用户名: 密码: 验证码:
北京地区生态系统服务价值遥感估算与景观格局优化预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态系统服务价值评估是生态系统可持续性研究的基础,根据历史时期的生态系统类型和地表覆盖状况,以生态服务价值最大化为目标,以空间适宜性为原则对生态系统类型数量和空间分布预测与优化具有十分重要的意义。北京地区地形地貌较复杂,生态景观类型丰富多样,城市密集、人口稠密、产业集聚,不合理的生态系统类型组合方式使生态系统面临较大压力,城市化进程过快使得生态环境资源利用不够集约、还存在牺牲生态环境效益获取经济效益的情况,使得研究区内社会经济发展与生态环境保护之间的矛盾较为突出。进行生态系统景观格局预测及优化研究,对于改变现行的不健全价值体系、增强人们的环境保护意识、生态环境资源集约合理利用,并实现可持续发展具有一定的意义。
     遥感技术具有空间宏观性、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,具有其他观测手段无可比拟的优势,即可以提供生态系统的宏观空间分布信息,又能提供局部的详细信息及随时间、空间变化的动态信息等,使其成为生态系统研究的有力工具。本研究选取北京市为研究区,以遥感技术为分析手段,在动态估算1978-2010年间生态系统类型的空间分布信息以及生态环境质量参数的基础上评估了研究区的生态系统服务价值,并以其最大化为目标,对研究区未来生态系统景观格局进行了预测及优化研究。研究内容及相关结论如下:
     (1)生态系统景观格局变化分析
     分析北京地区的地域特征,结合国家二级分类体系,得出适用于北京地区生态系统服务价值评估的分类体系为农田、森林、草地、水域、城市、荒漠六类;以16景Landsat系列中分辨率遥感影像为数据源,结合2010年166个野外调查数据,采用基于特征向量组合的神经网络算法提取1978年-2010年32年4个时期的生态系统类型空间分信息;利用转移矩阵与景观指数分析北京地区近32年来各生态系统类型面积内部结构变化规律与景观格局的时空变化规律:从1978-2010年间农田面积、荒漠大量减少,减少幅度分别为42.00%,58.15%,森林面积、城市面积大幅增加,增加幅度分别为35.87%,39.43%,草地变动幅度较大、水域基本保持稳定,农田与荒漠多转为森林和城市。北京地区从类型水平景观指数分析结果显示:森林、农田和城市三种生态系统类型景观面积百分比最高,景观破碎度与景观分维数低于草地、水域和荒漠,凝聚度则高于其他他三种生态系统类型,属于研究区的优势观类型;从景观水平看:斑块密度指数、平均分维数以及多样性指数的下降以及凝聚度指数的上升都说明研究区受到人类影响的程度在不断加大,使得景观破碎度越来越小,景观形状越来越规则,而各生态系统类型景观斑块在景观中趋于均衡。
     (2)生态环境质量参数估算与变化分析
     土壤侵蚀量和NPP是估算生态系统服务价值的物质量基础和必要前提,因此也是表征生态环境质量的重要参数。以前两章研究基础(空间化的气象、土壤、地形数据与历史各时期生态系统类型空间分布)为数据源,分别采用通用土壤流失方程(USLE)和光能利用率模型计算北京地区32年士壤侵蚀量以及NPP的时空分布,然后对这两个表征生态环境质量的重要参数的时空格局变化及影响因子进行分析,结果表明:32年来北京地区发生轻度、微度侵蚀的比例占总面积的70%-80%,其中轻度、微度侵蚀的区域面积占总侵蚀面积的90%,西部及东北部有少部分地区发生中度以上侵蚀。不同生态系统类型土壤侵蚀强度顺序为荒漠>森林>草地>农田。侵蚀量从1978年到2010年一直呈上升势态,2000年达到最高,然后开始回落。不同坡度下土壤侵蚀变化规律表现为坡度越高侵蚀强度越强,侵蚀总量表现为随坡度升高侵蚀总量先升高后降低;NPP均值和总量都是连年递减的,均值从1978年的1703.46gC/m2·a减少到2010年的1348.09gC/m2·a,总量从1978年的37.66TgC·a减少到2010年的22.25TgC-a。不同生态系统类型产生NPP的量为森林>农田>荒漠>草地>城市>水域。降水、太阳总辐射、温度都是影响NPP生产的重要因子,NPP与降水量、太阳辐射正相关,与温度负相关。
     (3)生态系统服务价值定量估算与变化分析
     结合北京地区生态环境特点,考虑数据的可取性和可靠性,确定了北京地区适用于遥感的生态系统服务价值评估指标体系,包括生产有机物、营养物质循环、涵养水、土壤保持、吸收和分解污染物质、气体调节6项服务功能;以木研究第四章研究基础(北京地区历史各时期土壤侵蚀量和NPP)为生态系统服务价值物质量,针对每项服务功能,计算北京地区1978-2010年32年4个时间期的单项单位面积服务价值的年际变化并分析不同生态系统类型下该项生态系统服务价值的变化特点;对北京地区生态系统服务价值的组成及其时空格局进行了深入的分析:在总价值中,生态系统涵养水的服务功能所产生的价值贡献最大,其次依次为营养物质循环服务价值、生产有机物价值、土壤保持价值、气体调节价值、吸收和分解污染物的价仇。32年间北京地区生态系统服务总价值一直呈现逐渐下降的趋势,1978年最高为1425.48x 108元/a,2010年最少为919.82×108元/a,降幅为35.47%,下降幅度较大。1978年-2010年单位面积服务价值变化趋势与服务总价值致,1978年最高,2010年最低,价值区间在8.70元/m2-5.61元/m2,变化幅度为35.45%。生态系统服务总值的空间分布呈现出北高南低、西北高东南低、山区高平原低的特点;不同土地利用/覆盖类型的生态系统服务价值大小顺序为森林>农田>城市>荒漠>水域>草地,而单位面积服务价值的大小顺序为农田>森林>水域>草地>荒漠>城市。
     (4)生态系统景观格局变化预测与灰色优化研究
     根据各历史时期生态系统类型景观格局空间分布,采用CA-Markov模型进行2020年景观格局预测,利用Markov预测各生态系统类型之间转移概率,利用CA实现空间转移模拟。CA-Markov模型可以较好地模拟北京地区生态系统景观格局变化趋势,但这种趋势从生态效益的角度来看是不合理的。为了使北京地区生态系统服务价值实现最大化,各生态系统类型之间结构布局合理,采用灰色系统与元胞自动机相结合,利用灰色理论实现空间模拟的优化。采用灰色线性规划算法,以生态系统服务价值最大化为目标函数,优化各生态系统类型的数量面积组合,利用灰色关联度筛选各生态类型空间适应性评价指标并确定其权重,然后采用灰色聚类进行空间适宜性评价,生成各生态类型空间适应性规则。最后,将数量优化方案与空间优化方案共同输入CA模型中,实现了2020年北京地区生态系统景观格局优化。本优化模型基本实现使生态系统景观格局既能在数量结构上达到优化的目的,又能在空间布局上达到优化,使各生态系统的空间布局优化和生态服务价值数量结构优化,最终实现了生态系统景观格局优化的既定目标。
     本研究的主要特色与创新之处:
     1.将以往利用单位面积价值当量对生态系统服务价值总量进行静态评估改为基于时间序列时空数据的动态评估。论文以时间序列的遥感、土壤、气象、社会经济为数据源,利用遥感技术、GIS空间分析技术、计算机技术,选取十壤侵蚀量与NPP为生态环境质量评价参数,动态估算了北京地区32年间(1978-2010)的单位面积单项生态系统服务价值,并分析了生态环境质量变化与生态服务价值构成及变化规律。
     2.耦合灰色理论与元胞自动机CA,对北京地区生态系统景观格局进行预测及数量与空间优化。首先,利用灰色线性规划算法,以生态系统服务价值最大化为目标函数,以生态环境、社会经济数据为约束条件,优化各类型生态系统的数量面积组合;然后,利用灰色关联度筛选各生态类型空间适应性评价指标并确定其权重,采用灰色聚类进行空间适宜性评价,估算各生态类型空间适应性规则;最后,在模型CA中将数量与空间优化方案作为演化规则,预测并优化了2020年北京地区的生态系统景观格局。
