用户名: 密码: 验证码:
菊花状ZnO纳米线簇的制备及其吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维ZnO基纳米材料以其卓越的磁光电性质和新颖的形态成为当今科学研究的一大热点,特别地,对具有较强电磁损耗特性的一维ZnO基纳米吸波材料的研究,不仅涉及到绿色生存空间和信息安全而且关系到国防安全,因而具有重要的科学价值与现实意义。
     本文基于密度泛函理论框架下的第一性原理计算方法,系统研究了ZnO体相材料和ZnO纳米线及其半导化掺杂和磁性掺杂体系的电子结构。结果表明,无论ZnO体相材料还是纳米线,Sb掺杂有效地增强了体系的导电能力,Mn掺杂有效地增大了体系的净磁矩;由于量子尺寸效应和表面效应,半导化掺杂纳米线中参与共有化运动的电子数量比相应体相材料要多,Mn、Co磁性掺杂纳米线中磁性元素的自旋极化及其与本征离子间耦合作用的强度、范围被一定程度地放大。
     采用水热法,应用正交设计理论优化了制备菊花状ZnO纳米线簇的工艺参数。采用X射线衍射仪、X射线能量色散谱仪、扫描电子显微镜、透射电子显微镜、微波网络矢量分析仪等手段对样品的成分、微观结构、形态、吸波性能等进行了分析表征,得出了菊花状ZnO纳米线簇的吸波性能与其形态密切相关的规律,并给出了菊花状ZnO纳米线簇的成核机理与生长机制。
     在理论研究结果的指导下,结合制备菊花状ZnO纳米线簇优化的工艺参数,制备出了具有较好吸波性能的菊花状ZnO:Sb和ZnO:Mn纳米线簇。应用生长基元层状叠合模型解释了Sb掺杂条件下ZnO纳米线末端裸露六边形(0001)晶面的形成机理,并对由于Sb掺杂而引入的新的损耗机制进行了分析。同时,基于ZnO:Mn纳米线理论研究结论,结合F-center模型,提出了菊花状ZnO:Mn纳米线簇室温铁磁性来源的理论解释。测试表明,在Sb、Mn掺杂的菊花状ZnO纳米线簇/石蜡质量之比分别为1:4的条件下,3%Sb、Mn掺杂的反射损耗分别在16.55GHz和8.05GHz处取极值-18.48dB和-13.55dB。
     采用聚丙烯酰胺(PAM)辅助水热法,制备了具有较好吸波性能的菊花状ZnO纳米线簇,当PAM浓度与Zn~(2+)浓度之比为0.00005%时,在菊花状ZnO纳米线簇/石蜡质量之比为1:4的条件下,其反射损耗在13.5GHz处取极值-21.82dB。应用PAM电离吸附模型解释了不同浓度PAM对ZnO纳米线生长的影响机制,并应用竹笋模型解释了ZnO纳米线上的环状条纹的形成机理,得出了PAM能够诱导菊花状ZnO纳米线簇磁性的结论。
     在分析菊花状ZnO:Sb、ZnO:Mn纳米线簇和PAM辅助制备的菊花状ZnO纳米线簇吸波特征的基础上,设计并制备出宽频强吸收吸波体,其反射损耗在14.65GHz处取极值-13.77dB,小于-10dB的吸收带宽为6.9GHz。
Due to predominant magnetic, optical and electrical properties, and novel morphologies, low dimensional ZnO-based nano-materials have been one of subject of extensive study at present. Especially, the good electromagnetic loss properties of one dimensional ZnO-based wave-absorbing nano-material makes it not only involved in green living space, but also related to information and national defense security. Therefore, the study of low dimensional ZnO-based nano-materials has significant scientific and practical value.
     The electronic structures of bulk ZnO, ZnO nanowires, and semi-conductivity doped and magnetic doped ZnO system have been studied systematically by first-principles based on density-functional theory. The results show that the conductivity of all above is effectively enhanced by Sb doping, and the net magnetic moment of the ZnO system is also effectively increased by Mn doping. Meanwhile, owing to quantum size and surface effects, more electrons participate in shared motion in semi-conductivity doped nanowires than in the bulk. The spin polarization of magnetic elements in Mn or Co doped naonowires is enhanced, and also the coupling of intrinsic ions and magnetic elements is promoted.
