用户名: 密码: 验证码:
SAPO-34催化剂的制备及在甲醇制烯烃反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球石油资源的日益匮乏,加上乙烯、丙烯等下游化工产品需求量的不断增大,极大地推动了非石油路线制备低碳烯烃工艺的发展。煤炭、天然气或生物质经由甲醇制取烯烃工艺是目前认为最具应用前景的路线。其中,制约这一工艺路线的关键是甲醇制低碳烯烃(Methanol-to-Olefin,简称MTO)过程中的催化剂。
     由于孔径较小(0.43-0.50nm)、酸性适中、水热稳定性较强,SAPO-34分子筛被认为是MTO工艺的最佳催化剂。然而,由于MTO反应的强放热和传统SAPO-34分子筛表面过高的酸密度导致催化剂快速失活,加上较低的烯烃选择性和较差的耐磨性能,使得SAPO-34难以满足工业流化床工艺的要求。本研究从硅源、模板剂、催化剂的粒径等方面对水热晶化合成法制备SAPO-34的工艺进行了系统的研究,并对过程的主要影响因素进行了优化;同时以煅烧高岭土为载体,发展了原位水热合成工艺;探索了适合流化床工艺的、高活性、长寿命的工业催化剂的制备方法,取得了如下主要研究成果。
     研究了硅源分散性对合成SAPO-34分子筛性能的影响。以盐酸为调节剂,氟化铵为分散剂有效地提高了硅源的分散性。以此为硅源,在相同硅铝比的条件下合成SAPO-34分子筛,可有效地抑制SAPO-5杂晶生成,减小其晶粒尺寸,从而提高催化剂在MTO反应中对低碳烯烃(C2=-C4=)的选择性,显著延长了其单程反应寿命。Ni改性高分散硅源后,会引起大量SAPO-5晶粒的产生和SAPO-34酸中心性能的变化,最终导致烯烃选择性的显著下降。
     采用TEA/TEAOH混合模板剂合成了SAPO-34分子筛。研究了混合模板剂的组成对SAPO-34分子筛的化学组成、形貌、晶粒尺寸、Si嵌入方式以及对MTO反应催化性能的影响。结果表明,合成的SAPO-34分子筛催化的MTO反应具有相似的活性和产物分布。当模板剂TEAOH/TEA在0.05~0.1时,可合成出具有大量弱酸中心、适宜酸强度和纯的SAPO-34分子筛。当TEAOH/TEA等于0.1时合成的SAPO-34分子筛对MTO反应的C2=-C4=选择性达到95.9%,催化剂单程寿命达到430min,优于使用单一TEA或TEAOH为模板剂合成的SAPO-34催化剂。
     采用两步水热晶化工艺,结合H202脱除模板法成功制备了粒径为160~550nm的SAPO-34分子筛。合成的SAPO-34具有相似的CHA结构、类立方体形貌和Si/(AL+P+Si)比。随着SAPO-34催化剂粒径的减小,对MTO反应的催化活性明显增强、催化剂寿命明显延长。采用粒径为160nm的SAPO-34催化MTO反应时,低碳烯烃选择性可达94.8%,单程寿命延长至596min。
     以TEAOH和TEA为模板剂,平均粒径60μm的煅烧高岭土微球(CKM)为载体,采用原位水热晶化工艺在CKM表面合成了SAPO-34分子筛。考察了不同的预处理条件对合成SAPO-34/CKM催化剂性能的影响。结果表明,经过NaOH溶液处理,可显著改善在CKM表面上SAPO-34晶粒的生长。通过调整NaOH溶液的浓度(4-14%),可有效调控高岭土微球的化学组成和结构,进而影响合成催化剂的性能。随着NaOH溶液浓度的增加,CKM载体表面的Si2p/Al2p的比例降低,表面的粗糙程度增加。用4%NaOH处理的CKM为载体原位合成的SAPO-34/4-CKM催化剂用于MTO反应时具有高的甲醇转化率(100%)和低碳烯烃选择性(90%)、长寿命(964min)以及较高的耐磨性能。
     以硅溶胶和磷酸铝溶胶为主胶粘剂和粘结助剂,采用喷雾成型工艺制备出SAPO-34基高岭土微球催化剂。采用碱处理-酸交换工艺处理的高岭土微球为载体原位水热法合成了SAPO-34/高岭土负载型催化剂。对于流化床MTO反应,使用所制备的SAPO-34基高岭土微球催化剂和SAPO-34/高岭土负载型催化剂,低碳烯烃选择性可分别达到94.8%和93.1%,磨耗率分别为1.28%/h和0.72%/h。
The increasing shortage of the crude oil and the growing need of light olefins, such as ethylene and propylene, have greatly stimulated the development of the alternative non-oil routes for light olefins production. Up to date, methanol to olefins (MTO) coupled with transformation of coal or natural gas to methanol has been considered as the most promising route with an economic advantage. However, the catalyst for MTO is still a challenge.