Ecosystem services values assessment is the basis of the sustainability of ecosystems. It is of great significance to optimize the prediction of the ecosystem cover type's number and space distribution. This paper/dissertation needs to be (according to) based on the historical ecosystem's land cover conditions, in combination of the principle of the space suitability, to maximize the Ecosystem services values.In Beijing, the topography is relatively complicated. The ecological landscape is diverse, the population and the buildings are highly dense, and the industries are also quite concentrated. Unreasonable combinations of ecosystem types will bring the ecosystem enormous pressure; the social and economic development results in insufficient intensive use of the ecological environment resource, and particularly there are cases that people try to pursue economic benefits at the cost of eco-environmental benefits. All these problems make the conflict between the local people and eco-environment more pronounced.Hence, it is still of great significance to study the prediction and optimization of the ecosystem types and the landscape patterns, in order to change the current problematic value systems, to raise the people's awareness of environmental protection, and help them to reasonably use the resources intensively.
     Remote sensing technology has quite unparalleled advantages when compared with other observation methods, in terms of its spatial macro, wide viewing angle, multi-resolution (spectral and spatial), multi-time phase, regular periods, and rich information. So, the remote sensing technology can not only provide the information of ecosystem macro-space distribution, but also provide detailed local information and the dynamic information over time and space, thereby making itself one powerful tool to study the ecosystem.
     This study took maximized the ecosystem value as a goal to predicted and optimized the ecosystem types and the landscape patterns in future used the remote sensing technology to carry out the assessment of the Ecosystem services values based on the ecosystem type spatial distribution and ecosystem environment quality parameter in Beijing during 1978-2010. The major contents and results in this dissertation are as follows:
     (1) Analysis of the landscape pattern changes in ecosystem types
     After analysis of the geographical features of Beijing combined with Level-II national classification system, this paper defines the Beijing's ecological value assessment in the following six types of ecosystem:farmland, forest, grassland, water area, city, and desert. This paper also employed the 16 views (scenes) Landsat remote sensing images with middle resolution as data source, in combination of the 166 field survey point data in 2010; the neural network based on characteristic vector method was used to extracted the ecosystem type's space distribution which was defined in 4 stages (periods) for the 32 years from 1978 to 2010.In the meantime, Used transition matrix and landscape index to analyzes the change patterns of the ecosystem types and the internal structure, as well as the space change patterns of the landscape in the past 32 years in Beijing, On the basis of this analysis, this paper concluded the following:during the period of 1978-2010 the area of arable land, desert decreased considerably, by 42.00% and 58.15% respectively; the forest area and city have increased substantially, by 35.87%,39.43% respectively; the grassland changed enormously and the water area maintains stable, but the arable land and desert normally have been changed into forest and residential use land. Analyzing from types and landscape index, this paper drew the following conclusions:the three ecosystem types which were forest, farmland, and city, cover the highest percentage of the landscape. The degree of landscape fragmentation and fractal dimension were less than that of the grass, waters and desert, and the concentration was higher. So it is the dominant landscape type. From the point view of landscape level, the patch density index, the average fractal dimension, as well as the falling down of the diversity index and the going up of the condensation index, have indicated that the research area has experienced a greater impact from the human's behaviors. This results in smaller and smaller landscape fragmentation, more and more regular landscape shapes, and also equilibrium of the landscape patches in the landscape as a whole.
