用户名: 密码: 验证码:
纳米及纳米复合材料在铝热剂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应性材料(“Reactive Materials”)通常是指由两种或多种非炸药类固体物质所组成的亚稳态材料,其特点是密度较大、活性较高、感度很低,且在强机械冲击力的作用下才可被引发剧烈的化学反应而释放出以热能为主的巨大能量,多被应用于制造反应性破片(“Reactive Fragments”)、装填高速射弹、制造含能药型罩或爆炸成型弹丸等研究,以大幅提高武器战斗部毁伤目标的威力。目前,国外已明确将反应性材料作为先进含能材料立项研究,而国内对这种材料的研究尚处于起步阶段。就已有的研究结果而言,有望作为反应性材料的物质很多,其中铝热剂由于具有能量高、密度大、感度低、配方灵活等优点被国内外同行广泛认可。然而,传统铝热剂一般是由大粒度Al粉和微米金属氧化物组成的简单混合体系,其主要缺点是Al粉氧化反应活性低且氧化剂与还原剂的结合程度不高,常导致药剂反应速度慢、实际放热量低、反应过程不集中,特别是反应的起始温度通常很高(>900℃),这直接影响到了它们的点火和燃烧性能,使其很难成为真正意义上的反应性材料而进入实际应用。本研究旨在利用纳米及纳米复合技术,通过改善Al粉氧化反应活性和改善Al与氧化剂结合方式两种途径来提高铝热剂的反应性能,开发由纳米及纳米复合材料组成的铝热剂,通过考察这些特殊铝热剂的常规反应特性、冲击引发特性及反应过程机制,达到将此类物质初步应用为反应性材料的目的。
     首先,从改善传统Al粉的氧化反应活性方面入手,以表面包覆的方式来提高微米Al粉的反应效率,达到提高铝热剂反应性能的目的。采用原位置换法,通过对表面活性剂用量、反应温度、金属盐初始浓度及NH_4F浓度的调节,在近中性水溶液中实现了Ni、Co、Fe或Cu纳米粒子对微米Al粉的包覆,制备出了具有核壳结构的(Ni、Co、Fe或Cu)/Al四种纳米复合粉体。然后,将这四种复合粉体分别与WO_3、SnO_2、PbO、CuO和Fe_2O_3组成铝热剂,以反应的起始和放热峰温度、放热量、最大热流量及活化能作为主要性能参数,分别在Ar气和空气气氛中利用热分析研究了它们的铝热反应特性。结果表明,被上述过渡金属纳米粒子包覆处理后,Al粉的反应活性明显提高,其中纳米Ni粒子对铝热反应的促进效果最佳。另外,对原料Al粉和复合粉体的氧化过程机制进行研究后发现,传统微米Al粉的氧化反应受到了其表面氧化层的严重制约,常导致其反应速度慢、反应不完全;而复合粒子特殊的核壳结构则在很大程度上避免或缓解了这种制约,其表面的过渡金属纳米粒子能够代替大部分氧化层并起到“桥梁”的作用使外界氧迅速、便捷地到达到活性Al核的表面,显著提高了Al的氧化反应活性。
     其次,从改善Al与氧化剂结合方式入手,以将两者相互复合的方式来提高它们之间的接触面积,达到提高铝热剂反应性能的目的。采用溶胶.凝胶法,以Fe(NO_3)_3·9H_2O为前驱体盐,1,2-环氧丙烷为该盐的水解加速剂,分别实现了纳米Al粉、亚微米Al粉、微米Al粉或粗Al粉与纳米Fe_2O_3的复合,成功地制备出了四种Fe_2O_3/Al纳米复合铝热剂,其中Al颗粒被无定形纳米Fe_2O_3粒子致密包覆。研究发现,设定反应初始温度=19℃、Fe(NO_3)_3·9H_2O初始浓度=0.37mol·L~(-1)、1,2-环氧丙烷用量=2.005 mL·g_(硝酸铁)~(-1)为制备的最佳工艺条件。热分析结果表明,Al与Fe_2O_3结合方式以及Al粉粒度等显著影响了铝热剂的反应性能。复合药剂比简单混合的药剂具有更低的反应起始温度和放热峰温度(降低50℃~70℃),这十分有利于提高药剂的点火性能;随着Al粉粒度的减小,铝热反应放热峰温度降低、放热量升高,最大热流量增加,其中纳米Fe_2O_3包裹纳米Al粉所组成的复合药剂在660℃前就基本反应完。过程机制研究结果表明,若药剂中有效Al含量较低则铝热反应进行不完全,残渣中会有大量FeAl_2O_4、Fe_3O_4或FeO等中间产物存在,此时体系表现为较低的反应性能。
     第三,尝试以改变材料晶体结构的方式来提高传统微米Al粉的氧化反应活性,达到提高铝热剂反应性能的目的。通过正反双向对转球磨法制备了Mg含量分别为10wt.%、20wt.%和30wt.%的Mg-Al合金粉,并研究了三种Mg-Al合金与Fe_2O_3的热反应特性。表征结果表明,微米Al粉和Mg粉经合金化处理后其晶粒度由>100nm降低至25nm左右;热分析结果表明,Mg的引入及晶粒度的细化显著提高了微米Al的铝热反应性能,合金粉与Fe_2O_3在Al(Mg)熔化前就能发生剧烈的固.固相反应,并且随着Mg含量的增加,铝热反应的DSC放热峰提前、最大热流量增加。
     最后,为验证上述常规反应性能很高的特殊铝热剂是否也具有反应性材料所必备的冲击引发特性,将传统铝热剂和由纳米及纳米复合材料组成的铝热剂分别添加适量辅助成分后压制成Φ10mm×10mm的药柱并装入钢质弹丸中。采用实弹射击的形式,以装满柴油的钢质密封罐为靶,以击燃靶罐中的柴油为目的,考察了这类材料的冲击引发特性。试验结果表明,尽管传统铝热剂药柱在发射时足够钝感且击中靶罐后可以被侵彻靶罐时所产生的冲击力引发,但其引发后所放出的热量和产生的温度还不足以将难挥发的柴油引燃,燃烧火焰反而最终被油浇灭;而由纳米过渡金属/Al复合材料、Fe_2O_3/Al纳米复合药剂和具有纳米级晶粒度Mg-Al合金粉组成的铝热剂所压制的药柱击中靶罐后不但具有良好的点火性能,点火后还能发生较强烈的爆燃,其放出的热量和产生的火焰引燃了部分飞溅出来柴油。这说明,由纳米及纳米复合材料组成的铝热剂具有较好的冲击引发特性,有望作为冲击引发的反应性材料应用于武器战斗部中。
The term of "reactive materials" denotes a class of energetic materials that generally combine two or more non-explosive solids.This kind of mixtures/composites always have high density,high reactivity and of low sensitivity and can be ignited to release a mass of chemical energy when they undergo a strong impact action.At present,in order to enhance the power of warhead,there is also interest in and initial work underway to examine the application of reactive materials in fabricating reactive fragments,charging in high-speed projectile and replacing standard metal liners in shaped charges or explosively formed penetrators.Some studies indicated that many kinds of metastable materials may be used as reactive materials,in which thermites are most promising because of their large exothermic heat,high density,reliable safety,and desired thermal properties that can be readily tailored by varying ratios of oxidizer to fuel.However,traditional thermites are usually composed of coarse Al particles and micron metal oxide.This kind of thermites usully exhibit the poor reactivity,such as lower burnning rate,deficient heat release,and hard ignition(T_(ign.)