area deposition of crystalline silicon on glass module. The 3rd world conf. on PV energy convertion. Osaka,2003.815-826
    [27]Schei A,Tuset J,Tveit H. Production of High Silicon Alloys. Trondheim:Tapir forlag.1998. 59-60
    [28]Bernhard Brand. Crystallization silicon solar cells fabrication in Ferro. PhotoInternational,2006,7:96-111
    [29]Marketbuzz.2006:Annual World Solar PV Market Report. Dallas:Amazon,2006.36-37
    [30]Robert W.Birkmire. Recent progress and critical issues in thin film polycyrstalline solar cells and modules.25th IEEE Photovoltaic Specialists Conefrenee,1997:829-837
    [31]B.J.Balinga. Polycyrstalline solar cells fabrication. U.S.Patnet, No.4236947,1980
    [32]W.Hoffmann, K.Jaeger, R.Hezel. High efficient polycyrstalline solar cells module. Proc.4th Intenrational Photovoltaic Science and Engineering Conference (PVSEC-4),1989,725-741
    [33]M. A. Green. Recent developments in photovoltaics. Solar Energy,2004,76(1-3):3-8
    [34]M.A.Green. Present and future of crystalline silieon solar cells. Technical Digest of the International PVSEC. Bangkok, Thailand:2004.1004-1005
    [35]M.Takuya, K.Michio, M.Akihisa.Technical Digest of the International PVSEC-14. Bangkok, Thailand:2004.1009-1010
    [36]Kimura, K.. Recent developments in polycrystalline silicon solar cells. Tech.Digest of the Int.PVSEC-1. Kobe, Japan:1984.737-742
    [37]U.S.Department of Energy. What is the energy Payback for PV. PV FAQs,2004:16-17
    [38]M.A.Green. Crystalline and thin film silicon solar cells:state of the art and future potential. Solar Energy,2003,74(2):181-189
    [39]Martin A.Green. Third Generation Photovoltaics Advanced Solar Energy Conversion. Verlag:Springer,2003.160-161
    [40]耿新华.非晶硅薄膜物理.天津:南开大学出版社,1999.96-101
    [41]卢景霄非晶硅光致衰退现象的物理机制.太阳能学报,2006,27(5):444-450
    [42]D.E.Carlson, C.R, Wronsky. Novel low cost efficient amorphous silicon. Appl.Phys.Lett., 1976, (28):671-673
    [43]Ayra R.R., Carlson D.e.. Amorphous silicon PV module manufacturing at BPSolar. Prog.Photovoltaics,2002,10:67-68
    [44]Arnulf Jager-Waldau. Status of thin film solar cells in research, production and the market. Solar Energy,2004,77(6):667-678
    [45]Schmela.M..We decide where the market is. Photon Int.,2003:22-24
    [46]Leehner.p, Sehade, H. Photovoltaic thin-film technology based on hydrogenated amorphous silicon. Prog.Photovoltiacs,2002,10:85-98
    [47]Hiromu Takatsuka, Matsuhei Noda, Yoshimichi Yonekura. Development of high efficiency large area silicon thin film modules using VHF-PECVD. Solar Energy,2004,77(6):951-960
    [48]James R. Bolton. Solar cells—A technology assessment. Solar Energy,1983,31(5):483-502
    [49]寇云起.非晶硅太阳电池的特点.太阳能,1992(04):186-193
    [50]李长健,高卫东,李德林等.用非晶硅太阳电池制作标准电池的可能性.太阳能学报,1992(01):386-390
    [51]孟继德.非晶硅太阳电池板通过鉴定.可再生能源,1989(05):46-49
    [52]陈幼松.太阳电池实用化最新进展.太阳能,1990,(01)):177-179
    [53]徐任学.非晶硅太阳电池的进展.太阳能,1984(03):203-206
    [54]X. H. Geng, J. M. Xue, H. C. Ge, etal. Modeling of a-Si/poly-Si and a-Si/poly-Si/poly-Si stacked solar cells. Solar Energy Materials and Solar Cells,2003,75(3-4):489-495
    [55]李崇华.太阳能电池工作原理与种类.电气技术,2009,Vol.08:57-62
    [56]张晓丹.器件质量级微晶硅薄膜及高效微晶硅太阳电池制备的研究.[张晓丹博士学位论文].天津:南开大学,2005
    [57]ichael Mauk, Paul Sims, James Rand, etal. Practical Handbook of Photovoltaics. Thin Silicon Solar Cells,2003:185-225