     (2) Analysis of estimation and change in ecological environment quality parameters
     The amount of soil erosion and NPP are the basis and necessary prerequisite for estimating the Ecosystem services values, also they are the important parameters to characterize the quality of the ecological environment. Using the study of the previous two chapters as the data source, which included its space meteorological, soil, terrain data and ecosystem land cover spatial pattern in different historical periods, this paper had calculated Beijing's amount of soil erosion and NPP's spatial and temporal distribution for a period of 32 years with the methods of Universal Soil Loss Equation (USLE) and light use efficiency model. Later, it carried out analysis of the spatial and temporal pattern change of these two ecologic environmental quality parameters and the influential factors, and concludes the following:in the past 32 years, the result showed that:the slightly soil eroded area covers 70% to 80% of all the area in Beijing. Specifically, mildly or slightly eroded area amounts to 90% of the whole erosion area, and in some areas of the western part and northeastern part, moderate and above erosion has occurred. Among all the ecosystem types, the soil loss ranks as follows:desert>forest>grassland>arable land. In addition, the erosion has shown an ascending trend from 1978 to 2010 peaking at 2000 but beginning to drop down subsequently. The soil loss in different slopes has shown such a pattern:the greater the slope, the more the soil loss, and in the curve of the overall erosion amount and the slope, it shows an uptrend trend first and then a downward trend. The NPP average and the total amount has decreased over these years, decreasing to 1348.09 gC/m2.a in 2010 from 1703.46 gC/m2.a in 1978, while the total amount down to 22.25 TgC/a in 2010 from 37.66 TgC/a in 1978. The NPP amount for different ecosystem types has shown such a pattern:forest> arable land>desert> grassland> city> water area. The affect NPP production important factors are precipitation, solar radiation, and temperature.The NPP has a positive correlation with precipitation and solar radiation, but negative correlation with the temperature.
     (3) The quantitative calculation and change analysis of Ecosystem services values
     Considering the region ecological environment characteristics of Beijing and the availability and reliability of the data, this paper chose the Ecosystem services values evaluation index system suitable for remote sensing, which included six services functions as producing organics, nutrient recycling, reserved water, soil conservation, the pollution's absorption and decomposition, and air conditioning.Based on the study of chapter 4 as the Ecosystem services values indicators, including the soil erosion and NPP in Beijing in different historical periods as research basic data, For each service functions, We calculates the annual change of the service value per unit area for each item in the four periods of the 32 years from 1978 to 2010, and analyzes the Ecosystem services values's change patterns in different ecosystem types. From the in-depth study of the composition of the Ecosystem services values and their spatial and temporal patterns in Beijing:among the total values, the reserved water contributes the most to the service values, followed sequentially by the nutrient cycling, production of organic matter, soil conservation, air conditioning, and the pollution's absorption and decomposition. In the 32 years, the total Ecosystem services values have shown a descending trend:the greatest is 1425.48×108 Yuan/a in 1978, the least is 919.82×108 Yuan/a in 2010, a decline of 35.47%. As regards to the service value per unit area for each item, it shows a similar trend as the service total amount between 1978-2010:the greatest in 1978 and the least in 2010, ranging between 8.70 Yuan/m2-5.61 Yuan/m2, with a change of 35.45%.For the space distribution of the Ecosystem services values, it showed such a pattern:high in northern part but low in southern part, high in northwestern part but low in southeastern part, and high in mountainous areas but low in plain areas. The Ecosystem services values for different land use/cover types showed such a pattern in the descending rank:forest>arable land> city> desert> water> grassland, but the service value per unit area ranks as:arable land> forest>water area> grassland> desert> city.
     (4) the study of the prediction of the ecosystem's landscape pattern change and the gray optimization
     According to the ecosystem type's landscape space distribution in different historical periods, used the method of CA-Markov for the prediction of 2020's landscape. Meanwhile, it used Markov to predict the transition probabilities, and the CA to realize the space transition simulation. The CA-Markov model can simulate the ecosystem types' landscape pattern change trend preferably in Beijing, but this trend might look unreasonable from the point of view of ecological benefits. In order to maximize the ecological system serve value benefits of Beijing, and make a reasonable structural composition of the various ecosystem types, this paper used a combination of gray system and cellular automata to realize the space simulation with the gray optimization theory. Drawing upon the gray linear programming algorithm, this paper set the maximization of the Ecosystem services values as the objective function, to optimize the area combination of the various ecosystem types; then we used the gray correlations to filter the assessment indexes of the space adaptability for various ecosystem types, and determines its weight respectively; then, it adopts the gray concentration to assess the space suitability and generate the space suitability rules for different ecosystem types. Finally, we input the area optimization solution and the space optimization solution into the CA model, to realize the landscape pattern optimizations of the ecosystem types in 2010 for Beijing. This optimization model can basically achieve the purposes of optimizing the ecosystem types in terms of number and the space distribution, and finally the set goal of the optimization of the ecosystem type's landscape patterns.
     The main features and innovations of this paper:
     1. It adopts dynamic assessment method of the spatial and temporal data based on the time sequence, instead of the past static assessment method of the per unit area amount to derive the total Ecosystem services values. The study used the time-series remote sensing images, soil, weather, and socio-economic benefits as the data sources, remote sensing technology, GIS space analysis, and computer programs were used. Chose the soil erosion and NPP as the parameters to assess the ecosystem environment quality, it dynamically estimated the per unit area Ecosystem services values in 32 years from 1978 to 2010 in Beijing, and analyzed the change of ecosystem environment quality, the composition and change patterns of the Ecosystem services values.