>900℃), which can not be used as reactive materials and find no application further.This study intends to improve the reactive property of thermites via promoting the reactivity of Al powder or enhancing the combination between the fuel and oxidizer.Concretely,the paper aims at exploring the thermites made up of nanocomposites and investigating the thermites with high reactivity and potential application in reactive materials.
     Firstly,to promote the thermal reactivity of micron Al powder,a kind of core-shell metal/Al nanocomposite has been prepared by a facile displacement method in the near neutral aqueous solution via controlling the dosage of surfactant,temperature,initial concentration of metallic salts and NH_4F,in which the micron Al cores were tightly coated in nanometer Ni,Co,Fe and Cu particles.After preparation,these metal/Al nanocomposites were blended with metal oxides that included WO_3,SnO_2,PbO,CuO and Fe_2O_3 powders. Using the onset and peak temperature,heat release,maximal heat flow and active energy as the parameters to evaluate the performance of thermite reaction,the reactivity of the above mixtures has been investigate via thermal analysis.The results indicated that metal/Al particles have great higher thermal reactivity than raw Al powders,among which Ni/Al is the best one.In addition,the possible oxidation mechanisms of raw Al and metal/Al were discussed.It is found that the progress of oxidation process for raw Al was severely limited by the Al_2O_3 layers wrapped on the surface of active Al core,but the metallic nanoparticles within metal/Al nanocomposites improved the oxidation mechanism of Al by reducing the deleterious influences of the Al_2O_3 layer and bridging the gap between fuel and oxidizer.So, the oxidizer can react with active Al easliye,which is confirmed by great improvement in the thermal reactivity of micron Al powder.
     Next,in order to enhance the combination and contacting area between fuel and oxidizer, a kind of Fe_2O_3/Al nanocomposite has been prepared by sol-gel method under a mild and low-toxicity condition via introducing of 1,2-epoxypropane as the agent for speeding up the hydrolyzation of Fe(Ⅲ) ions,in which nanometer,submicron,micron and coarse four kinds of Al particles were combined tightly with nanometer ferric oxide,respectively.The optimal technical parameters were located at initial temperature of 19℃,Fe(NO_3)_3·9H_2O initial concentration of 0.37mol·L~(-1) and 1,2-epoxypropane dosage of 2.005 mL·g_(硝酸铁)~(-1).Results of thermal analysis revealed that the composing between Al and Fe_2O_3 and the particle size of Al obviously affected the reactivity of thermites.If nanometer Fe_2O_3 particles compactly coated on the surface of Al,the peak temperature of the thermite reaction is lower than that of mixed sample by 50℃~70℃.Moreover,as the particle size of Al decreases,the values of peak temperature decrease and the heat release and of max heat flow increases linearly.The study of reactive mechanisms reveals that if the fraction of active Al in thermite system is low,the residue will present many intermediate products such as FeAl_2O_4,Fe_3O_4 or FeO etc.,which is attributed to an incomplete reaction process and results in a low reactivity.
