用户名: 密码: 验证码:
纳米组织Zr-4合金腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其优异的性能具有诱人的应用前景,但目前关于纳米晶结构对耐腐蚀性能影响的研究结果互相矛盾,远没有形成对其腐蚀机制一致的看法。因此,研究表面纳米化后锆合金的腐蚀性能,揭示其腐蚀机理,可以为优化现有合金及开发新型合金提供实验依据,同时也可以丰富核材料领域的研究内容,并有助于深入探索材料耐腐蚀性能的影响因素和作用机理。
     本试验采用高速喷丸技术对Zr-4合金板一侧表面纳米化,并将其放入673k/10.3MPa高温过热蒸汽的高压釜中进行腐蚀,利用X射线衍射、扫描电子显微镜、EDS分析、透射电子显微镜对其形成的氧化膜生长情况进行了分析,得到以下结论:
     (1)纳米组织Zr-4合金的腐蚀增重明显小于普通组织Zr-4合金的腐蚀增重,但是纳米组织的腐蚀转折时间要滞后于普通组织的腐蚀转折时间。
     (2)纳米组织Zr-4合金生成的氧化膜内表面比普通组织Zr-4合金生成的氧化膜内表面平整、光滑,说明纳米组织生成的氧化膜内表面没有出现孔洞簇、或者出现的孔洞簇少于普通组织生成的氧化膜,因此纳米组织生成的氧化膜自身的结合能力和其与金属基体的结合能力均高于普通组织生成的氧化膜。
     (3)Zr-4合金经过纳米化的处理,降低了氧化膜/金属界面处氧离子的扩散速度,抑制了氧离子与金属的反应,阻碍了氧化膜的增厚,从而提高了合金的抗腐蚀性能。
     (4)纳米组织Zr-4合金生成的氧化膜中四方相等轴晶增多,四方相等轴晶能够延迟氧化膜结构转变,从而使纳米组织Zr-4合金抗腐蚀能力明显提高。
     综上所述,在673k/10.3MPa高温过热蒸汽的高压釜中,纳米化Zr-4合金的耐腐蚀性能要比普通Zr-4合金的耐腐蚀性能好,因此我们认为纳米化Zr-4合金耐腐蚀性能的提高与氧化膜内四方氧化锆的含量有直接的关系,而关于纳米化Zr-4合金耐腐蚀性能的机理仍有待进一步的实验研究和分析。
It is certainly that nano-materials will have an attractive application prospects because of their outstanding properties, but the corrosion resistance maybe is the negative factor. At present investigations, the impact of surface nanocrystallined zircaloy on corrosion resistance is contradictory; no coincident opinion can be drawn. Therefore, revealed the corrosion mechanism, by studying the corrosion properties of surface nanocrystallined zircaloy, can provide experimental basis for optimizing of existing alloys and developing of novel alloys.
     One side of the simple was subjected to high-speed shot preening treatment in order to achieve a surface nanocrystallization structure in a certain depth. The oxide films of nanocrystallization Zircaloy-4 alloy in autoclave at 673K/10.3MPa steam have been observed by XRD、SEM、EDS、TEM, respectively in this paper. We draw conclusions as following:
     (1) Results of 160 days corrosion test under the 673K/10.3MPa condition show that the weight gain of nanostructure Zircaloy-4 is less than that of traditional structure, which indicate that nanostructure Zircaloy-4 has a better corrosion resistance.
     (2) The M/O interface of nanostructure Zircaloy-4 is more regular and smoother, which imply that, no or less clusters of pores develop in nanostructure.
     (3) The absence of Oxygen-rich area at the M/O interface of nanostructure Zircaloy-4, indicates that the corrosion process is lag of the traditional structure Zircaloy-4
     (4) The result of TEM observation indicates that t-ZrO_2 formed as a protected coating at the M/O interface in nanostructure zircaloy-4
     Experimental evidences indicated that the nanocrystalline zircaloy-4 could delay the transition of the corrosion. Simultaneously, the metal/oxide interface of nanostructure Zircaloy-4 was more regular and glossy than that of coarse-grain structure Zircaloy-4. Furthermore, many equiaxed grains were discovered in the oxide films formed on the nanostructure basis, which indicated that nanostructure Zircaloy-4 had a better corrosion resistance. This paper showed the corrosion resistance improvement of nanocrystallization Zircaloy-4 alloy had relation with the percentage of tetragonal-Zirconia, the stress of tetragonal-Zirconia and the high compressed stress of oxide film. However about the corrosion resistance mechanism of nanocrystallizaion Zircaloy-4 alloy should be researched and discussed in the further.