     2. This paper also coupled the gray theory and the cellular automata, to predict Beijing's ecosystem landscape patterns and optimize in terms of number and space. First, we used the gray linear programming algorithm, set the maximization of the Ecosystem services values as the objective function, and the ecosystem environment and the social economic data as the independent parameters, to optimize the area combination of the various ecosystem types. Then used the gray correlations to filter the assessment indexes of the space adaptability for various ecosystem types, determines its weight respectively, the gray concentration was used to assess the space suitability and estimates the space suitability rules for different ecosystem types. Finally, it used the number and space optimization solutions as the basic rules in the CA model to predict and optimize the ecosystem system landscape patterns in 2010 for Beijing.
引文
[1]摆万奇,赵士洞.土地利用变化驱动力系统分析[J].资源科学,1999,21(04):1-3.
    [2]摆万奇,赵士洞.土地利用和土地覆盖变化研究模型综述[J].自然资源学报,1997,12(2):74-80.
    [3]曹银贵,王静,陶嘉等.基于CA与AO的区域土地利用变化模拟研究——以三峡库区为例[J].地理科学进展,2007,26(3):88-96.
    [4]曹宇,肖笃宁,赵弈等.近十年来中国景观生态学文献分析[J].应用生态学报,2001,12(3):474-477.
    [5]陈菁.福建省海岸带脆弱生态环境信息图谱研究[J].地球信息科学报,2010,12(2):159-166.
    [6]陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响结构分析[J].生态学报,1996,16(4):335-440.
    [7]陈源泉,高旺盛.农业生态补偿的原理与决策模型初探[J].中国农学通报,2007,23(10):163-166.
    [8]陈仲新.张新时.中国生态系统效益的价值[J].科学通报.2000,45(1):17-22.
    [9]段增强,VerburgPH,张凤荣等.土地利用动态模拟模型的构建及其应用——以北京市海淀区为例[J].地理学报,2004,(6):1037-1047.
    [10]符素华,吴敬东.北京密云石匣子流域水土保持措施对土壤侵蚀的影响研究[J].水土保持学报,2001,15(2):23-24.
    [11]高峻,宋永昌.基于遥感和GIS的城乡交错带景观变化研究——以上海西南地区为例[J].生态学报,2003,23(4):805-813.
    [12]高清竹,何立环,黄晓霞等.海河上游农牧交错地区生态系统服务价值的变化[J].自然资源学报,2002,17(6):706-712.
    [13]高旺盛,董孝斌.黄土高原丘陵沟壑区脆弱农业生态系统服务评价—以安塞县为例[J].自然资源学报,2003,18(2):182-188.
    [14]古琳,程承旗.基于GlS-Agent模型的武汉市土地利用变化模拟研究[J].新技术应用,2007,14(06):47-51.
    [15]郭斌,任志远.西安城区土地利用与生态安全动态变化[J]地理科学进展,2009,28(1):71-75.
    [16]郭鹏,薛惠锋,赵宁.遗传算法在土地利用优化中的应用[J].计算机仿真,2005,22(11):127129.
    [17]韩维栋,高秀梅,卢昌义等.中国红树林生态系统生态价值评估[J].生态科学,2000,19(1):40-46.
    [18]何承耕.多时空尺度视野下的生态补偿理论与应用研究[D].福建师范范大学博士学位论文.2007.
    [19]何春阳,史培军,陈晋等.北京地区土地利用/覆盖变化研究[J].地理研究,2001,21(6):680-689.
    [20]何春阳,史培军,陈晋等,基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学D辑(地球科学),2005,35(5):464-473.
    [21]何春阳,史培军,李景刚等.中国北方未来土地利用变化情景模拟[J].地理学报,2004,59(4):599-607.
    [22]何丹,金风君,周璟等.基于Logistic-CA-Markov的土地利用景观格局变化——以京津冀 郜市圈为例.地理科学[J].201],31(8):903-910.
    [23]洪尚群,马丕京,郭慧光.生态补偿制度的探索[J].环境科学与技术,2001,(5):40-43.
    [24]侯元兆,张佩昌,王琦等.中国森林资源核算[M].北京:中国林业出版社.1995.
    [25]胡茂桂,傅晓阳,张树清等.基于元胞自动机的莫莫格湿地土地覆被预测模拟[J].资源科学2007,27(2):142-148.
    [26]黄湘,陈亚宁,马建新.西北干旱区典型流域生态系统服务价值变化[J].自然资源学报.2011,26(8):1364-1376.
    [27]姜友华,王新生.遗传算法用于产生可供选择的城市规划方案[J].武汉大学学报(工学版),2002,35(3):63-66.
    [28]黎夏,叶嘉安.基于神经网络的元胞自动机及模拟复杂土地利用系统[J].地理研究,2005,24(1):19-27.
    [29]黎夏,叶嘉安.遗传算法和GIS结合进行空间优化决策[J].地理学报,2004,59(5):745-753.
    [30]黎夏,叶嘉安.主成分分析与CellularAutomata在空间决策与城市模拟中的用[J].中国科(D辑),2001,3(8):683-690.
    [31]李文华,李芬,李世东等.森林生态效益补偿的研究现状与展望[J].自然资源学报,2006,21(5):677-687.
    [32]李阳兵,王世杰,州德全.茂兰岩溶森林的生态服务研究[J].地球与环境,2005,33(2):39-44.