    [58]T. Nishino. Electroreflectance of ordered Ga0.5In0.5P Alloys. Journal of Crystal Growth, 1989,98(1-2):44-52
    [59]S. M. Wasim, C. Durante, C. Rincon. Red shift of the band gap of Fe doped CuIny Ga1-y, Se2. Materials Letters,1996,28(1-3):231-235
    [60]M.A. Contreras, B. Egaas, K. Ramanathan. Development of high efficiency CIGS solar cells. Photovolt. Res. Appl.,1999,7:300
    [61]Toshiyuki Yamaguchi, Toshitsugu Kobata, Shigetoshi Niiyama. Thin films of Cu(ln,Ga)Se2 and ordered vacancy compound prepared by thermal crystallization and their photovoltaic applications. Solar Energy Materials and Solar Cells,2003,75(1-2):87-92
    [62]M. Jayachandran, Mary Juliana Chockalingam, K.R. Murali, etal. CulnSe2 for photovoltaics: a critical assessment. Materials Chemistry and Physics,1993,34(1):1-13
    [63]M. Kleinfeld, H. D. Wiemhofer. Chemical diffusion coefficients and stability of CulnS2 and CuInSe2 from polarization measurements with point electrodes. Solid State Ionics,1998, 28-30:1111-1115
    [64]Masafumi Yamaguchi. Present status and future prospects for advanced space solar cells. Solar Energy Materials and Solar Cells,35:83-92
    [65]Ken Zweibel. Issues in thin film PV manufacturing cost reduction. Solar Energy Materials and Solar Cells,1999,59(1-2):1-18
    [66]D. A. Cusano. CdTe solar cells and photovoltaic heterojunctions in Ⅱ-Ⅵ compounds. Solid-State Electronics,1963,6(3):217-218
    [67]E.I.Adirovich, Y.M.Yuabov, G.R.Yagudaev, Fiz.Tekh.Polprovodnikov. Novel CdTe/CdS heterojunction structure for photovoltaic application. Solar Energy Materials and Solar Cells, 1969,1(3):81-85
    [68]D.Bonnet, H.Rabenhorst. CdTe solar cells prepared on TCO substate. Conf. Rec.9th IEEE PVSC. Silver Spring,1972.129-131
    [69]T.L.Chu, S.S.Chu, K.Murthy, etal. Using ITO as window layer of CdTe solar cells. Conf.Rec.16th IEEE PVSC. San Diego:1982.922-927
    [70]Jose Luis Cruz-Campa, David Zubia. CdTe thin film growth model under CSS conditions. Solar Energy Materials and Solar Cells,2009,93(1):15-18
    [71]F. Hanus, A. Pigeolet, M. Wautelet, etal. Preparation of CdTe thin films by laser irradiation of electrodeposits. Thin Solid Films,137(2):231-234
    [72]G. Contreras-Puente, O. Vigil-Galan, J. Vidal-Larramendi, etal. Influence of the growth conditions in the properties of the CdTe thin films deposited by CSVT. Thin Solid Films, 2001,387(1-2):50-53
    [73]G. Khrypunov, A. Romeo, F. Kurdesau, etal. Recent developments in evaporated CdTe solar cells. Solar Energy Materials and Solar Cells,2006,90(6):664-677
    [74]Seiji Ikegami. CdS/CdTe solar cells by the screen-printing-sintering technique:Fabrication, photovoltaic properties and applications. Solar Cells,1988,23(1-2):89-105
    [75]N. Adeeb, I.V. Kretsu, D.A. Sherban, etal. Spray-deposited ITO-CdTe solar cells. Solar Energy Materials,1987,15(1):9-19
    [76]Xuanzhi Wu. High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy,2004, 77(6):803-814
    [77]D.Cunningham, M.Rubcich, D.Skinner. High-efficiency CdTe thin-film solar cells module in NREL. Prog.Photovoltaics:Researehand Applieations,2002,10(2):159-168
    [78]M. Hadrich, N.Lorenz, H. Metzner, etal. CdTe-CdS solar cells — Production in a new baseline and investigation of material properties. Thin Solid Films,2007,515(15):5804-5807