     The technological parameters for hydrothermal preparation of chrysanthemum-like ZnO nanowire clusters are optimized by orthogonal design principle. The sample's components, microstructures, morphologies and wave-absorbing properties are analyzed and characterized by X-ray diffraction, X-ray energy dispersive spectroscopy, scanning electron microscope, transmission electron microscope and microwave vector network analyzer. An important conclusion has been reached that the wave-absorbing properties of chrysanthemum-like ZnO nanowire clusters depend on their morphologies, and the nucleation and growth mechanism have been also proposed in the paper.
     Based on the important conclusions of theoretic study, and combined with the optimized technological parameters for preparation of chrysanthemum-like ZnO nanowire clusters, chrysanthemum-like ZnO:Sb and ZnO:Mn nanowire clusters with good wave-absorbing properties have been prepared. The formation mechanism of hexagonal crystal face (0001) at the end of Sb-doped ZnO nanowires is explained by layered superposition model of growth units, and the new loss mechanism caused by Sb doping is also analyzed in the paper. Furthermore, based on the theoretic study of ZnO:Mn nanowires and F-center model, one theoretical interpretation of the magnetic source of chrysanthemum-like ZnO:Mn nanowire clusters in room temperature is proposed. The result shows that the extremum of reflection loss of 3% Sb doped chrysanthemum-like ZnO nanowire clusters gets to -18.48dB at 16.55GHz, and 3% Mn doping is -13.55dB at 8.05GHz when the weight ratio of ZnO to paraffin is 1/4.
     Chrysanthemum-like ZnO nanowire clusters with good wave-absorbing properties have been prepared by PAM-assisted hydrothermal process. When the ratio of PAM concentration to Zn~(2+) concentration is 0.00005%, and the weight ratio of Chrysanthemum-like ZnO nanowires clusters to paraffin is 1/4, the extremum of reflection loss gets to -21.82dB at 13.5GHz. The influence of different PAM concentration on the growth of ZnO nanowires is explained by PAM ionization and adsorption model, and the formation mechanism of ring stripes in the ZnO nanowires is also explained by bamboo shoot model. One conclusion that PAM induced the magnetic properties of chrysanthemum-like ZnO nanowires clusters is obtained.
     A kind of absorber with broadband and strong absorption has been designed and prepared, based on the analysis and study of wave-absorbing properties of chrysanthemum-like ZnO:Sb, ZnO:Mn nanowire clusters and chrysanthemum-like ZnO nanowire clusters prepared by PAM-assisted hydrothermal process. The extremum of reflection loss gets to -13.77dB at 14.65GHz, and the bandwidth covers 6.9GHz under -10dB.
引文
[1]邢丽英.隐身材料[M].北京:化学工业出版社,2004:1-10
    [2]刘世良.国外新一代隐身导弹[J].飞航导弹,1993(7):40-43
    [3]雷旺敏.隐身技术发展史[J].电子工程信息,1990(11):25-28
    [4]陈益邻,廖全旺.国外飞机隐身技术的发展局势[J].航空技术,1995(5):29-32
    [5]郑秀文.吸波材料研究进展[J].化工时刊,2007,21(8):58-65
    [6]冯永宝,丘泰,张明雪,等.雷达吸波材料研究进展[J].材料导报,2003,17(12):56-65
    [7]赵九蓬,李垚,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002,10(2):219-224
    [8]Zhang Hai-Jun,Yao Xi,Zhang Liang-Ying.The preparation and microwave properties of Ba_3Zn_zCo_(2-z)Fe_(24)O_(40) ferrite by citrate sol-gel process[J].Mater.Sci.Eng.,2001,84B:252-257