     SAPO-34, a silicoaluminophosphate molecular sieve with CHA structure, due to the moderate acid strength, relatively small pores (0.43nm) and hydrothermal stability, appears to be most attractive and many research works have been reported relating to its synthesis and crystallization mechanism, catalytic properties and catalytic reaction mechanisms for MTO reaction. However, as a microporous zeolite material, the traditional SAPO-34catalyst with the high density of strong acid sites and poor abrasive resistance is known to suffer rapid deactivation easily by carbon deposition in the strong exothermic MTO reaction, thereby leading to a rapid decrease of the catalytic performance and short lifetime.
     In this dissertation, the SAPO-34catalyst was prepared hydro thermally and optimizedly and the effects of dispersity of silica source, mixed templates etc on the particles size and properties of SAPO-34samples were studied in detail. SAPO-34on the calcined kaolin microspheres was in-situ hydrothermal synthesized successfully. The spherical SAPO-34catalyst used in fluidic bed reactor with high catalytic activity and long lifetime was explored. The main results obtained are as follows.
     The effect of the dispersity of silica source on the properties of SAPO-34was investigated. It is found that the dispersity of silica source after adding HCl as modifier and NH4F as dispersant could be obviously enhanced. When this high-dispersity silica was used as a precursor, is it in favor of preparing the sample with very low SAPO-5content and small size. As a result, the catalytic selectivity in MTO reaction can be improved and the single-pass lifetime can be prolonged. The incorporation of Ni in the preparation process of SAPO-34leads to an increase of the SAPO-5and a change of the acidic site in the samples, resulting in a decrease of the selectivity to olefins.
     The effect of the mixed template of TEA and TEAOH on the properties of SAPO-34molecular sieve was studied. The results show that, the chemical composition, morphology. crystal size and Si incorporation and the catalytic activity and single-pass lifetime in MTO reaction of SAPO-34can be influenced by the ratio of TEAOH/TEA. When the TEAOH/TEA ratio of0.05-0.1was used, the SAPO-34molecular sieves dominated by weak acid sites with moderate acid strength can be prepared. Using the SAPO-34catalyst prepared with the mixed complete of TEAOH/TEA=0.1, the C2--C4-selectivity and lifetime of the catalyst reached the maximum of95.9%and430min, respectively, which is obviously superior to that SAPO-34prepared by single TEA or TEAOH template.
     SAPO-34molecular sieve with crystalline size of160~550nm were synthesized by a two-step varying-temperature hydrothermal crystallization and H2O2solution de-template method. The obtained SAPO-34exhibits the similar CHA structure, cubic-like morphology and ratio of Si/(Al+P+Si) to traditional SAPO-34. With the reduction in the crystalline size of SAPO-34catalyst, its conversion of methanol to olefins, the catalytic activity and single-pass lifetime obviously increase. When the160nm SAPO-34prepared was used as the catalyst for MTO, the olefins selectivity and single-pass lifetime can reach over94.8%and596min, respectively.
     Supported SAPO-34catalyst on the fully calcined kaolin particles (CKMs) with the average size of60μm was synthesized in situ successfully, in which CKMs were pretreated by NaOH solution and the mixture of TEAOH and TEA was used as a template. The chemical composition and the morphology of the kaolin microsphere and supported SAPO-34catalyst prepared can be modulated by the concentration of NaOH of4-14%. With the increasing of the concentration of the NaOH solution, the Si2p/Al2p ratio on the surface of CKMs decreases and the surface roughness of CKMs increases. Using CKMs pretreated by4%NaOH solution as the support, SAPO-34in situ grown on CKMs exhibits the high methanol conversion (100%), longest single-pass lifetime (964min) and strongest abrasive resistance.
     Using silica gel and aluminium phosphate as the main adhesive and auxiliary agent, SAPO-34-based kaolin microspheres were prepared by a spray-drying method. SAPO-34/kaolin supported catalyst was prepared by in situ hydrothermal process onto the surface of the calcined kaolin microspheres pretreated by alkali solution treatment and subsequent acid exchange. In the testing with fluid-bed MTO reactor system, the selectivities of the olefins over the prepared SAPO-34-based kaolin microspheres and SAPO-34/kaolin supported catalyst can reach94.8%and93.1%, respectively. And the attrition rates of two catalysts are1.28%/h and0.72%/h, respectively.