引文
[1]熊炳昆等.锆铪冶金[C].北京:冶金工业出版社.2002年
    [2]田胜军等.锆铪的分离技术及应用[C].铀矿冶.2006,25(2):103
    [3]刘树仁.国外锆铪生产、应用及开发的最近进展.世界有色金属[J].1992(10):2
    [4]B.R.T弗罗斯特主编.材料科学与技术丛书(10B卷),核材料(第Ⅱ部分):第7章 核应用中的锆合金[C],赵文金译.北京:科学出版社,1999:17
    [5]熊炳昆.锆在核电工业中的应用现状.稀有金属快报[J].24(4),2005:45
    [6]刘承新.锆合金在核工业中的应用现状及发展前景.稀有金属快报[J].2004(5):21
    [7]Educken C M,Finden P T et al.Zirconium in the Nuclear Industry[C].8~(th)International Symposium,ASTM STP 1023,Van Swam,L F P,and Eucken C M,Eds.,American Society for Testing and Materials,Philadelphia,1989:113
    [8]Romary H,Deydier D.Technical Committee Meeting on Influence of Water Chemistry in Fuel Cladding Behavior[C].Rez(near Prague),The Czech Republic.1993:256
    [9]Sabol G P,Comstock R J,Weiner R A et al.Zirconium in the Nuclear Industry[C].10~(th)International Symposium,ASTM STP1245,Garde A M and Bradley E R,Eds.,American Society for Testing and Materials,Philadelphia,1994:24
    [10]Nikulian A V,Markelov V A,Peregud M M et al.Zirconium in the Nuclear Industry[C].11~(th)International Symposium,ASTM STP1295,Bradley E R and Sabol G P,Eds.,American Society for Testing and Materials,West Conshohocken,1996:785
    [11]IAEA-TECDOC-996,Waterside corrosion of Zirconium alloys in nuclear power plants,ISSN 1011-4289 IAEA,VIENNA,1998
    [12]赵文金.法国压水堆燃料元件新一代包壳材料的发展.核动力工程[J].2000,21(3):242
    [13]赵文金.M5合金的堆内外性能概述.核动力工程[J].2001,22(1):60
    [14]周邦新,赵文金,苗志等.改善锆-4合金耐腐蚀性能的研究.核动力工程[J].1995,15(3):242
    [15]赵文金,苗志,蒋宏曼等.加工工艺对Zr-4管抗疖状腐蚀的影响.核动力工程[J].1998,19(5):462
    [16]刘彦章,赵文金,J-L Béchade等.N18锆合金的氢致α/β相演化研究.核动力工程[J].2007 28 (1):120
    [17]96中国材料研讨会文集编辑组.生物环境材料--1996中国核材料研讨会[C].北京化学工业出版社 1997:148
    [18]Zhao W J,Zhou B X,Miao Zh et al.Development of New Zirconium Alloys for PWR Fuel Rod Claddings.Rare Metal Materials and Engineering[J].2001,30(6):19
    [19]许并社.纳米材料及应用技术.化学工业出版社[C],2004
    [20]张全勤.张继文,纳米技术新进展.国防工业出版社[C],2005
    [21]韦东远.纳米材料与纳米科技发展动态.海峡科技与产业[J],2006,3:20
    [22]刘文庆,李强,周邦新等.水化学对Zr-4合金氧化膜/基体界面处压应力的影响.稀有金属材料与下程[J].2004,33(10):112
    [23]Lin Jianlonn,Li Hualonn,Szpunar J A et al.Analysis of zirconium oxide formed during oxidation at 623K on Zr2.5Nb and Zircalov-4.Maser Sci Eng[J],2004,338:104
    [24]Pecheur D,Godlewski J,Pevhemes J el al.Contribution to the understanding of the effect of the wafer chemistry on the oxidation kinetics of zircalov-4 cladding.ASTM Special Technical Publication[J].2000,1354:793
    [25]Zhou Bangxin,Li Qiang,Huang Qiang et al.The effect of water chemistry on the corrosion behavior of zirconium alloys.Nuclear Power Eng[J].2000,21(5):439
    [26]刘文庆,周邦新,李强等.不同介质对Zr-4合金氧化膜结构的影响.稀有金属材料与工程[J].2005,34(4):562
    [27]Li Hualong,Glavicic M G,Szpunar J A.A model of texture formation in ZrO_2 films.Mater Sci Eng[J].2004,366(A):164
    [28]Beie H J,MiLwalsky A,Garzarolli F et al.Examinations of the corrosion mechanism of zirconium alloys.ASTM Special Technical Publication,1994,1245:615