    [9]赵灵智,胡社军,李伟善,等.吸波材料的吸波原理及其研究进展[J].现代防御技术,2007,35(1):27-32
    [10]李红英.稀土六方铁氧体的合成、表征及吸波性能的研究[D].吉林大学博士学位论文,2007
    [11]潘喜峰.钴基金属包覆锶铁氧体复合粉末的制备[D].上海交通大学博士论文学位论文,2008
    [12]周友杰,刘祥萱,张有智.雷达吸波材料研究进展[J].飞航导弹,2007(10):59-62
    [13]马格林.红外和雷达复合隐身材料-掺杂氧化物半导体[J].红外技术,2003,25(4):77-80
    [14]康青.新型微波吸收材料[M].北京:科学出版社,2006:2-15
    [15]江名喜.配合-水热氧化法合成锑掺杂二氧化锡纳米粉末及其吸波性能的研究[D].长沙:中南大学,2006
    [16]Kima S.S.,Kima S.T.,Ahnb J.M.,et al.Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J].J.Magn.Magn.Mater.,2004,271(1):39-45
    [17]Pinho M.S.,Gregory M.L.,Nunes R.C.R.,et al.Performance of radar absorbing materials by waveguide measurements for X-and Ku-band frequencies[J].European Polymer Journal,2002,38(11):2321-2327
    [18]Giannakopoulou T.,Oikonomou A.,Kordas G,et al.Double-layer microwave absorbers based on materials with large magnetic and magnetic loss[J].J.Magn.Magn.Mater.,2004,271(2-3):224-229
    [19]Xie JianLiang,Han ManGui,Chen Liang,et al.Microwave-absorbing properties of NiCoZn spinel ferrites[J].J.Magn.Magn.Mater.,2007,314(1):37-42
    [20]Hourquebie P.,Blondel B.,Dhume S.et al.Microwave and optical properties of soluble conducting polymers[j].Synthetic Metals,1997,85(1-3):1437-1438
    [21]Pinho M.S.,Gregori M.L.,Nunes R.R.,et al.Aging effect on the reflectivity measurements of polyehloroprene matrices containing carbon black and earbonyl-iron powder[J].Polymer Degradation and Stability,2001,73(1):1-5
    [22]Meshrama M.R.,Agrawala N.K.,Sinhaa B.,et al.Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J].J.Magn.Magn.Mater.,2004,271(2-3):207-214
    [23]Ghasemi A.,Hossienpour A.,Morisako A.,et al.Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite[J].J.Magn.Magn.Mater.,2006,302(2):429-435
    [24]Shen Guo Zhu,Xu Zheng and Li Yi.Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites[J].J.Magn.Magn.Mater.,2006,301(2):325-330
    [25]Peng C.H.,Hwang C.C.,Wan J.,et al.Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane(TPU)-bonded NiZn-ferrites prepared by combustion synthesis method[J].Mater.Sci.Eng.B,2005,117(1):27-36
    [26]Zhao NaiQin,Zou TianChun,Shi ChunSheng,et al.Microwave absorbing properties of activated carbon-fiber felt screens(vertical-arranged carbon fibers)/epoxy resin composites[J].Mater.Sci.Eng.B,2006,127(2-3):207-211
    [27]Abbas S.M.,Chandra M.,Verma A.,et al.Complex permittivity and microwave absorption properties of a composite dielectric absorber[J].Composites Part A:Applied Science and Manufacturing,2006,37(11):2148-2154
    [28]Phang S.W.,Daik R.and Abdullah M.H..Poly(4,4'-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer[J].Thin Solid Films,2005, 477(1-2):125-130
    [29]Lin HaiYan,Zhu Hong,Guo HongFan,et al.Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes[J].Mater.Lett.2007,61(16):3547-3550
    [30]Cao MaoSheng,Zhu Jing,Yuan Jie,et al.Computation design and performance prediction towards a multi-layer microwave absorber[J].Materials & Design,2002,23(6):557-564
    [31]Seo S.,Chin W.S.,Lee D.G,et al.Characterization of electromagnetic properties of polymeric composite materials with free space method[J].Composite Structure,2004,66(1-4):533-542