引文
[1]章文.世界乙烯产能统计分析.石油炼制与化工2010;6:29-29
    [2]庞晓华.未来5年全球石化产品需求增速将加快.化工生产与技术2010;17(3):16-16
    [3]谢子军,张同旺,侯拴弟.甲醇制烯烃反应机理研究进展.化学工业与工程2010;27(5):443-449
    [4]Laszlo M, Joachim S, Matthias S. Preparation of Olefins from Crude Methanol. CA 1129440(A1),1982
    [5]Laszlo M, Joachim S, Matthias S. Preparation of Olefins from Crude Methanol. CA 1130820(A1) 1982
    [6]Young Lewis B. Catalytic conversion of methanol to light olefins. US 4433189(A) 1984
    [7]白尔铮.甲醇制烯烃用SAPO-34催化剂新进展.工业催化2001;9(4):3-8
    [8]Vora BV,康莉.天然气到乙烯和丙烯的转化.石油与天然气化工1997;26(3)131-137
    [9]Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal Today 2005;106(1-4):103-107
    [10]Marker Terry L, David G C. Process for producing light olefins using reaction with distillation as an instermediate step. US 5817906.1998
    [11]Mulvaney ⅢRobert C, Marker Terry L. Process for producing light olefins. US 5744680.1998
    [12]Mulvaney ⅢRobert C, Marker Terry L. Process for producing light olefins. US 5744680.1999
    [13]Keil FJ. Methanol-to-hydrocarbon:Process Technology. Micro Meso Mater 1999:29(1-2):49-66
    [14]Vandijk CP. Modified catalyst and a method of using same for conversion of methanol into olefins. US 6433239.2002
    [15]Rune W, Akporiaye DE, Anne A, Ivar DM. Brit MH, Terje F, et al. Microporous crystalline silico-alumino-phosphate composition, catalytic material comprising said composition and use of these for production of olefins from methanol. US 6334994. 2002
    [16]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术.北京:化学工业出版社.2004
    [17]黄兴山.甲醇制取低碳烯烃(DMTO)技术开发取得突破性进展.化工时刊 2007;21(4);4-4
    [18]Chang CD, Chu TW. On the mechanism of hydrocarbon formation from methanol over zeolite catalysts:Evidence for carbene intermediacy. J Catal 1982;74(1):203-206
    [19]Salvador P, Kladnig W. Surface reactivity of zeolites type hydrogen-Y and sodiurn-Y with methanol. J Chem Soc Faraday Trans 1977;73:1153-1168
    [20]Ono Y. Mori TJ. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. J Chem Soc Faraday Trans 1981;77:2209-2221
    [21]Novakova J, Kupelkova L. Primary reaction steps in the methanol-to-olefin transformation on zeolites. J Catal 1987; 108:208-213
    [22]Forester TR, Howe RF. In situ FTIR studies of methanol and dimethyl ether in ZSM-5. J Am Chem Soc 1987;109:5076-5082
    [23]Kupelkova L, Novakova J, Nedomova K. Reactivity of surface species on zeolites in methanol conversion. J Catal 1990;124:441-450
    [24]Hutchings GJ,Johnston P, Lee DF, Warwick A, Williams CD and Wilkinson M. The conversion of methanol and other o-compounds to hydrocarbons over zeolite β. J Catal 1994;147(1):177-185
    [25]Salehirad F, Anderson MW. Solid-State NMR studies of adsorption complexes and surface methoxy groups on methanol-sorbed microporous materials. J Catal 1998:177: 189-207
    [26]Philippou A, Salehirad F, Luigi D P, Anderson MW. Investigation of surface methoxy groups on SAPO-34:a combined magic-angle turning NMR experimental approach with theoretical studies. J Chem Soc Faraday Trans 1998:94:2851-2856
    [27]Wang W, Seller M, Hunger M. Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. J Phys Chem B 2001;105:12553-12558
    [28]Stocker M. Methanol-to-hydrocarbons:catalytic materials and their behavior. Micro Meso Mater 1999; 29:3-48
    [29]Olsbye U, Bjorgen M. Svelle S, Lillerud KP. Kolboe S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal Today 2005:106:108-111
    [30]Kazansky VB, Senchenya IN. Quantum chemical study of the electronic structure and geometry of surface alkoxy groups as probable active intermediates of heterogeneous acidic catalysts:what are the adsorbed carbenium ions? J Catal 1989:119(1):108-120
    [31]Chang CD, Silvestri AJ. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 1977;47:249-25
    [32]Hutchings GJ. Gottschalk F. Hydrocarbon formation from methylating agents over zeolite catalyst ZSM-5. Comments on the mechanism of carbon-carbon bond and methane formation. J Chem Faraday Trans 1987;83:571-583