    [79]N. Romeo, A. Bosio, V. Canevari, etal. Recent progress on CdTe/CdS thin film solar cells. Solar Energy,2004,77(6):795-801
    [80]K. Omura, A. Hanahusa, T. Arita, etal. Recent technical advances in thin-film CdS/CdTe solar cells. Renewable Energy,1996,8(1-4):405-409
    [81]A.K. Turner, J.M. Woodcock, M.E. Ozsan, etal. BP solar thin film CdTe photovoltaic technology. Solar Energy Materials and Solar Cells,1994,35(11):263-270
    [82]Vasilis Fthenakis, Wenming Wang, Hyung Chul Kim. Life cycle inventory analysis of the production of metals used in photovoltaics. Renewable and Sustainable Energy Reviews, 2009,13(3):493-517
    [83]Vasilis M. Fthenakis, Hyung Chul Kim. CdTe photovoltaics:Life cycle environmental profile and comparisons. Thin Solid Films,2007,515(15):5961-5963
    [84]Kazuhiko Kato, Takeshi Hibino, Keiichi Komoto, etal. A life-cycle analysis on thin-film CdS/CdTe PV modules. Solar Energy Materials and Solar Cells,2001,67(1-4):279-287
    [85]Kenji Kawano, Roberto Pacios, Dmitry Poplavskyy, etal. Degradation of organic solar cells due to air exposure. Solar Energy Materials and Solar Cells,2006,90(20):3520-3530
    [86]Sumner Levine, Howard Halter, Fred Mannis. Photochemical aspects of solar energy utilization. Solar Energy,1958,2(2):11-21
    [87]Rudolph J. Marcus, Henry C. Wohlers. Photochemical systems for solar energy conversion—Nitrosyl chloride. Solar Energy,1961,5(2):44-57
    [88]K.G. O'Brien, R.F. Byrne. Determination of the relative efficiency of an equatorial-mounted solar-energy concentrator in the photoreduction of a solution of lead tetraacetate in acetic acid. Solar Energy,1969,12(3):285-286
    [89]R. Aich, B. Ratier, F. Tran-van, etal. Small molecule organic solar cells based on phthalocyanine/perylene-carbazole donor-acceptor couple. Thin Solid Films,2008,516(20, 30):7171-7175
    [90]Claudio Girotto, David Cheyns, Tom Aernouts, etal. Bulk heterojunction organic solar cells based on soluble poly(thienylene vinylene) derivatives. Organic Electronics,2008,9(5): 740-746
    [91]Minna Toivola, Lauri Peltokorpi, Janne Halme, etal. Regenerative effects by temperature variations in dye-sensitized solar cells. Solar Energy Materials and Solar Cells,2007,91(18): 1733-1742
    [92]J. Weidmann, Th. Dittrich, E. Konstantinova, etal. Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell. Solar Energy Materials and Solar Cells, 1998,56(2):153-165
    [93]R. D. McConnell. Assessment of the dye-sensitized solar cell. Renewable and Sustainable Energy Reviews,2002,6(3):271-293
    [94]Jun-Ho Yum, Robin Humphry-Baker, Shaik M. Zakeeruddin, etal. Effect of heat and light on the performance of dye-sensitized solar cells based on organic sensitizers and nanostructured TiO2. Nano Today,2003,10:901-904
    [95]Yan B. Yue G. Yan Y. etal, High efficiency a-si/uc-si/poly-si tandem solar cell. Proceedings of MRS.2008.1066-1077
    [96]Jens Schneider. Industrial solid phase crystallisation of silicon. The 21st European Photovoltaics Solar Energy Conference and Exhibition,2006.1032-1033
    [97]M.A. Green, P.A. Basore, N. Chang. Crystalline silicon on glass (CSG) thin-film solar cell modules. Solar Energy,2004,77:857-863