    [32]Liu HanXin,Hu Cben,Zhu XianJun,et al.Solid chemical reaction in microwave and millimeter-wave fields for the syntheses of LiMn_2O_4 compound[J].Materials Chemical and Physics,2004,88(2-3):290-294
    [33]孔德明,刘祖黎.掺杂聚苯胺吸波材料的研究[J].高分子材料科学与工程,2000,16(3):169-171
    [34]Shen X,Gong R.Z.,Nie Y.,et al.Preparation and electromagnetic performance of coating of multiwall carbon nanotubes with iron nanogranule[J].J.Magn.Magn.Mater.,2005,288:397-402
    [35]Saib A.,Bednarz L.,Daussin R.,et al.Carbon nanotube composites for broadband microwave absorbing materials[J].IEEE:Microwave Theory and Techniques,2006,54(6):2745-2754
    [36]张克立,从长杰,郭光辉,等.纳米吸波材料的研究现状与展望[J].武汉大学学报(理学版),2003,49(6):680-684
    [37]周克省,黄可龙,孔德明,等.纳米无机物/聚合物复合吸波功能材料[J].高分子材料科学与工程,2002,18(3):15-19
    [38]李世涛,乔学亮,陈建国.纳米复合薄膜吸波剂的研究[J].电子元件与材料,2004,23(6):25-27
    [39]Haslam A.J.,Phillpot S.R.,Wolf D.,et al.Mechanisms of grain growth in nanoerystalline fee metals by molecular-dynamics simulation[J].Mater.Sei.Eng.A,2001,318(1-2):293-312
    [40]曾爱香,熊惟浩.纳米复合铁氧体微波吸收剂的研究进展[J].长沙电力学院学报(自 然科学版),2003,18(4):72-76
    [41]孙晓刚.碳纳米管/聚合物复合吸波材料性能研究[J].塑料,2004,33(5):66-69
    [42]罗敏,陈震兵,陈小立,等.纳米吸波材料在人体防护中的现状及其发展方向[J].纺织科学与研究,2002(2):27-30
    [43]曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003(2):34-36
    [44]孙晶晶,李建保,张波,等.陶瓷吸波材料的研究现状[J].材料工程,2003(2):43-47
    [45]于仁光,乔小晶,张同来.新型雷达波吸收材料研究进展[J].兵器材料科学与工程,2004,27(2):63-67
    [46]杜波,袁华,刘俊峰,等.镀钴碳纳米管/环氧树脂复合材料吸波性能研究[J].兵器材料科学与工程,2008,31(6):30-33
    [47]罗发,周万城,焦桓,等.高温吸波材料研究现状[J].宇航材料工艺,2002(1):8-11
    [48]张政权,李铁虎,经德齐.雷达吸波材料的研究现状[J].材料导报,2007,21(5):307-309
    [49]谢炜,程海峰,楚增勇,等.新型吸波碳纤维的研究进展[J].材料导报,2007,21(9):40-43
    [50]王光华,董发勤,贺小春.纳米吸波材料研究进展[J].中国粉体技术,2007(4):35-38
    [51]吴红焕,王晓燕,张玲,等.碳纤维吸波材料的研究进展[J].材料导报,2007,21(5):115-117
    [52]Ubran R.,Putilin A.,Wigen P.E.,et al.Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy[J].Phys.Rev.B,2006,73:212410
    [53]Chlan V.,Novak P..Hyperfme interaction in lutetium iron garnet[J].Appl.Phys.,2006,99:08M093
    [54]Xu Z.C..Magnetic properties of indium-substituted BiCaVIG single crystals[J].Appl.Phys.,2006,99:08M707
    [55]王琦,官建国,刘飚,等.Zn_2-W型六角铁氧体制备工艺对晶体结构的影响[J].功能材料,2004,35(2):164-168
    [56]景红霞,李巧玲,李保东,等.掺杂W型锶铁氧体的制备及磁性能研究[J].新技术新工艺,2008(11):111-113.
    [57]张丽,谢建良,周佩珩,等.α-Fe/W型铁氧体复合材料微波特性研究[J].电子科技 大学学报,37(3):447-449
    [58]赵东林,周万城,万伟.Si/C/N复相粉体的微波介电特性[J].物理学报,2001,50(12):2471-2476
    [59]王海泉,陈秀琴.吸波材料的研究进展[J].材料导报,2003,17(9):170-172
    [60]Courric S.,Tran V.H..Electromagnetic properties of blends of poly (p-phenylene-vinylene) derivatives[J].Polymers for Advanced Technologies,2000,11(6):273-279
    [61]刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007:243-256
    [62]侯肖瑞,孙昌,冷亮,等.微纳米吸波材料的研究现状[J].现代化工,2006,26(Sup.):112-115
    [63]王海.雷达吸波材料的研究现状和发展方向[J].上海航天,1999(1):55-59
    [64]马正先,姜玉芝,韩跃新,等.纳米氧化锌制备原理与技术[M].北京:中国轻工业出版社,2009:14-16
    [65]Heo.Y.W,Varadarajan.V,Kaufman.M,et al.Site-specific growth of ZnO nanorods using catalysis driven molecular-beam epitaxy[J].Appl.Phys.Lett.,2002,81:3064
    [66]Ohta H,Kawamura K,Orita M,et al.Current injection emission from a transparent p-n junction composed of p-SrCu_2O2/n-ZnO[J].Appl.Phys.Lett.,2000,77:475
    [67]Lorite I,Rubio-Marcos F,Romero J J,et al.In situ formation of Mn-doped ZnO aligned structures by rapid heating method[J].Materials Letters,2009,63(2):212-214