    [33]李贞,王丽荣,管东生.广州城市绿地系统景观异质性分析[J].应用生态学报,2000,11(1):127-130.
    [34]梁友嘉,徐中民,钟方雷等.丛于 SD和CLUE-S模型的张掖市甘州区土地利用情景分析[J].地理研究.2011,30(3):564-577.
    [35]蔺卿,罗格平,陈曦LUCC驱动力模型研究综述[J].地理科学进展,2005,24(5):79-87.
    [36]刘军会,高吉喜,聂亿黄,青藏高原生态系统服务价值的遥感测算及其动态变化[J].地理与地理信息科学,2009,25(3):81-84.
    [37]刘小平,黎夏,艾彬等.丛于多智能体的土地利用模拟与规划模型[J].地理学报,2006,61(10):1101-1112.
    [38]刘臻,宫鹏,史培军等.基于相似度验证的自动变化探测研究.[J].遥感学报,2005,9(5):537-543.
    [39]陆汝成,黄贤金,左天惠等.基于CLUE-S和Markov复合模型的土地利用情景模拟研究—以江苏省环太湖地区为例[J].地理科学,2009,29(4):577-581.
    [40]毛显强,钟瑜,张胜.生态补偿的理论探讨[J].中国人口资源与环境,2002,12(4):38-41.
    [41]门明新等.丛于土壤粒径分布模型的北京地区土壤可蚀性研究[J].中国农业科学,2004,37(11):1647-1653.
    [42]欧阳,志云,赵同谦,王效科等.水生态服务功能分析极其间接价值评价[J].生态学报,2004,24(10):2091-2099.
    [43]潘瑞炽,董愚得.植物生理学(第二版上册)[M].北京:高等教育出版社,1988.张炯远,冯雪华,倪建华.用多元回归方程计算我国最大晴天总辐射能资源研究[J].自然资源.1981,1:38-46.
    [44]彭保发,胡}曰利,吴远芬等.基于灰色系统模型的城乡建设用地模拟预测:常德市鼎城区为例[J].经济地理,27(6):999-1002.
    [45]彭建,蔡运龙,VerburgPH喀斯特山区土地利用/覆被变化情景模拟[J].农业工程学报,2007. 23(7):64-7].
    [46]全国土壤普查办公室编著.中国土种志[M].中国农业出版社,1995.
    [47]申桂芳,李林山.尉氏县农业上地利用结构优化模式.河南大学学报(自然科学版),1989,(1):591-65.
    [48]史培军,潘耀忠,陈云浩等.多尺度生态资产遥感综合测量的技术体系[J].地球科学进展.2002,17(2):169-173.
    [49]史志华,蔡崇法,丁树文,李朝霞,王天巍.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,V18(4):172-175.
    [50]苏伟,陈云浩,武永峰等.生态安全条件下的土地利用格局优化模拟研究——以中国北方农牧交错带为例[J].自然科学进展,2006,16(2):207-214.
    [51]孙丹峰,李红,张风荣.基于动态统计规则和景规格局特征的土地利用覆被空间模拟预测[J].农业工程学报,2005,21(3):121-125.
    [52]汤国安,陈正江,赵牡丹等Arc View地理信息系统空间分析法[M].北京:科学出版社,2002.
    [53]汤国安等.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [54]田光进,张增样.基于遥感和GIS的海口市景观格局动态演化[J].生态学报,2002,22(7):1028-1034.
    [55]田萍萍,马俊杰,刘玉龙.秦岭自然保护区程可持续发展途径探析[J].地方在线,2006,(11A):48-51.
    [56]田耀武,肖文发,黄志霖.基于AnnAGNPS模型的三峡库区黑沟小流域退耕还林生态服务价值[J].生态学杂志,2011,30(4).
    [57]王兵,鲁绍伟.中国经济林,生态系统服务价值评估[J].应用生态学报,2009,20(2):417-425.
    [58]王健,田光进,全泉等.基于CLUE-S模型的广州市土地利用格局动态模拟[J].生态学杂志,2010,29(6):1257-1262.
    [59]王丽萍,金晓斌,杜心栋,周寅康.基于灰色模型的佛山市土地利用情景模拟分析[J].农业工程学报,2012,28(3):237-242.
    [60]王涛,陈海,白红英等.基于Agent建模的农户土地利用行为模拟研究——以陕西省米脂县孟岔村为例[J].自然资源学报.2009,24(12):2056-2066.
    [61]王晓娇,陈英等.基于信息熵的张掖市土地利用结构分析及其灰色预测[J].甘旱区研究.2011,25(1):92-97.
    [62]王永军,李团胜,刘康等.榆森林区景观格局分析及其破碎化评价[J1.资源科学,2005,27(2):161-166.
    [63]邬建国.景观生态学-格局、过程、尺度与等级[M].北京:高等教育出版社,2000:1-l1.
    [64]吴次芳,叶艳姝.20世世纪国际土地利用规划的发展及其展望.中国土地科学,2000,14(1):15-20.
    [65]吴桂平,曾永年,冯学智等.用变化动态模拟——以张家界永定区为例[J].地理研究.2010,29(3):460471.
    [66]吴文斌,杨鹏,柴崎亮介等.基于Agent的土地利用/土地覆盖变化模型的研究进展[J].地理科学,2007,7(4):573-578.
    [67]肖笃宁,赵羿,孙中伟等.沈阳西郊景观格局变化的研究[J].应用生态学报,1990,1(1):78-84.
    [68]肖寒,欧阳志云,赵景柱等.海南岛生态系统土壤保持空间的分布特征及生态经济价值评估[J]. 生态学报,2000,20(4):552-558.