    [98]S. Gall a, J. Schneider, J. Klein. Large-grained polycrystalline silicon on glass for thin-film solar cells. Thin Solid Films,2006,7-11:511-512
    [99]Oliver Nast. Aluminium-induced crystallisation of silicon on glass for thin-film solar cells. Solar Energy Materials & Solar Cells,2001,65:385-392
    [100]1. Gordon. Thin-film polycrystalline silicon solar cells on ceramic substrates by aluminium-induced crystallization. Thin Solid Films,2005,487:113-117
    [101]Armin G. Aberle. Progress with polycrystalline silicon thin-film solar cells on glass at UNSW. Journal of Crystal Growth,2006,287:386-390
    [102]E Pihan, A Slaoui, C Maurice, etal. Growth kinetics and crystallographic properties of polysilicon thin films formed by aluminium-induced crystallization. Journal of Crystal Growth,2007,305:88-98
    [103]J.Schneider. Aluminum-induced crystallization of amorphous silicon:Influence of temperature profiles. Thin Solid Films,2005,487:107-112
    [104]Andrey Sarikov. A model of preferential (100) crystal orientation of Si grains grown by aluminium-induced layer-exchange process. Thin Solid Films,2007,515:7465-7468
    [105]J. Schneider. A simple model explaining the preferential (100) orientation of silicon thin films made by aluminum-induced layer exchange. Journal of Crystal Growth,2006,287: 423-427
    [106]B. Rau. Low-temperature Si epitaxy on large-grained polycrystalline seed layers by electron-cyclotron resonance chemical vapor deposition. Journal of Crystal Growth,2004, 270:396-401
    [107]I. Gordon. Development of interdigitated solar cell and module processes for polycrystalline-silicon thin films. Thin Solid Films,2006,511-512:608-612
    [108]1. Gordon. Thin-film polycrystalline silicon solar cells on ceramic substrates by aluminium-induced crystallization. Thin Solid Films,2005,487:113-117
    [109]Dieter Bonnet. Cadmium telluride — Material for thin film solar cells. Journal of MATERIALS RESEARCH,1998,2:302-313
    [110]R. Chakrabarti, J. Dutta, S. Bandyopadhyay, etal. Surface photovoltage measurement in CdS/CdTe solar cell:Grain boundary effect. Solar Energy Materials and Solar Cells,2000, 61(2):113-126
    [111]M. Burgelman, J. Verschraegen, S. Degrave, etal. Analysis of CdTe solar cells in relation to materials issues. Thin Solid Films,2005,480-481:392-398
    [112]A. Romeo, D. L. Batzner, H. Zogg, etal. Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells. Solar Energy Materials and Solar Cells, 2001,67(1-4):311-321
    [113]A. Rios-Flores, J.L. Pena, V. Castro-Pena, etal. A study of vapor CdCl2 treatment by CSS in CdS/CdTe solar cells. Solar Energy,2008,10:103-108
    [114]Hiroshi Uda, Seiji Ikegami, Hajimu Sonomura. Annealing effect of Cu2Te---Au contact to evaporated CdTe film on photovoltaic properties of CdS/CdTe solar cell. Solar Energy Materials and Solar Cells,1998,50(1-4):141-146
    [115]C. R. Corwine, A. O. Pudov, M. Gloeckler, etal. Copper inclusion and migration from the back contact in CdTe solar cells. Solar Energy Materials and Solar Cells,2004,82(4): 481-489
    [116]P. Nollet, M. Burgelman, S. Degrave. The back contact influence on characteristics of CdTe/CdS solar cells. Thin Solid Films,2000,361-362:293-297
    [117]Sun Ho Kim, Jin Hyung Ahn, Hyung Seok Kim, etal. The formation of ZnTe:Cu and CuxTe double layer back contacts for CdTe solar cells. Current Applied Physics,2002,13: 123-127