    [68]Norberg N S,Kittilstved K R,Amonette J E,et al.Gamelin.Synthesis of Colloidal Mn~(2+):ZnO Quantum Dots and Hing-Te Ferromagnetic Nanocrystalline Thin Films[J].J.Am.Chem.Soc.,2004,126(30):9387-9398
    [69]Liu J J,Yu M H,Zhou W L.Well-aligned Mn-doped ZnO nanowires synthesized by a chemical vapor deposition method[J].Appl.Phys.Lett.,2005,87:172505
    [70]Zhang X M,Zhang Y,Wang Z L,et al.Synthesis and characterization of Zn_(1-x)Mn_xO nanowires[J].Appl.Phys.Lett.,2008,92:162102
    [71]Philipose U,Nair V,Trudel S,et al.High-temperature ferromagnetism in Mn-doped ZnO nanowires[J].Appl.Phys.Lett.,2006,88:263101
    [72]Wu J J,Liu S C,Yang M H.Room-temperature ferromagnetism in well-aligned Zn_(1-x)Co_xO nanorods[J].Appl.Phys.Lett.,2004,85:1027
    [73]Chen J J,Yu M H,Zhou W L,et al.Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition[J].Appl.Phys.Lett.,2005,87:173119
    [74]Cheng C,Xu G Y,Zhang H Q,et al.Solution synthesis,optical and magnetic properties of ZnO_(1-x)Co_xO nanowires[J].Materials Letters,2008,62(21-22):3733-3735
    [75]Chang Y Q,Wang D B,Luo X H,et al.Synthesis,optical,and magnetic properties of diluted magnetic semiconductor Zn_(1-x)Mn_xO nanowires via vapor phase growth[J].Appl.Phys.Lett.,2003,83:4020
    [76]Lin Y,Jiang D M,Shi W Z,et al.Fe-doped ZnO magnetic semiconductor by mechanical alloying[J].Journal of Alloys and Compounds,2007,436(1-2):30-33
    [77]Xin M J,Chen Y Q,Jia C,et al.Electro-codeposition synthesis and room temperature ferromagnetic anisotropy of high concentration Fe-doped ZnO nanowire arrays[J].Materials Letters,2008,62(17-18):2717-2720
    [78]Cong C J,Hong J H,Liu Q,Y,et al.Synthesis,structure and ferromagnetic properties of Ni-doped ZnO nanoparticles[J].Solid State communications,2006,138(10-11):511-515
    [79]Dayan-Jayadev N,Sainkar S R,Karekar S R,et al.Formulation and characterization of ZnO:Sb thick-film gas sensors[J].Thin Solid Films,1998,325(1-2):254-258
    [80]Hyun-Jin Kim,Ho-Nyeon Lee,Jae-Chel Park,et al.Themechanism of improvement of contact resistivity in TFT-LCDs between IZO layers and Al-based metal lines by diffusion of Mo atoms[J].Current Applied Physics,2002,2(6):451-454
    [81]Coutts T J,Mason T O,Perkins J D,et al.Uniformity in large area ZnO:AI films prepared by reactive mid frequency magnetron sputtering[J].Proc.Electrochem.Soc,1999,11(2):274
    [82]刘桂香,徐光亮,马建军,等.ZnO压敏陶瓷的晶界行为[J].陶瓷学报,2004,25(2):128-132
    [83]Li X,Zhai F F,Liu Y,et al.Synthesis and photoluminescence study on ZnO nano-particles[J].Chin.Phys.B.,2007,16(9):2769-2772
    [84]曹佳伟,黄运华,张跃,等.四针状纳米氧化锌电磁波吸收特性[J].物理学报,2008, 57(6):3641-3645
    [85]Chen Y.J.,Cao M.S.,Wang T.H.,et al.Microwave absorption properties of the ZnO nanowire-polyester composites[J].Appl.Phys.Lett.,2004,84(17):3367-3369
    [86]刘建华,孙杰,李松梅,等.不同形貌氧化锌的微波电磁性能研究[J].北京航空航天大学学报,2004,30(9):822-825
    [87]Cao M S,Shi X L,Fang X Y,et al.Microwave absorption properties and mechanism of cagelike ZnO/SiO_2 nanocomposites[J].Appl.Phys.Lett.,2007,91:203110
    [88]Zhou R F,Qiao L,Feng H T,et al.Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees[J].J.Appl.Phys.,2008,104:094101
    [89]蔡少华,黄坤耀,张玉容.元素无机化学[M].广州:中山大学出版社,1995
    [90]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [91]余保龙,张桂兰,汤国庆,等.氧化锌纳米微晶的顺磁共振特性[J].物理化学学报,2004,11(7):587-589.