    [69]谢高地,鲁春霞,成升魁.全球生态系统服务价值评估研究进展[J].资源科学,2001,23(6):5-9.
    [70]谢高地,鲁春霞,冷允法等.青藏高原生态资源的价值评估[J].自然资源学报,2003,18(2):189-186.
    [71]辛琨,肖笃宁.盘锦地区湿地生态系统服务功能价值估算[J].生态学报,2002,22(8):1345-1349.
    [72]熊毅,李庆逵.中国土壤(第二版)[M].科学出版社,1987.
    [73]徐俏,何孟常,杨志峰等.广州市生态系统服务功能价值评估[J].北京师范大学学报(自然科学版),2003,39(2):268-272.
    [74]许中旗,李文华,闵庆文等.锡林流域生态系统服务价值变化研究[J].自然资源学报,2005,20(1):99.104.
    [75]叶菲莫娃.H A.植被产量的辐射因子[苏][M].北京:气象出版社,1983.
    [76]杨怀宇,李晟,杨正勇.池塘养殖生态系统服务价值评估——以上海市青浦区常规鱼类养殖为例[J].资源科学,2011,33(3):575-581.
    [77]杨正勇,杨怀宇,郭宗香.农业生态系统服务价值评估研究进展[J].中国生态农业学报,2009,17(5):1045-1050.
    [78]余新晓,鲁绍伟,靳芳.中国森林生态系统服务功能价值评估[J].生态学报,2005,25(8):209-210.
    [79]曾辉,姜传明.深圳市龙华地区快速城市化过程中的景观结构研究[J].生态学报,2000,20(3):378-383.
    [80]张汉雄.晋陕黄土丘陵区土地利用与土壤侵蚀动态机制仿真研究[J].科学通报,1997,42(7):743-746.
    [81]张锦水,潘耀忠,韩立建等.光谱与纹理信息复合的上地利用/覆盖变化动态监测研究[J].遥感学报,2007,11(4):500-510.
    [82]张秋菊,傅伯杰,陈利顶.关于景观格局演变研究的几个问题[J].地理科学,2003,23(3):264-270.
    [83]张新焕,祁毅等.基于CA模型的乌鲁木齐都市圈城市用地扩展模拟研究[J].中国沙漠.2009,29(5):820-828.
    [84]张学儒,王卫,VerburgPH等.唐山海岸带土地利用格局的情景模拟[J].资源科学,2009,31(8):1392-1399.
    [85]张雪花.非点源污染量化模型中重要影响因素的研究[D].东北师范大学硕士学位论文,2004.
    [86]张永民,赵上洞,VerburgPH.CLUE-S模型及其在余曼旗土地利用时空动态变化模拟中的应用[J].自然资源学报,2003,18(3):310-318.
    [87]张振明,刘俊国,生态系统服务价值研究进展.环境科学学报,2011,31(9):1835-1842.
    [88]赵庚星,李强,李玉环等.GIS支持下的马东柯夫链模型模拟垦利县土地利用空间格局变化[J].山东农业大学学报,1999,30(4):345-349.
    [89]赵建军,张洪岩,乔志和等.基于CA2Markov模型的向海湿地土地覆被变化动态模拟研究[J].自然资源学报,2009,24(12):2178-2186.
    [90]赵景柱,肖寒,吴刚.生态系统服务的物质量与价值量评价方法的比较分析[J].应用生态学报,2000,11(2):290-292.
    [91]赵英时等.遥感应用分析原理与方法[M].科学出版社:北京,2003.
    [92]郑新奇.城市土地优化配置与集约利用评价——理论、方法、技术、实证[M].北京:科学出版社,2004.
    [93]钟永光,贾晓箐,李旭等.系统动力学[M].北京:科学出版社,2009.
    [94]Adrienne G R, Susanne K,2007.Integrating the valuation of ecosystem services into the Input-Output economics of an Alpine region [J].Ecological Economics,2007,63(4):786-798.
    [95]Anthony W. The interaction between commercial objectives and city-center mixed-use development [J]. Journal of Retail & Leisure Property,2003, (3):16-18.
    [96]Azar C, Holmberg J. Defining the generational environmental debt [J]. Ecological Economics, 1995,14:7-9.
    [97]Balling R J, John T T, Michael R B, et al. Multiobjective urban planning using genetic algorithm [J]. Journal of Urban and Development,1999,125(2):86-99.
    [98]Balling R J, Powell B, Saito M. Generating future land-use and transportation plans for high-growth cities using a genetic algorithm [J]. Computer-Aided Civil and Infrastructure Engineering,2004,19(3):213-222.
    [99]Balling R J, Taber J T, Day K, et al. Land use and transportation planning for twin cities using a genetic algorithm [J]. Transportation Research Record,2000,1722:67-74.
    [100]Bandara R, Tisdell C. The net benefit of saving the Asian elephant:a policy and contingent valuation study [J]. Ecological Economics,2004,48:93-107.
    [101]Baity M. Cellular automata and urban form:A primer [J]. Journal of American Planning Associate,1997,63:266-274.
    [102]Batty M, Xie Y, Sun Z. Modeling urban dynamics through GIS-based cellular automata[J]. Computer, Environmental and Urban Systems,1999,23:1-29.
    [103]Benenson I, Omer I, Hatna E. Entity-based modeling of urban residential dynamics:the case of Yaffo, Tel Aviv [J]. Environment and Planning B,2002,29:491-512.
    [104]Benenson I. Multi-agent simulations of residential dynamics in the city [J]. Computers, Environmental Urban Systems,1998,22(1):25-42.