    [33]Mole T. Isotopic and mechanistic studies of methanol conversion. Stud Surf Sci Cata 1988,36:145-156
    [34]Hutchings GJ, Hunter R, Johnston P, Vanrensburg LJ. Methanol conversion to hydrocarbons over zeolite H-ZSM-5:Investigation of the role of CO and ketene in the formation of the intial C-C bond. J Catal 1993; 142(2):602-606
    [35]Wang W, Jiang YJ, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal Today 2006; 113:102-114
    [36]Campo AE, Gayubo AG, Aguayo AT, Tarrio A, Bilbao J. Acidity, surface species, and mechanism of methanol transformation into olefinson SAPO-34. Ind Eng Chem Res 1998;37:2336-2340
    [37]Dahl IM, Kolboe S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett 1993; 20:3299-336
    [38]Kolboe S, Dahl IM. Methanol conversion to hydrocarbons use isotopes for mechanism studies. Stud Surf Sci Catal 1994; 427-434
    [39]Dahl IM, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34,1. Isotopic labeling studies of the co-reaction of ethane and methanol. J Catal 1994:149:458-464
    [40]Wolf EE, Alfani F. Catalysts deactivation by coking. Catal Rec Sci Eng 1982; 24: 329-371
    [41]Aguayo AT, Campo AE, Gayubo AG, Tarrio A, Bilbao J. Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. J Chem Tech Biotech 1999:74(4):315-321
    [42]Campelo JM, F. Lafont, Marinas JM, Ojeda M. Studies of catalyst deactivation in methanol conversion with high, medium and small pore silicoaluminophosphates. Appl Catal A:General 2000; 192:85-96
    [43]Qi GZ, Xie ZK, Yang WM, Zhong SQ. Liu HX, Zhang CF. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Processing Tech 2007:88:437.
    [44]Chen D, Rebo HP, Gronvold A, Moljord K, Holmen A. Methanol conversion to light olefins over SAPO-34:kinetic modeling of coke formation. Micro Meso Mater 2000;35-36:121-135
    [45]Alwahabi SM, Froment GF. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res 2004;43:5098
    [46]Chen D, Rebo HP. Gronvold A, Moljord K, Holmen A. Methanol conversion to light olefins over SAPO-34:kinetic modeling of coke formation. Microp Mesop Mater 2000;121:35-36
    [47]Aguayo AT, Campo AES, Gayubo AG, Tarrio A, Bilbao J. Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. J Chem Technol Biotechnol 1999;74:315-319.
    [48]Bos ANR, Tromp PJJ, Akse HN. Conversion of methanol to lower olefins, Kinetic modeling, reactor simulation, and selection. Ind Eng Chem Res 1995; 34(11): 3808-3816
    [49]Gayubo AG, Aguayo AT, Campo AES, Tarrio AM, Bilbao J. Kinetic modeling of methanol transformation into olefins on SAPO-34 catalyst. Ind Eng Chern Res 2000;39(2):292-30
    [50]Chen D, Gronvold A, Moljord K, Holmen A. Methanol conversion to light oleftns over SAPO-34:reaction network and deactivation kinetics. Ind Eng Chem Res 2007;46(12): 4116-4123
    [51]Chen D, Rebo HP, Moljord K, Holmen A. The role of coke deposition in the conversion of methanol to olefins over SAPO-34. Stud Surf Sci Catal 1997;111:159-166
    [52]Qi GZ, Xie ZK, Yang WM, Zhong SQ. Liu HX, Zhang CF, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to fight olefins. Fuel Processing Technology 2007;88(5):437-441
    [53]Corp MO. Production of olefins. GB 1523176(A) 1978
    [54]Chang, Chu, Valyocslk, et al. Olefins from methanol and/or dimethylether. EP 01279591984
    [55]Lee CS, Stead GE. Catalytic conversion of methanol to light olefins. US 4665268 1987
    [56]Wu MM, Meade B. Conversion of methanol and methyl ether to light olefins with ZSM-45 in presence of hydrogen. US 4912281,1990
    [57]Chang CD. Hydrocarbon from Methanol. Chemical Industries.1983;10:56-63
    [58]Michael S. Methanol-to-hydrocarbons:catalytic materials and their behavior. Microp Mesop Mater 1999;29:3-48
    [59]Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM. Crystalline silicoaluminophosphates. US4440871,1984.
    [60]Liang J, Li HY, Zhao SQ, Guo WG, Wang RH, Ying ML. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 1990:64:31-40.