    [92]吕伟,吴莉莉,朱红梅,等.水热法制备氧化锌纳米棒[J].山东大学学报(工学版),2005,35(6):1-4
    [93]赵文刚,马忠权,裴广庆,等.ZnO纳米线的水热法生长[J].人工晶体学报,2007,36(3):634-637
    [94]Pan Z.W.,Dai Z.R.,Wang Z.L..Nanobelts of semiconducting oxides[J].Science,2001,291(9):1947-1949
    [95]Huang M.H.,Mao S.,Feick H.,et al.Room-temperature ultraviolet Nanowire nanolasers[J].Science,2001,292(8):1897-1899
    [96]Ding Yong,Gao PuXian,Wang ZhongLin.Catalyst-Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:A Case of Sn/ZnO[J].Journal of the American Chemical Society,2004,126(7):2066-2072
    [97]Chang PaiChun,Fan ZhiYong,Wang DaWei,et al.ZnO Nanowires Synthesized by Vapor Trapping CVD method[J].Chem.Mater.,2004,16(24):5133-5137
    [98]Shen GuoZhen,Cho J.H.,Lee C.J..Morphology-controlled synthesis,growth mechanism and optical properties of ZnO nanonails[J].Chem.Phys.Lett.,2005,401(4-6):414-419
    [99]Wang G.Z.,Ma N.G,Deng C.J.,et al.Large-scale synthesis of aligned hexagonal ZnO nanorods using chemical vapor deposition[J].Materials Letters,2004,58(16):2195-2198
    [100]Zhao DongXu,Andreazza C.,Andreazza P..Catalyst growth of single crystal aligned ZnO nanorods on ZnO thin films[J].Physica Status Solidi(c),2005,2(3):1137-1140
    [101]Wang Z.L..Novel nanostructures of ZnO for nanoscale photonics,opoelectronics,piezoelectricity,and sensing[J].Appl.Phys.A,2007,DOI:10.1007/s00339-007-3942-8
    [102]Peng C.B.,Cao y.,Dai D..Magnetic properties of Ag/Ni multilayered films[J].J.Appl.Phys.,1992,71(7):3457
    [103]祖庸,雷闫盈,王训,等.纳米氧化锌的奇妙用途[J].化工新型材料,1999,27(3):14-16
    [104]山口靖英,山崎正敏.抗菌·脱臭体[P].日本专利:特开平8-224289,1996
    [105]陈怀杰.溶胶-凝胶法制备纳米氧化锌粉体及纳米氧化锌粉体的表征[D].重庆大学硕士论文,2006
    [106]辛显双,周百斌,肖芝燕,等.纳米氧化锌的研究进展[J].化学研究与应用,2003,15(5):601-606
    [107]曹优明,郑仕远,张辉,等.纳米氧化锌的制备方法与应用[J].渝西学院学报(自然科学版),2003,2(4):15-18
    [108]马占营,何仰清,徐维霞.纳米ZnO制备方法的研究进展[J].咸阳师范学院学报,2007,22(4):36-39
    [109]Kong Y.C.,Yu D.P.,Zhang B.,et al.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J].Appl.Phys.Lett.,2001,78(4):407-409
    [110]楚珑晟,周祚万.氧化锌晶须电磁波吸收性能研究[J].功能材料,2006,37(1):47-49
    [111]Fan Z.Y.,Wang D.W.,Chang P.C.,et al.ZnO nanowire field-effect transistor and oxygen sensing property[J].Appl.Phys.Lett.2004,85:5923
    [112]孟祥东.CVD法制备ZnO的光致发光特性研究及碱金属钛酸盐纳米线的合成与表征[D].中国科学技术大学博士论文,2007
    [113]苗鸿雁,罗宏杰.陶瓷材料制备技术[M].西安:陕西科学技术出版社,2003:42-51
    [114]周军,方庆清,王保明,等.溶胶-凝胶法制备Zn_(1-x)Mg_xO薄膜及其发光性质[J].发光学报,2008,29(6):1036-1040
    [115]黄焱球,刘冬梅,曾亦可,等.ZnO超微粉的溶胶-凝胶制备及晶体生长特征[J].硅酸盐学报,2001,29(6):580-583
    [116]白伟.半导体ZnO微米/纳米结构制备及其性质研究[D].华东师范大学硕士论文,2007
    [117]Sun X.M.,Chen X.,Deng Z.X.,et al.A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J].Mater.Chem.Phys.,2003,78:99-104
    [118]Liu B.,Zeng H.C.Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J].J.AM.CHEM.SOC.,2003,125:4430-4431
    [119]Ahigeyuki Somiya,K Hishinuma and Tokuji Akiba.A new materials processing-hydrothermal processing[J].Bull.Mater.Sci.1995,18(6):811-818
    [120]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206
    [121]苏勉曾,谢高阳,申泮文,等译.固体化学及其应用[M].上海:复旦大学出版社,1989
    [122]Chen Q.W.,Qian Y.T.,Chen Z.Y.,et al.Hydrothermal epitaxy of highly oriented TiO2thin films on silicon[J].Appl.Phys.Lett.1995,66(13):1608.