    [105]Benson CS, Clement JM, Semmens DJ.A GIS application for assessing,mapping, and quantifying the social values of ecosystem services [J]. Applied Geography,2010,29:1-13.
    [106]Bjorklund J., Limburg K., Rydberg T. Impact of production intensity on the ability of the agricultural landscape to generatee cosystems ervices:an example from Sweden [J]. Ecological Economics,1999,29:269-291.
    [107]Bolund P., Hunhammar S. Ecosystem servicesin urban areas [J]. Ecological Economics.1999,29: 293-301.
    [108]Brown K, Adger N W, Tompkins E, et al. Trade-off analysis for marine protected area management [J]. Ecological Economics,2001,37:417-434.
    [109]Clarke K C, Gaydos L J. Loose-coupling cellular automata model and GIS:long-term urban growth prediction for San Francisco and Washington/Baltimore [J]. International Journal of Geographical Information Science,1998,12(7):699-714.
    [110]Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M.,1997. The value of the world's ecosystem services and natural capital [J]. Nature,387,253-260.
    [111]Daily G C, Soderqvist T, et al. The value of nature and the nature of value [J]. Science,2000, 289:395-396.
    [112]Daily G C, Walker B H. Seeking the great transition [J]. Nature,2000,403:243-245.
    [113]Daily G.C. Natures Services:Societal Dependence on Natural Ecosystems [M]. Washington D C Island Press.1997.
    [114]Dixon J, Bakkes J, Hanilton K. Expanding the measure of wealth:Indicators of environmental sustainable development [M]. Beijing:China Environmental Scientific Press,1997.
    [115]Egoh B,Reyers B,Rouget M,et al. Mapping ecosystem services for planning and management [J].Agriculture,Ecosystems&Environment,2008,127:135-140.
    [116]Ewing R. Is Los Angeles-style sprawl desirable [J]. Journal of American Planning Association, 1997, (1):33-35.
    [117]Feng C, Lin J. Using a genetic algorithm to generate alternative sketch maps for urban planning [J]. Computers Environment and Urban Systems,1999,23(2):91-108.
    [118]Geping Luo, Changying Yina, Xi Chen, et al. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale:A case study of Sangong watershed in Xinjiang, China [J]. Ecological Complexity.2010,7(2):198-207.
    [119]Gordon, Peter, Kumar A, et al. The influence of metropolitan spatial structure on commuting time [J]. Journal of Urban Economics,1989,26(2):138-151.
    [120]Gren I M, Groth K. H, Sylven M. Economic Values of Danube Floodplains [J]. Journal of Environmental Management,1995,45:333-345.
    [121]Gret-Regamey A, Bebi P, Bishop ID, et al.Linking GIS-based models to value ecosystem services in an Alpine region [J]. Journal of Environmental Management,2008,89:197-208.
    [122]Hamel MA, Andrefouet S. Using very high resolution remote sensing for the management of coral reef fisheries:Review and perspectives [J]. Marine Pollution Bulletin,2010,60:1397-1405.
    [123]Hanley N, Ruffell R J. The contingent valuation of forest characteristics:two experiments [J]. Journal of Agricultural Economics,1993,44:218-229.
    [124]Holder J, Ehrlich P R. Human population and global environment [J]. American Scientist,1974, 62:282-297.
    [125]Holmund C, HammerM. Ecosystems ervicesg enerated by fish populations [J]. Ecological Economics,1999,29:253-268.
    [126]Huang Z, Brooke BP, Harris PT.A new approach to mapping marine benthic habitats using physical environmental data [J]. Continental Shelf Research,2011,31:S4-S16.
    [127]Jagannathan S, Bertsatos I, Symonds D, et al.Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems [J]. Marine Ecology Progress Series,2009,395:137-160.
    [128]Jakobsson, Christin M, Eglar E. Contingent valuation and endangered species:Method logical issues and applications [M]. Cheltenham:Edward Elgar Press,1996.
    [129]Kozak J,Lant C,Shaikh S,et al.2011.The geography of ecosystem service value:The case of the Des Plaines and Cache River wetlands, Illinois[J].Applied Geography,31(1):303-311.
    [130]Lai P. Economic valuation of mangroves and decision-making in the Pacific [J]. Ocean& Coastal Management,2003,46:823-846.
    1131] Li L, Simonovic S P. System dynamics model for predicting floods from snowmelt in North American prairie watersheds [J]. Hydrological Processes,2002,16(13):2645-2666.
    [132]Ligtenberg A, Bregt A K, Lammeren R V. Multi-actor-based land use modeling:spatial planning using agents[J]. Land Urban Plan,2001,56:21-33.
    [133]Loomis J. Balancing public trust resources of Mono Lake and LosAngels water right:An economic approach [J]. Water Resource Research,1987,23:1449-1556.
    [134]Loomis, J., Kent, P., Strange, L., Fausch, K.. and Covich, A. Measuring the total economic value of restoring ecosystem services in an impaired river basin:results from a contingent valuation survey [J]. Ecological Economics.2000.33,103-117.
    [135]Los SO, Collatz GJ, Sellers PJ, Tucker CJ, Dazlich DA. A global 9-yr biophysical land surface dataset from NOAA AVHRR data. Journal of Hydrometeorology,2000.1:183-199.
    [136]Lu D, Mausel P, Brondizio E, et al. Change detection technques[J]. Int J Remote Sensing,2004, 8(6):2365-2407.
    [137]Luijten JC. A systematic method for generating land use pattern using stochastic rules and basic landscape characteristics:results for a Colombian hillside watershed [J]. Agric Ecosyst Environ, 2003,95:427-441.