    [118]S.H. Demtsu, D.S. Albin, J.W. Pankow, etal. Stability study of CdS/CdTe solar cells made with Ag and Ni back-contacts. Solar Energy Materials and Solar Cells,2006,90(17): 2934-2943
    [119]S. Honda,T, T. Mates, M. Ledinsky, etal. Effect of hydrogen passivation on polycrystalline silicon thin films. Thin Solid Films,2005,487:152-156
    [120]A. Slaoui, E. Pihan,I. Ka, etal. Passivation and etching of fine-grained polycrystalline silicon films by hydrogen treatment. Solar Energy Materials & Solar Cells,2006,90:2087-2098
    [121]L. Mittelst.adt, A. Metz, R. Hezel. Hydrogen passivation of defects in EFG ribbon. Silicon Solar Energy Materials & Solar Cells,2002,72:255-261
    [122]Shu Qin, Yuanzhong Zhou, Tomoya Nakatsugawa, etal. Optimizing high efficient plasma immersion ion implantation hydrogenation for poly-Si thin film transistors. Nuclear Instruments and Methods in Physics Research B,1997,124:69-75
    [123]Manav Sheoran,Ajay Upadhyaya,Ajeet Rohatgi. Bulk lifetime and efficiency enhancement due to gettering and hydrogenation of defects during cast multicrystalline silicon solar cell fabrication. Solid-State Electronics,2008,52:612-617
    [124]A. Zozime, J. Castaing. Effect of hydrogenation on the properties of extended defects in semiconductors. Materials Science and Engineering,1996, B42:57-62
    [125]Hiroyuki T. Takeshita, Tetsu Kiyobayashi, Hideaki Tanaka, etal. Reversible hydrogen absorption and desorption achieved by irreversible phase transition. Journal of Alloys and Compounds,2000,311 (2):L1-L4
    [126]F. Evangelisti, P. Fiorini, G. Fortunato, etal. Gap states in a-Si:H by photoconductivity and absorption. Journal of Non-Crystalline Solids,1983,55(2):191-201
    [127]K Pierz, H Mell, J Terukov. Subbandgap absorption in a-Si:H from photoconductivity spectra. Journal of Non-Crystalline Solids,1985,77-78:547-550
    [128]M Cardona. Vibrational Spectra of Hydrogen in Silicon and Germanium. Phys. Status Solidi B,1983,118:463
    [129]R A Street. Hydrogen diffusion and electronic metastability in amorphous silicon. Physica B,1991,170:69
    [130]Sanjay K. Ram, Satyendra Kumar, P. Cabarrocas. Role of microstructure in electronic transport behavior of highly crystallized undoped microcrystalline Si Films. Thin Solid Films, 2007(19):7469-7474
    [131]W Kaiser, H L Frisch, H Reiss. Mechanism of the Formation of Donor States in Heat-Treated Silicon. Phys. Rev,1958(112):1546
    [132]U Giisele, T Y Tan. Oxygen diffusion and thermal donor formation in silicon. Appl. Phys. A,1982(28):79
    [133]R C Newman. Thermal donors in silicon:oxygen clusters or self-interstitial aggregate. L Phys. C,1985(18):L967
    [134]Stefan, K Estreicher. Hydrogen-related defects in crystalline semiconductors:a theorist's perspective. Material Science and Engineering,1995, R14:319-412
    [135]W. Ma, T. Horiuchi, C.C. Lim, H. Okamoto, etal. Optimum design and its experimental approach of a-Si//poly-Si tandem solar cell. Solar Energy Materials and Solar Cells,1994, 32(4):351-368
    [136]A.J. Clegg, A.A. Das. Wear of a hypereutectic aluminium-silicon alloy. Wear,1977, 43(3):367-373
    [137]Oliver Nast. Polycrystalline Silicon Thin Films on Glass by Aluminum-Induced Crystallization, IEEE TRANSACTIONS ON ELECTRON DEVICES,1999,46(10):469-472