    [123]Wells R.L.,Gladfelter W.L..Pathways to Nanocrytstalline Ⅲ-Ⅴ(13-15) Compound Semiconductors[J].Journal of Cluster Science,1997,8(2):217-238
    [124]Yanagisawa K.,Nishioka M.,Yamasakl N..Immobilization of Radioactive Wastes in Hydrothermal Synthetic Rock[J].Journal of Nuclear Science and Technology,1986,23(6):550-558
    [125]蔡淑珍,韦志仁,王伟伟,等.水热合成奇异形态的ZnO晶体[J].人工晶体学报,2007,36(2):323-326
    [126]郭敏,刁鹏,王新东,等.水热法制备氧化锌纳米阵列的生长动力学研究[J].北京科技大学学报,2007,29(7):735-738
    [127]赵文刚,马忠权,裴广庆,等.ZnO纳米线的水热法生长[J].人工晶体学报,2007,36(3):634-637
    [128]张艳辉,田彦文,邵忠财,等.花状氧化锌的制备与控制生长[J].过程工程学报,2006,6(2):215-218
    [129]李汶军.纳米晶粒水热制备过程中的粒度与形态调控[D].上海硅酸盐研究所博士论文,2001
    [130]周玉.材料分析方法(第2版)[M].北京:机械工业出版社,2007
    [131]张锐.现代材料分析方法[M].北京:化学工业出版社,2007
    [132]施景芳.隐身吸波材料反射率测试方法的研究[J].宇航材料工艺,1988,6:50-55
    [133]何山,王惠良.弓形法测量雷达吸波材料反射率[J].隐身技术,2001,1:27-29
    [134]何山.雷达吸波材料性能测试[J].材料工程,2003,6:25-28
    [135]Jeffrey S.The use of a vector network analyzer for measuring the performance of radar absorbing materials[R].Ottawa:Defence research establishment Ottawa,1991
    [136]冯永宝,丘泰,李晓云.同轴法测量微波吸收材料反射率研究[J].南京理工大学学报,2007,31(5):650-653
    [137]Kohn W.,Sham L.J..Quantum Density Oscillations in an Inhomogeneous Electron Gas[J].Phys.Rev.1965,137(6A):A1697-A1705
    [138]P.Hohenberg and W.Kohn.Inhomogeneous Electron Gas[J].Phys.Rev.1964,136(3B):B864-B871
    [139]W Kohn.Density function theory:fundamentals and applications[M].In:Bassani,1975
    [140]L Sham.Density function theory and computational materials physics[M].Kluwer Academic Publishers,1996
    [141]熊家炯.材料设计[M].天津:天津大学出版社,2000
    [142]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998
    [143]冯端,金国均.凝聚态物理[M].北京:高等教育出版社,2002
    [144]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002
    [145]张富春.ZnO电子结构与属性的第一性原理计算[D].西北大学硕士学位论文,2006
    [146]Weitao Yang.Direct calculation of electron density in density-functional theory[J].Phys.Rev.Lett.1991,66(11):1438-1441
    [147]A.D.Becke.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Phys.Rev.A.1988,38(6):3098-3100
    [148]V.Fock.Naherungsmethode Zur Losung des quantenmechanischen Mehrkorperproblems[J].Zeitschrift fur physic A Hadrons and Nuclei,1930,61(1-2):126-148
    [149]S H Vosko,L Wilk and M Nusair.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J].Canadian Journal of Physics,1980,58(8):1200-1211
    [150]http://www.accelrys.com
    [151]Materials Studio中文使用手册
    [152]Segall M D,Lindan P J D,Probert M J,J.Phys.Cond.Matt.,2002,14(11):717
    [153]H Karzel,W Potzel,M K Oerlein,et al.Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures[J].Phys.Rev.B.1996,53(17):11425-11438
    [154]Ermoshin V A,Veryazov V A.Electronic Structure Investigation of Bulk ZnO and Its (100) Surface[J].Physca status solidi(b),1995,189(2):K49-K53