    [61]杨翔,田恒水,朱云峰.不同硅铝比ZSM-5催化剂上的MTO反应性能.化肥工业2008.35:23-25
    [62]Rodewald P. Manufacture of Light Olefins. ZA7606454,1978
    [63]张飞,姜健准,张明森等.甲醇制低碳烯烃催化剂的制备与改性.石油化工2006;35(10):919-923
    [64]张素红,高志贤,张变玲等.钙负载量对Ca/HZSM-5甲醇制烯烃催化性能的影响.工业催化.2010,18(4):42-47
    [65]Valle B, Alonso A, Atutxa A, Gayubo AG, Bilbao J. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catal Today 2005;106(1-4):118-122
    [66]王志彦,李金来.Fe改性HZSM-5分子筛催化剂的表征及其MTP(甲醇制丙烯)反应活性研究.化学化工2008;30(1):135-137
    [67]Al-Jarallah AM, El-Nafaty UA, Abdillahi MM. Effect of Metal impregnation on the activity and Deactivation of a High Silica MFI Zeolite When Converting Methanol to Light Alkenes. Appl Catal A 1997;154:117
    [68]Kaeding WW, Butter SA. Convertion of Methanol and Dimethyl Ether. US 3911041, 1975
    [69]Liu Y, Yu XB, Qin L, Wang JD, Yang YR. In-situ synthesis of ZSM-5 Zeolite from Metakaolin/Spinel and its catalytic performance on methanol conversion. China Petroleum Pro Petrochem Tech 2010;12(1):23-28
    [70]张鹏飞,李玉平,张海荣等SAPO-34和纳米ZSM-5分子筛在甲醇转化制烯烃中的催化性能研究.太原理工大学学报2010;41(1):505-507
    [71]Tago T, Kazuyuki I. Ken Morita, et al. Control of acid-site location of ZSM-5 zeolite membrane and its application to the MTO reaction. Catal Today 2005;105:662-666.
    [72]马广伟,肖景娴,金文清Magadiite/ZSM-5共生材料合成及在MTO/MTP中的应用.分子催化2007;21(增刊):28-32
    [73]周帆,田鹏,刘中民等.ZSM-34分子筛的合成及其催化甲醇转化制烯烃反应性能.催化学报2007;28(9):817-822
    [74]Brown SH, Shinnar R, Weber WA. Process for converting methanol to olefins. US 6613951.2003
    [75]Brown SH, Shinnar R, Weber WA. Process for converting methanol to olefins. US6613951,2003
    [76]Brown SH, Green LA, Mathias MF, Olson DH, Ware RA, Weber WA. Catalyst and process for converting methanol to hydrocarbons. US6048816,2000
    [77]Zibrowius B, Loffler E, Hunger M. Multinuclear MAS NMR and IR spectroscopic study of the silicon in corporation into SAPO-5, SAPO-31 and SAPO-34 molecular sieves. Zeolites 1992; 12(2):167-174
    [78]Zubkov SA, Kustov LM, Kazansky VB, Girnus I, Fricke R. Investigation of hydroxyl groups in crystalline silicoaluiminophosphate SAPO-34 by diffuse reflectance infrared spectroscopy. J Chem Soc Faraday Trans 1991;87(6):897-900
    [79]Jiang YJ, Huang J, Marthala VRR, Ooi YS, Weitkamp J, Hunger M. In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration. Microp Mesop Mater 2007; 105:132-139.