    [138]G.J. Qi. Experimental study of aluminum-induced crystallization of amorphous silicon thin films. Surface & Coatings Technology,2005,198:300-303
    [139]Axel Straub. Optimisation of low-temperature silicon epitaxy on seeded glass substrates by ion-assisted deposition. Journal of Crystal Growth,2005,280:385-400
    [140]B. Rau. Low-temperature Si epitaxy on large-grained polycrystalline seed layers by electron-cyclotron resonance chemical vapor deposition. Journal of Crystal Growth,2004, 270:396-401
    [141]Per I. Widenborg. Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy. Journal of Crystal Growth,2005,276:19-28
    [142]O. Cakir. Chemical etching of aluminium. Journal of Materials Processing Technology, 2008,199(1-3):337-340
    [143]Hyeongnam Kim, Daewon Kim, Gyuyul Lee, etal. Polycrystalline Si films formed by Al-induced crystallization (AIC) with and without Al oxides at Al/a-Si interface. Solar Energy Materials and Solar Cells,2002,74(1-4):323-329
    [144]L. Pereira, R.M.S. Martins, N. Schell, etal. Aluminium--induced crystallization of silicon:Effect of native silicon oxide layer. Thin Solid Films,2006,511-512:275-279
    [145]金仲和、王跃林.金属诱导非晶硅横向结晶机理研究.电子学报,2001,29(1):17-21
    [146]S. Gall. Large-grained polycrystalline silicon on glass for thin-film solar cells. Thin Solid Films,2006:511-512
    [147]J. Schneider. Aluminum-induced crystallization of amorphous silicon:preparation effect on growth kinetics. Journal of Non-Crystalline Solids,2004,338-340:127-130
    [148]J. Schneider. Aluminum-induced crystallization:Nucleation and growth process. Journal of Non-Crystalline Solids,2006,352:972-975
    [149]E. Pihan. Growth kinetics and crystallographic properties of polysilicon thin films formed by aluminium-induced crystallization. Journal of Crystal Growth,2007,305:88-98
    [150]I. Sieber. Preparation of thin polycrystalline silicon films on glass by aluminiuminduced crystallisation—an electron microscopy study. Thin Solid Films,2003,427:298-302
    [151]Oliver Nast. Aluminium-induced crystallisation of silicon on glass for thin-film solar cells. Solar Energy Materials & Solar Cells,2001,65:385-392
    [152]J. Schneider, Aluminum-induced crystallization of amorphous silicon:I nfluence of temperature profiles. Thin Solid Films,2005,487:107-112
    [153]Andrey Sarikov. A model of preferential (100) crystal orientation of Si grains grown by aluminium-induced layer-exchange process. Thin Solid Films,2007,515:7465-7468
    [154]J. Schneider. A simple model explaining the preferential (100) orientation of silicon thin films made by aluminum-induced layer exchange. Journal of Crystal Growth,2006,287: 423-427
    [155]C. Ornaghi. Aluminum-induced crystallization of amorphous silicon:influence of materials characteristics on the reaction. Thin Solid Films,2004,451 -452:476-480
    [156]V. Grigorov. Influence of the precursor materials on the process of aluminium induced crystallisation of a-Si and a-Si:H. Thin Solid Films,2006,511-512:381-384
    [157]D. Dimova-Malinovska. Polycrystalline Si films formed by Al-induced crystallization (AIC) with and without Al oxides at Al/a-Si interface. Solar Energy Materials & Solar Cells, 2002,74:323-329