    [138]Manson S M. Agent-based modeling and genetic programming for modeling land change in the southern Yucatan Peninsular Region of Mexico [J]. Agriculture, Ecosystems and Environment,2005,111(1-4):47-62.
    [139]McGarigal, K., S. A. Cushman, M. C. Neel, and E. ENE.2002. FRAGSTATS:Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html.
    [140]Mendonca M, Sachsida A, Loureiro P. A study on the valuing of biodiversity:the case of three endangered species in Brazil [J]. Ecological Economics,2003,46:9-18.
    [141]Millennium Ecosystem Assessment.2005.Ecosystems and Human Wellbeing:Biodiversity Synthesis [Z].Washington DC:World Resources Institute.
    [142]Nelson E, Mendoza G, Regetz J, et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales [J]. Frontiers in Ecology and the Environment,2009,7:4-11.
    [143]Norbero P. Design and implementation of a soil geographic database for rural planning [J]. Journal of Soil and Water Conservation,1993,48(2):140-145.
    [144]Olson J. Seeding nature, ceding culture:Redefining the boundaries of the marine commons through spatial management and GIS [J]. Geoforum,2010.41:293-303.
    [145]Overmars et al., Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model.2007, Land Use Policy,24 (2007):584-599.
    [146]Overmars K P, Verburg P H, Veldkamp A. Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model [J]. Land Use Policy,2007,24(3): 584-599.
    [147]Pattanayak S K. Valuing watershed services:concepts and empirics from Southeast Asia [J]. Agriculture Ecosystems & Environment,2004,104:171-184.
    [148]Pellikka PKE,Lotjonen M,Siljander M,et al. Airborne remote sensing of spatiotemporal change (1955 -2004) in indigenous and exotic forest cover in the Taita Hills, Kenya [J]. International Journal of Applied Earth Observation and Geo Information,2009,11:221-232.
    [149]Pimental D, Wilson C, McCulum A. Economic and Environmental benefits of biodiversity [J]. Bioscience,1997,47(11):747-757.
    [150]Raul R C, George L W P. The role of land abandonment in landscape dynamics in the SPA'Encinares del Rio Alberche y Cofio, Central Spain,1984-1999[J]. Landscape and Urban Planning,2004,66(4):217-232.
    [151]Roberts JJ,Best BD,Dunn DC,et al.Marine geospatial ecology tools:An integrated framework for ecological geo processing with ArcGIS, Python,R,MATLAB,and C++[J].Environmental Modelling&Software,2010,25:1197-1207.
    [152]Rubenstein M B, Zandi I. Application of a genetic algorithm to policy planning:The case of solid waste [J]. Environment and Planning B,1999,26(6):893-907.
    [153]Samuel R S. Urban planning, smart critique arid extension [J]. Review of USA growth, and economic calculation:an USA Economics,2004,17:33-35.
    [154]Seidl A, Moraes A. Global valuation of ecosystem services:application to the Pantanal da Nhecolandia, Brazil [J]. Ecological Economics,2000,33:1-6.
    [155]Soderqvist T, Mitsch W, Turner R. Valuation of wetlands in a landscape and institutional perspective [J]. Ecological Economics,2000,35:1-6.
    [156]Spash C. Informing and forming preferences in environmental valuation:Coral reef biodiversity [J]. Journal of Economic Psychology,2002,23:665-687.
    [157]Sutton P C, Constanza R. Global estimates of market and non-market values derived from nighttime satellite in agery, land cover, and ecosystem service valuation [J]. Ecological Economics,2002,41:509-527.
    [158]Swetnam RD, Fisher B, Mbilinyi BP, et al.Mapping socio-economic scenarios of land cover change:A GIS method to enable ecosystem service modeling [J]. Journal of Environmental Management,2011,92:563-574.
    [159]Turner R, Bergh, Jereon C,et al. Ecological-economic analysis of wetlands:scientific integration for management and policy [J]. Ecological Economics,2000,35:7-23.
    [160]Veldkamp A, Fresco L O. CLUE-CR:An integrated multi-scale model to simulate land use change scenarios in Costa Rica[J]. Ecological Modeling,1996,91:231-248.
    [161]Verburg P H, de Koning G H J, Kok K. A spatial explicit allocation procedure for modeling the pattern of land use change based upon actual land use [J]. Ecological Modeling,1999,116:45-61.
    [162]Verburg P H, Eickhout B, van Meijl H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use [J]. Annals of Regional Science,2008,42(1):57-77.
    [163]Ward D P, Murray A T, Phinn S R. A stochastically constrained cellular model of urban growth [J]. Computer, Environment and Urban System,2000,24:539-558.
    [164]Ward D P, Murray A T, Phinn S R. Integrating spatial optimization and cellular automata for evaluating urban change [J]. The Annals of Regional Science,2003,37(1):131-148.
    [165]Westman W E. How much are nature's services worth? [J].Science,1977,197:960-964.
    [166]White R,Engelen G,Uijee I. The use of constrained cellular automata for high-resolution modeling of urban land/use dynamics [J]. Environment and Planning B:Planning and Design, 1997,24:323-343.
    [167]Wischmerier W H, et al. A soil erodibility nomorgraph farm land and construction sites[J]. Journal of Soil and Water Conservation,1971,26:189-193.
    [168]Wofsy F S, Goulden F M, Fan F S,et al.Net exchange of CO2 in midlatitude forests [J]. Science, 1993,60:1314-1317.
    [169]Wu Jianguo, Hobbs R. Key issue and research priorities in landscape ecology:An idiosyncratic synthesis [J]. Landscape Ecol,2002,17:355-365.
    [170]Zhang T. Community features and urban sprawl:The case of Chicago metropolitan region [J].Land Use Policy,2001,18:221-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700