    [80]须沁华SAPO分子筛.石油化工1988;17:186-192
    [81]刘中民,蔡光宇,何长青等.三乙胺法合成磷硅分子筛.CN1088483,1994
    [82]何长青,刘中民,蔡光宇等.以二乙胺为模板剂合成磷酸硅铝分子筛.CN 1096496,1994
    [83]何长青,刘中民,蔡光宇等.双模板剂法合成SAPO分子筛.CN;1106715,1995
    [84]何长青,刘中民,蔡光宇等.三乙胺法合成磷酸硅铝分子筛SAPO-34的研究.天然气化工.199318:14-18
    [85]何长青,刘中民,蔡光宇等.双模板法控制SAPO-34分子筛的晶粒尺寸.分子催化1994;8(3):207-212
    [86]Briend M. Vomscheid R.Pehre MJ.et al. J Phys Chem 1995;99:8270-8276
    [87]郑燕英,杨廷录等.制备条件对SAPO-34分子筛结构及MTO活性的影响.燃料化学学报1999;2;140-144
    [88]李宏愿,梁娟,刘子名,赵素琴,汪荣慧.硅磷酸铝分子筛SAPO-11,SAPO-34和SAPO-20台成.催化学报1988;1:87-91
    [89]李宏愿,梁娟,汪荣慧等.硅磷酸铝分子筛SAPO_34的合成.石油化工1987:16:340-346
    [90]Kang M. Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s). J Mole Catal A 2000; 160:437-444
    [91]付晔,王乐夫,谭宇新.晶化条件对SAPO-34吉晶度及催化活性的影响.华南理工大学学报(自然科学版)2001;4:30-32
    [92]Inui T. High potential of novel zeolitic materials as catalysts for solving energy and environmental problems. Stud Surf Sci Catal 1997; 105:1441-1467
    [93]Sun HN, Neil VS. Use of alkaline earth metal containing small pore nonzeolitic molecular sieve catalysts in oxygenate conversion. US 6040264.2000
    [94]Hocevar S, Levec J. Acidity and catalytic activity of MeAPSO-34 (Me= Co,Mn,Cr),SAPO-34,and H-ZSM-5 molecular sieves in methanol dehydration. J Catal 1992:135:518-532
    [95]Inui T, Kang M. Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion.Appl Catal A 1997; 164:211-214
    [96]Van NM, Fletcher JC. Cornor CT. Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34. Appl Catal A 1996:138:135
    [97]Guan XX, Zhang FX, Wu GJ, Guan NJ. Synthesis and characterization of a basic molecular sieve:Nitrogen-incorporated SAPO-34. Mater Lett 2006;60:3141-3144
    [98]Zhou HQ, Wang Y, Wei F, Wang DZ, Wang ZW. In situ synthesis of SAPO-34 crystals grown onto a-Al2O3 sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins, Appl Catal A:General 2008;341:112-118
    [99]刘红星,谢在库,张成芳,陈庆龄.用氟化氢-三乙胺复合模板剂合成SAPO-34分子筛.催化学报2003,24:279-283
    [100]何长青,刘中民,杨立新等.双模板剂法控制SAPO-34分子筛的晶粒尺寸.分子催化1994;8:207-212
    [101]Chang YF, Vaughn SN, Martens LR, et al.Molecular sieve catalyst composition, its making and use in conversion process. US 7271123 2007
    [102]Chang YF, Vaughn SN, Martens LR, et al. Attrition resistant molecular sieve catalysts. US 7071136 2006
    [103]Julius S. Attrition resistant cracking catalyst. US 4987110.1991
    [104]刘学武,柯丽,张明森SAPO-34/SiO2催化甲醇制烯烃.石油化工2007;36(6):547-552
    [105]Chang YF, Vaughn SN, Martens LR, et al. Molecular Sieve Catalyst Compositions, Its making and use in conversion process. US 7214844.2007
    [106]Vaughn SN, Chang YF, Martens LR, et al. Molecular-Sieve Catalyst Composition, Its making and use in conversion processes. US 7301065.2007
    [107]Chang YF, Vaughn SN, Clem KR, et al. Attrition resistant molecular sieve catalyst, method of making and process for using. WO2005107944.2005
    [108]Wachter WA, Elks JT, Vaughn Stephen N. Methods for making catalysts. US 6153552. 2000
    [109]巴格PT,马克TL,卡奇JA.用于轻烯烃生产的耐磨耗催化剂.CN1341584.2002
    [110]田鹏,刘中民,杨立新等.一种小孔磷硅铝分子筛的磷改性方法.CN101121531.2008
    [111]Barger PT, Wilson ST, Holmgren JS. Metal aluminophosphate catalyst for converting methanol to light olefins. US5126308.1992
    [112]Barger PT, Wilson ST, Reynolds TM. Metal aluminophosphate molecular sieve with novel crystal morphology and methanol to olefin process using the sieve. US5912393. 1999
    [113]Chang YF, Vaughn SN. Sprinkle J W, et al. Method of making molecular sieve catalyst. US 6710008.2004
    [114]Chang YF, Vaughn SN, Clemkenneth R et al. Molecular sieve catalyst composition, its making and use in conversion processes. US 20070249885.2007
    [115]Chang YF, Vaughn SN, Stafford PR et al. Spray drying molecular sieve catalyst.WO 2005056184.2005
    [116]Chang YF. Molecular sieve catalyst composition, its making and use in conversion processes. US 20060173228.2006
    [117]田鹏,许磊,刘中民等.一种含分子筛的流化反应催化剂直接成型方法.CN101121148.2008
    [118]Verhoef MJ, Kooyman PJ, Waal JC, Rigutto MS, Peters JA, Bekkum HV Chem. Mater 2001;13:683.