    [155]Massidda S,Resta R,Posternak M,et al.Polarization and dynamical charge of ZnO within different one-particle schemes[J].Phys.Rev.B,1995,52(24):R16977-R16980
    [156]Oshikiri M,Aryasetiawan F.Band gaps and quasiparticle energy calculations on ZnO,ZnS,ZnSe in the zinc-blende structure by the GW approximation[J].Phys.Rev.B,1999,60(15):10754-10757
    [157]张富春.3d过渡金属掺杂一维ZnO纳米材料磁、光机理研究[D].中国科学院西安光机所博士学位论文,2009
    [158]Yan J F,Zhao L L,Zhang Z Y.Optimization of(002)-oriented ZnO film synthesis in Sol-Gel process and film photoluminescence property[J].Chin.Phys.Lett.,2008,25(6):2253
    [159]张克从,张乐潓.晶体生长科学与技术(第二版)[M].北京:科学出版社,1997
    [160]Wang Q,Sun Q,Chen G,et al.Vacancy-induced magnetism in ZnO thin films and nanowires[J].Phys.Rev.B,2008,77(20):205411
    [161]周春华.纳米Fe_3Al金属间化合物吸波性能的研究[D].山东大学博士论文,2004
    [162]高红.准一维ZnO纳米材料的合成和发光性质研究[D].哈尔滨工业大学博士论文,2007
    [163]张瑞,张璠,赵有文,等.掺Sb的ZnO单晶的缺陷和性质研究[J].半导体学报,2008,29(10):1988-1991
    [164]Ilican S,Caglar Y,Caglar M,et al.Preparation of Sb-doped ZnO nanostructures and studies on some of their properties[J].Physica E,2008,41:96
    [165]Lee S Y,Park B O.structural,electrical and optical characteristics of SnO_2:Sb thin films by ultrasonic spray pyrolysis[J].Thin Solid Films,2006,510:154
    [166]Benelmadjat H,Boudine B,Halimi O,et al.Fabrication and characterization of pure and Sn/Sb-doped ZnO thin films deposited by sol-gel method[J].Optics & Laser Technology, 2009,41:630
    [167]Wei Z R,Liu C,Li J,et al.Hydrothemal systhesis of diluted magnetic Zn_(1-x)Mn_xO semiconductor[J].Journal of Synthetic Crystals,2006,35:95
    [168]Benjamin D Y,David O Z,Peter J P,et al.Transition-metal doped ZnO nanowires[J].Angew.Chem.Int.Ed.,2006,45:420
    [169]Sandhu A.Ferromagnetic semiconductors[J],the Advanced Semiconductor Magazine,2005,18:32
    [170]Zhang H W,Shi E W,Chen Z Z,et al.Magnetism in Zn_(1-x)Mn_xO crystal prepared by hydrothermal method[J].Solid State Communications,2006,137:272
    [171]Wang J,Chen W,Wang M R.Properties analysis of Mn-doped ZnO piezoelectric films[J].Journal of Alloys and Compounds,2008,449:44
    [172]杨枣.一维ZnO纳米结构的制备、性能和器件研究[D].湖南大学博士论文,2008
    [173]金维芳.电介质物理学(第2版)[M].北京:机械工业出版社,1995
    [174]Coey J M D,Venkatesan M,Fitzgerald C B.Donor impurity band exchange in dilute ferromagnetic oxides[J].Nature Materials,2005,4:173-179
    [175]张云鹏.高过渡族元素掺杂ZnO基磁性半导体研究[D].山东大学博士论文,2008
    [176]金谷.表面活性剂化学[M].安徽:中国科学技术大学出版社,2008
    [177]陈庆春,刘晓东,邓慧宇.添加剂和温度对氧化锌形貌的影响研究[J].无机盐工业,2005,37:34
    [178]陶新永,张孝彬,孔凡志,等.PEG辅助氧化锌纳米棒的水热法制备[J].化学学报,2004,17:1658
    [179]赵俊英.有机胺作表面活性剂制备太酸钡纳米粉体及其介电陶瓷的研究[D].西北大学硕士学位论文,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700