    [29]Godlewski J.How the tetragonal zirconia is stabilized in the oxide scale that is formed on a zirconium alloy corroded at 400℃ in steam.ASTM Special Technical Publication,1994,1245:663
    [30]吴旻.射线衍射及应用[J].沈阳大学学报(自然科学版),1995(4):7
    [31]郭灵虹,钟辉.X射线及在冶金和材料科学中的应用[J].四川有色金属,1994(4):19
    [32]潘道皑,赵成大,郑载兴.物质结构[M].北京:高等教育出版社,1998:570
    [33]南京大学地质学系矿物岩石教研室.粉晶X射线物相分析[M].北京:地质出版社,,1980:103
    [34]Chung F H.Quantitative interpretation of X-ray diffraction patterns[J].J.App.1 Cryst,1975,8 (1):17
    [35]Popovices,Grzeta-Plenkovicb.The doping method in quantitative-ray diffraction phase analysis addendum[J].J.App.I Cryst,1983,16(5):505
    [36]储刚.含非晶样品的X射线衍射增量定量相分析方法[J].物理学报,1998,47(7):1143
    [37]Chu G,Sui Q.External standard method of quantitative X-ray diffraction phase analysis of samples containing a morphousmaterial[J].Acta Metallurgica Silica,1994,7(3):179
    [38]吴万国,阮玉忠.X射线衍射无标定量分析法的研讨[J].福州大学学报,1997,25(3):37
    [39]沈春玉,储刚.X射线衍射定量相分析新方法[J].分析测试学报,2003,22(6):80
    [40]洪汉烈,陈建军,杨淑珍.水泥熟料定量分析的全谱拟合法[J].分析测试学报,2001,20(2):5
    [41]陈名浩.无标样X射线衍射定量相分析的回归求解[J].金属学报,1988(24):21
    [42]丘利,胡玉和.X射线衍射技术及设备[M].北京:冶金工业出版社,1998:233
    [43]蒋艳平,肖刘.射线衍射法测Zn电镀层中的残余应力[J].湘潭大学自然科学学报,2001,23(4):42
    [44]郭常霖.精确测定低对称晶系多晶材料点阵常数的X射线衍射方法[J].无机材料学报,1996,11(4):597
    [45]Park J Y,Seung J Y,Choi B K et al.Journal of Alloys and Compounds[J].2007,437:274
    [46]张世超,许维钧,谢惠佑.稀有金属材料与工程[J],1997(26):44
    [47]Zhang X Y,Shi M H,Li C et al.The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal.Mater Sci Eng A[J],2007;448(1-2):259
    [48]吴刚主编.材料结构表征及应用[M].北京:化学工业出版社,2002:271
    [49]范雄.X射线金属学[M].机械工业出版社,1981(9):252
    [50]张喜燕,李聪,邱绍宇等.核动力工程[J],2007,(12):71
    [51]Liu Wenqing,Li Qiang,Zhou Bangxin et al.Rare Metal Materials and Engineering[J],2004;33:1112
    [52]Godlewski J,Bouvier P,Lucazeau G et al.American Society for Testing and Materials[J],West Conshohocken,PA,2000;PP.877
    [53]Zhang Wei,Qin Xiaoying,Zhang Lide et al.Chinese Science Bulletin[J],1997(12);42:2619
    [54]Lu Ke,Liu Xuedong,Zhang Haoyue et al.Acta Metallurgica Sinica[J],1995(2);31:A74
    [55]Cahn R W,Haasen P.Physical Metallurgy(3rd Ed)[M],Amsterdam:Elsevier Sci Publ,1983: 980
    [56]Takamura J I.In:Cahn R W.Physical Metallurgy[M],Amsterdam:North-Holland,1965:681
    [57]Sui Manling,Lu Ke.Acta Metallurgica Sinica[J],1994(9);30:B413
    [58]邵淑英,范正修,范瑞英等.激光与光学电子学进展[J],2005,42(1):22
    [59]周邦新.金属热处理学报[J],1997(9),18:8
    [60]Godlewski J.How the Tetragonal Zirconia is Stabilized in the Oxide Scale That is Formed on a Zirconium Alloy Corroded at 400℃ in Steam[C].Zirconium in the Nuclear Industry New York:ASTM STP 1245,1994:663
    [61]Garzarolli F,Seidsl H,Tricot R et al.Oxide Growth Mechanismon Zircaloy[C].Zirconium in the Nuclear Industry,New York:1991:395
    [62]Jeong-Yong Park,Hyun-Gil Kim,Yong Hwan Jeong,Youn-Ho Jung.Journal of Nuclear Materials[J],2004,335(3):433.