    [119]Heden WL, Dzierzanowski FJ. Zeolitic catalyst and preparation. US:3663165.1972
    [120]郑淑琴,豆祥辉,王智峰,高雄厚,徐贤伦.FCC抗重金属催化剂的研究进展.分子催化2005;19(6):504-510
    [121]Seijger GBF, Oudshoorn OL, Boekhorst A, et al. Calis selective catalytic reduction of NOx over zeolite-coated structured catalyst packings. Chem Eng Sci 2001;56(3):849-857.
    [122]Liu HH. Ma JT, Gao XH. Synthesis, characterization and evaluation of a novel resid FCC catalyst based on in situ synthesis on kaolin microspheres. Cataly Lett 2006;110(3-4):229-234
    [123]Tan QF, Bao XJ, Song TC, Fan Y, Shi G, Shen BJ, et al. Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin. J Catal 2007;251:69-79
    [124]Liu HT, Bao XJ, Wei WS, Shi G. Synthesis and characterization of kaolin/NaY/MCM-41 composites. Microp Mesop Mater 2003:66:117-125.
    [125]Feng H, Chen YH, Li CY, Shan HH. In-situ synthesis of ZSM-5 on silica gel and studies on its catalytic activity. J Fuel Chem Technol 2008;36(2):144-150
    [126]刘红星,谢在库,张成芳,陈庆龄,杨一青.硅源量和晶化时间对SAPO-34分子筛结构和性能的影响.无机化学学报2003, 19(3):240-245
    [127]Barthomeuf D. Si, Al ordering and basicity clusters in faujasites. J Phy Chem B 2005;9(6):2047-2054
    [128]Liu GY, Tian P, Li JZ, Zhang DZ, Zhou F, Liu ZM.,Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microp Mesop Mater 2008:111:143-149.
    [129]Pastore HO, Coluccia S, Marchese L. Porous aluminophosphates:From molecular sieves to designed acid catalysts. Annu Rev Mater Res 2005; 35:51-54.
    [130]Lee YJ, Baek SC, Jun KW. Methanol conversion on SAPO-34 catalysts prepared by mixed template method Appl. Catal A:Gen 2007; 329:130-136
    [131]Wei YX, Zhang DZ, Xu L, Chang FX, He YL, Meng SH, et al. Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catal Today 2008; 131:262-269
    [132]Liu GY, Tian P, Zhang Y, Li JZ, Xu L, Meng SH. Synthesis of SAPO-34 templated by diethylamine:Crystallization process and Si distribution in the crystals. Microp Mesop Mater 2008;114:416-423
    [133]Wei YX, Zhang DZ, He YL, Xu L, Yang Y, Su BL. Mechanistic elucidation of chloromethane transformation over SAPO-34 using deuterated probe molecule:A FTIR study on the surface evolution of catalyst. Catal Lett 2007;114:30-35
    [134]Vomscheid R, Briend M, Peltre MJ, Man PP, Barthomeuf DJ. The role of the template in directing the Si distribution in SAPO zeolites. J Phys Chem 1994;98:9614-9618.
    [135]Svelle S, Aravinthan S, Bjcpegen M, Lillerud KP, Kolboe S, Dahl IM. The methyl halide to hydrocarbon reaction over H-SAPO-34. J Catal 2006:241:243-247.
    [136]Borade RB, Clearfield A. Synthesis of Aluminum Rich MCM-41. J Mol Catal 1994;88:249-256.
    [137]Chen D, Moljord K, Fuglerud T, Holmen A, The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microp Mesop Mater 1999;29:191-203
    [138]Campelo JM, Lafont F, Marinas JM, Ojeda M. Studies of catalyst deactivation in methanol conversion with high, medium and small pore silicoaluminophosphates. Appl Catal A:Gen 2000; 192:85-96,
    [139]Chen D, Grnvold A, Moljord K, Holmen A. Methanol conversion to light olefins over SAPO-34:Reaction network and deactivation kinetics. Ind Eng Chem Res 2007:46:4116-4123
    [140]Qi GZ, Xie ZK, Yang WM, Zhong SQ, Liu HX, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Pro Tech 2007:88: 437-441
    [141]张培青,郭洪臣.祝洪杰,姜雪梅,王萍.纳米HZSM-5催化剂催化烃类转化反应.高等学校化学学报2006,;27(12):2366-2371
    [142]Selvin R, Hsu HL, Her TM. Acylation of anisole with acetic anhydride using ZSM-5 catalysts:Effect of ZSM-5 particle size in the nanoscale range. Catalysis Communications 2008:10:169-172
    [143]毕玉水,吕功煊.纳米Au/NaZSM-5催化剂的控制制备及催化性能.高等学校化学学报2009;30(1):129-134
    [144]Tosheva L, Valtchev VP. Nanozeolites:Synthesis, crystallization mechanism, and applications. Chem.Mater 2005;17:2494-2513
    [145]王亚军,唐颐,王星东.纳米沸石的合成、性质、组装及应用.石油化工2002;31(3):217-223
    [146]Jia CJ, Liu Y, Schmidt WG, Lu AH, Schuth F. Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein. J Catalysis 2010; 269: 71-79
    [147]Vogel B, Schneider C, Klemm E. The synthesis of cresol from toluene and N2O on H[Al]ZSM-5:minimizing the product diffusion limitation by the use of small crystals. Catal Lett 2002;79:107.