    [158]D. Dimova-Malinovska. Investigation of structural properties of poly-Si thin films obtained by aluminium induced crystallization in different atmospheres. Thin Solid Films, 2006,501:358-361
    [159]W. Fuhs, A novel route to a polycrystalline silicon thin-film solar cell, Solar Energy, 2004,77:961-968,7 June 2004
    [160]赵淑云,吴春亚,李娟,等.化学源金属诱导多晶硅研究.物理学报,2006,55(2):825-827
    [161]Chil-Chyuan Kuo. Micro-Raman spectroscopy characterization of polycrystalline silicon films fabricated by excimer laser crystallization. Optics and Lasers in Engineering, 2009,47(5):612-616
    [162]C. Ornaghi, G. Beaucarne, J. Poortmans, etal. Aluminum-induced crystallization of amorphous silicon:influence of materials characteristics on the reaction. Thin Solid Films, 2002,451-452:476-480
    [163]J. Fritsche, D. Kraft, A. ThiBen, etal. Band energy diagram of CdTe thin film solar cells. Thin Solid Films,2002,403-404:252-257
    [164]R. H. Williams, M. H. Patterson.. Research of self-compensate effect in II-VI compound semiconductors. Appl. Phys. Lett.,1982,40:484
    [165]C.S. Ferekides, U. Balasubramanian, R. Mamazza, etal. CdTe thin film solar cells: device and technology issues. Solar Energy,2004,77:823-830
    [166]D.S. Albin, S.H. Demtsu, T.J. McMahon. Film thickness and chemical processing effects on the stability of cadmium telluride solar cells. Journal of Crystal Growth,2006,287: 423
    [167]J. Zhou, X. Wu, A. Duda, etal. The formation of different phases of CuxTe and their effects on CdTe/CdS solar cells. Thin Solid Films,2007,515:7364-7369
    [168]Jae-Hyeong LEE, Yong-Kwan PARK and Kea-Joon YANG. Effects of the Growth Temperature on the Properties of CdTe Thin Films for Solar Cell Applications. Jpn. J. Appl. Phys.,2001,40:6741-6746
    [169]T. Potlog, L. Ghimpu, C. Antoniuc. Comparative study of CdS/CdTe cells fabricated with and without evaporated Te-layer. Thin Solid Films,2007,515:5824-5827
    [170]S. D. Feldman, R. T. Collins, V. Kaydanov, etal. Research of stability of Cu in CdTe solar cells. Appl. Phys. Lett.,2004,85:1529-1531
    [171]Manuel J. Romero, David S. Albin, Mowafak M. Al-Jassim, etal. The degraded mechanism of CdTe solar cell using Cu as back contact. Appl. Phys. Lett.,2002,81:2962-2964
    [172]Fred H. Seymour, Victor Kaydanov, Tim R. Ohno, etal. Activation of CdTe solar cell by CdCl2 heat treatment. Appl. Phys. Lett.,2005,87:1503-1507
    [173]S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, etal. Influence of CdCl2 treatment on structural and optical properties of vacuum evaporated CdTe thin films. Solar Energy Materials & Solar Cells,2006,90:694-703
    [174]P.D. Paulson, V. Dutta. Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells. Thin Solid Films,2000,370:299-306
    [175]T. Potlog, L. Ghimpu, P. Gashin, etal. Influence of annealing in different chlorides on the photovoltaic paramet. Solar Energy Materials & Solar Cells,2003,80:327-334
    [176]岳钊,牛文成,谢林宏等.一种新型的Pt-NiO混合敏感膜全固态溶解CO2传感器及其特性测量.电子学报,2007,35:5-8
    [177]岳钊,牛文成,谢林宏等.基于MISFET结构的Pt-NiO混合敏感膜溶解二氧化碳传感器的研究.传感技术学报,2007,20:6-10
    [178]S.V. Loskutov. Work function for the deformed metal surface. Surface Science,2005, 585(1-2):L166-L170