    [63]杨文斗.反应堆材料,原子能出版社[B],2000
    [64]黄强.锆合金耐腐蚀性能研究综述.核动力工程[J],17(3),1996(6):262
    [65]IAEA-TECDOC-996.Waterside corrosion of zirconiu alloys in nuclear power plants,international atomic energy agency IAEA[Ⅰ].1998 249-260
    [66]Booth M J,Hell S W.Continuous wave excitation two-photon fluorescence microscopy exemplified with the647nm Arkrlaser line[J].JMicrosc,1998,90(1):298-304。
    [67]陈世朴.金属电子显微分析[M].北京:机械工业出版社,1992,131-167。
    [68]Williams R M,Piston D W,Webb W Wet al.l 2-photonmolecular excitation provides intrinsic 3-dimensionalresolution for laser-based microscopyand microphoto-chemistry[J].FASEB J,1994,(8):804
    [69]张志琨,崔作林.纳米技术与纳米材料[M],京:国防工业出版社.2000,37
    [70]Books C R,Mcgil B L.The Application of Scan-ning Electron Microscopy to Fractography [J].Micro-structuralCharacterization,1994,(33):195
    [71]周邦新,李强,姚美意等.核动力工程[J].2005(26):364
    [73]IAEA-TECDOC-996.Waterside corrosion of zirconium alloys in nuclear power plants[C].IAEA,Vienna.1998
    [74]刘文庆,李强,周邦新.锆锡合金腐蚀转折机理的讨论,稀有金属材料与工程[J],30(2),2001:81
    [75]Hyun Seon Hong,Seon Jin kim,Kyung Sub Lee.Long-term oxidation characteristics of oxygen-added modified Zircaloy-4 in 360℃ water,Journal of Nuclear Materials[J].273(1999):177
    [76]刘文庆,周邦新,李强等.不同介质对Zr-4合金氧化膜结构的影响,稀有金属材料与工程[J],34(4),2005:562
    [77]Aylin Yilmazbayhan,Else Breval,Arthur T et al.Transimission electron microscopy examination of oxide layers formed on Zr alloys.Journal of Nuclear Materials[J],349(2006):265
    [78]Hiroyuki Anada,Kiyoko Takeda.Microstructure of oxide on Zircaloy-4,1.0Nb Zircaloy-4,and Zircaloy-2 formed in 10.3MPa steam at 673K.Zirconium in the Nuclear Industry[C]:Eleventh International Symposium,ASTM STP 1295,E.R.Bradley and G.P.Sabol,Eds.,American society for Testing and Materials,1996:35
    [79]刘文庆.不同介质对Zr-4合金氧化膜结构的影响[J],稀有金属材料与工程.34(4),2005:562
    [80]Pecheur D,Godlewski J et al.Contribution to the understanding of the effect of the water chemistry on the oxidation kinetics of zircaloy-4 cladding,Zirconium in the Nuclear Industry[J].Twelfth International Symposium,ASTM STP 1354,G.P.Sabol and G.D.Moan eds.,West Conshohocken,2000:793
    [81]Pecheur D,Godlewski J,Billot P et al.Microstructure of Oxide Film Formed during the Waterside Corrosion of the Zircaloy-4 Cladding in Lithiated Environment,In:Bradley E R and Sabol G P eds.Zirconium in the Nuclear Industry,Eleventh International Symposiu[C],Philadelphia:America Society for Testing and Materials,1996:94
    [82]张喜燕,武小雷,左汝林等.中国有色金属学报[J],2005,15:1607
    [83]Pecheur D et al.in:Zirconium in the Nuclear Industry[C]:12~(th)International Symposium,ASTM STP,vol.1354,1998,p:793
    [84]Garzarolli F,Seidel H,Tricot R et al.in:Zirconium in the Nuclear Industry[C]:9~(th)International Symposium,ASTMSTP,vol.1132,1991,p:395
    [85]Wadman B,Lai Z,Andren H O et al.in:Zirconium in the Nuclear Industry[C]:10~(th)International Symposium,ASTMSTP,vol.1245,1994,p:579
    [86]Pecheur D,Godlewski J,Billot P et al.in:Zirconium in the Nuclear Industry[C]:11~(th)International Symposium,ASTMSTP,vol.1295,1995,p:94
    [87]Anada H,Takeda K.in:Zirconium in the Nuclear Industry[C]:11~(th)International Symposium ASTM STP,vol.1295,1996,p:35
    [88]Beie H J,Mitwalsky A,Garzarolli F et al.in:Zirconium in the Nuclear Industry[C]:10~(th)International Symposium,ASTMSTP,vol.1245,1994,p:615
    [89]周邦新,李强,姚美意等.核动力工程[J],2005(26):364
    [90]Abolhassani S,Restani R,Rebac T et al.Journal of ASTM International[J],2005(2):467
    [91]Yilmazbayhan A,Motta A T,Comstock R J et al.J Nucl Mater[J],2004,324:6
    [92]Cox B.Report AECL 9382,AECL,Chalk River Nuclear Lab.,Ontario,Canada,1987
    [93]Motta A T,Yilmazbayhan A,Comstock R J et al.J ASTM Int[J].2005(2),Paper ID JAI12375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700