    [148]刘红星,谢在库,张成芳,陈庆龄SAPO-34分子筛研究新进展.工业催化2002;10(4):49-54
    [149]李伟,关庆鑫,王小野,唐珺,李春刚,张明慧.一种制备小晶粒SAPO-34分子筛的方法,CN 101214,2008-07-09
    [150]Norikazu N, Masumi K, Yuichiro H, Dung VV, Yasuyuki E, Korekazu U. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A:Gen 2009;362:193-199
    [151]Heard DW, Brochu M. Development of a nanostructure microstructure in the Al-Ni system using the electrospark deposition process. J Mater Proc Tech 2010:210:892-898
    [152]Heyden HV, Mintova S, Bein T. Nanosized SAPO-34 synthesized from colloidal solutions. Chem. Mater 2008;20 (9):2956-2963
    [153]La Mer VK, Dinegar RH. Theory, prodution and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 1950;72:4847
    [154]Yang LM, Wang YJ, Luo GS, Dai YY. Simultaneous removal of copolymer template from SBA-15 in the crystallization process. Microp Mesop Mater 2005;81:107-114
    [155]Dai CL, Yuan Y, Liu CS. Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials 2009; 30:5364-5375.
    [156]Melia'n-Cabrera I, Kapteijn, Moulijn JA. Room temperature detemplation of zeolites through H2O2-mediated oxidation. Chem Commun 2005;21:2744-2746.
    [157]Kecht J, Bei T. Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment. Microp Mesop Mater 2008:116:123-130
    [158]Li Q, Creaser D. Sterte J. The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis. Microp Mesop Mater 1999:31:141-150.
    [159]Patcas FC. The methanol-to-olefins conversion over zeolite-coated ceramic foams. J Catal 2005:231:194-200.
    [160]Liu HH, Zhao HJ, Gao XH, Ma JT. A novel FCC catalyst synthesized via in situ overgrowth of NaY zeolite on kaolin microspheres for maximizing propylene yield. Catal Today 2007;125:163-168.
    [161]Feng H, Li CY, Shan HH. In-situ synthesis and catalytic activity of ZSM-5 zeolite. Appl Clay Sci 2009;42:439-445.
    [162]Torres Sa'nchez RM, Basaldella El, Marco JF. The effect of thermal and mechanical treatments on kaolinite:Characterization by XPS and IEP measurements. J Colloid Interface Sci 1999;215:339-344.
    [163]Wittberg TN, Wang PS. XPS study of the dehydration of clay and kaolin powders. Surf Interface Anal 1999;27:936-940.
    [164]Chau JLH, Tellez C, Yeung KL, Ho KC. The role of surface chemistry in zeolite membrane formation. J Membr Sci 2000;164:257-275.
    [165]Martins GVA, Berlier G, Bisio C, Coluccia S, Pastore HO, Marchese L. Quantification of bronsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J Phys Chem C 2008;112:7193-7200.
    [166]Leonardo T. Alexandre CL, Alexandre BG. Monica AP. Methanol conversion over acid solid catalysts. Catal Today 2008;133-135:406-412.
    [167]Van Niekerk MJ, Fletcher JCQ, O'Connor CT. Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34. Appl Catal A:Gen 1996;138:135-145.
    [168]Keil FJ. Methanol-to-hydrocarbons:process technology Micropor Mesopor Mater 1999;29(1-2):49-66.
    [169]Chen YJ, Zhou HQ, Zhu J, Zhang Q, Wang Y, Wang DZ. Direct synthesis of a fluidizable SAPO-34 catalyst for a fluidized dimethyl ether-to-olefins process. Catal Lett 2008;124(3-4):297-303.
    [170]Liu HX, Xie ZK, Zhang CF, Chen QL. Characterization and thermal decomposition modes of SAPO-34 molecular sieves synthesized with different templates. Chin J Chem Phys 2003:6:521-527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700