    [179]Y.Y. Proskuryakov, K. Durose, J.D. Major, etal. Doping levels, trap density of states and the performance of co-doped CdTe(As,Cl) photovoltaic devices. Solar Energy Materials and Solar Cells,2009,93(9):1572-1581
    [180]Lianghuan Feng, Lili Wu, Zhi Lei, Wei Li, etal. Studies of key technologies for large area CdTe thin film solar cells. Thin Solid Films,2007,515(15):5792-5797
    [181]Bulent M. Basol. Electrodeposited CdTe and HgCdTe solar cells. Solar Cells,1988, 23(1-2):69-88
    [182]Yanfa Yan, K.M. Jones, X. Wu, etal. Microstructure of CdTe thin films after mixed nitric and phosphoric acids etching and (HgTe, CuTe)-graphite pasting. Thin Solid Films, 2005,472(1-2):291-296
    [183]S.H. Demtsu, D.S. Albin, J.R. Sites, etal. Cu-related recombination in CdS/CdTe solar cells. Thin Solid Films,2008,516(8):2251-2254
    [184]Jae Ho Yun, Ki Hwan Kim, Doo Youl Lee, etal. Back contact formation using Cu2Te as a Cu-doping source and as an electrode in CdTe solar cells. Solar Energy Materials and Solar Cells,2003,75(1-2):203-210
    [185]A. M. Al-Dhafiri. Photovoltaic properties of CdTe-Cu2Te. Renewable Energy,1998, 14(1-4):101-106
    [186]Anup Mondal, Brian E. McCandless, Robert W. Birkmire. Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells. Solar Energy Materials and Solar Cells, 1992,26(3):181-187
    [187]Sun Ho Kim, Jin Hyung Ahn, Hyung Seok Kim, etal. The formation of ZnTe:Cu and CuxTe double layer back contacts for CdTe solar cells. Current Applied Physics,2002,13: 123-127
    [188]T. Schmidt, K. Durose, C. Rothenhausler, etal. Chemical stability of Sb2Te3 back contacts to CdS/CdTe solar cells. Thin Solid Films,2000,361-362:383-387
    [189]David W. Niles, Donna Waters, Doug Rose, etal. Chemical reactivity of CdCl2 wet-deposited on CdTe films studied by X-ray photoelectron spectroscopy. Applied Surface Science,1998,136(3):221-229
    [190]A. Rios-Flores, J.L. Pena, V. Castro-Pena, etal. A study of vapor CdCl2 treatment by CSS in CdS/CdTe solar cells. Solar Energy,2008,10:103-108
    [191]J. Fritsche. Interface modification of CdTe thin film solar cells by CdCl2-activation. Thin Solid Films,2003,431-432:267-271
    [192]J. Pantoja Enriquez, E. Gomez Barojas, R. Silva Gonzalez, etal. S and Te inter-diffusion in CdTe/CdS hetero junction Solar Energy Materials and Solar Cells,2007,91(15-16): 1392-1397
    [193]R. Mendoza-Perez, G. Santana-Rodriguez, J. Sastre-Hernandez, etal. Effects of thiourea concentration on CdS thin films grown by chemical bath deposition for CdTe solar cells. Thin Solid Films,2005,480-481:173-176
    [194]M. Burgelman, J. Verschraegen, S. Degrave. Analysis of CdTe solar cells in relation to materials issues. Thin Solid Films,2005,480-481:392-398
    [195]M. Burgelman, P. Nollet, S. Degrave. Modelling polycrystalline semiconductor solar cells. Thin Solid Films,2000,361-362:527-532
    [196]J. Zhou, X. Wu, A. Duda, G. Teeter, etal. The formation of different phases of CuxTe and their effects on CdTe/CdS solar cells. Thin Solid Films,2007,515:7364-7369
    [197]P. Nollet, M. Burgelman, S. Degrave. The back contact influence on characteristics of CdTe/CdS solar cells. Thin Solid Films,2000,361-362:293-297
    [198]Stole W.Engineering and Economic Evaluation of Central Station Photovoltaic Power Plants,Electric Power Research Institute,TR-101255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700