     Thirdly,we tried to promote the reactivity of micron Al particles via changing their crystal structure.Accordingly,three kinds of Mg-Al alloys have been prepared by bidirectional-rotation milling,in which the content of Mg is 10wt.%,20wt.%and 30wt.%, respectively.Sample characterization showed that the crystallite size of micron Al had been decreased from>100nm to about 25nm after alloying with Mg.Thermal analysis illustrated that the reactivity of Al has been enhanced obviously due to the introducing of Mg and decreasing of Al crystallite.The thermite reaction of Al with Fe_2O_3 was initiated even before the melting point of Al(Mg),which is a solid-solid reaction.Moreover,as the fraction of Mg increased in Mg-Al alloy,the peak temperature in DSC traces decreased and the maximum heat flow increased.
     Finally,to confirm that whether the thermite with high reactivity also can be impact initiated,the traditional thermite and the thermites made up of nanocomposites were pressed into pillars with the size ofΦ10mm×10mm after adding some accessorial ingredients.The pillars were charged into steel projectiles,and then were shot to impact against the sealed steel-pot that filled up with diesel oil.This test aims at igniting the diesel oil by the energy released from the thermite reaction.The experimental results showed that although the pillars pressed by traditional thermite can be ignited by impact action in the course of penetration, but the reaction heat and flame are not mighty enough to light up the diesel oil with low volatility.As a result,the combustion flame was stamped out by the diesel oil.Successfully, the pillars fabricated by nanocomposites thermites can not only be ignited after impacting the target,but also exhibit a blazing deflagration with igniting the part of the diesel oil. Undoubtedly,the thermites made up of nanocomposites can become a kind of impact initiated energetic materials,and will find promising applation in as reactive materials in the warhead.
引文
[1]李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [4]K.Todd.Electronic properties of single semiconductor nanocrystals:optical and electrostatic force microscopy measurements[J].Materials Science and Engineering:B,2000,69:289-294.
    [5]T.Hayashi,T.Nagayama.Catalytic properties of ultrafine particles of prepares by a gas evaporation method[J].Journal of Chemical Society of Japan,1984,6:1050.
    [6]王昕.纳米含能材料研究进展[J].火炸药学报,2006,29(2):29-32.
    [7]J.R.Luman,B.Wehrman,K.K.Kuo,et al.Development and characterization of high performance solid propellants containing nano-sized energetic ingredients[J].Proceedings of the Combustion Institute,2007,31:2089-2096.
    [8]李凤生.新型火药设计与制造[M].北京:国防工业出版社,2008.
    [9]Armstrong,Baschung,Booth,et al.Enhanced propellant combustion with nanoparticles [J].Nano Letters,2003,3(2):253-255.
    [10]李凤生.特种超细粉体制备技术及应用[M].北京:国防工业出版社,2002.
    [11]刘磊力.纳米金属及复合金属粉的制备及其催化性能的研究[D].南京:南京理工大学,博士学位论文,2004.
    [12]陈伟凡.纳米稀土氧化物的控制制备及其催化性能研究[D].南京:南京理工大学,博士学位论文,2006.
    [13]Goldfarb,Briggs.Self-assembled metal-semiconductor compound nanocrystals on group Ⅳ semiconductor surfaces[J].Surface Science,2000,(454-456):837-841.
    [14]储伟.催化剂工程[M].成都:四川大学出版社,2006.
    [15]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2007.
    [16]李凤生.纳米功能复合材料及应用[M].北京:国防工业出版社,2003.
    [17]杨咏来,徐恒泳,李文钊.纳米粒子催化剂及其研究进展[J].材料导报,2003,17(2):12-14
    [18]王月霞,仝少华,李俊.纳米材料在石化领域的应用[J].河南石油,2001,15(5):42-45
    [19]R.Albuquerque,M.C.Neves,M.H.Mendonca,et al.Adsorption and catalytic properties of SiO_2/Bi_2S_3 nanocomposites on the methylene blue photodecolorization process[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,328:107-113.
    [20]李凤生.药物粉体技术[M].北京:化学工业出版社,2007.
    [21]李凤生.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [22]黄远红,胡文军,袁仲国,等.纳米粒子的包覆技术.材料导报,2002,16(7):55-57.
    [23]张凯,范敬辉,黄渝鸿,等.纳米铝粉微胶囊的制备及表征[J].含能材料,2005,13(1):4-6.
    [24]崔洪涛.颗粒表面包覆的研究[D].长春:中国科学院长春应用化学研究所,博士学位论文,2002.
    [25]T.Fred,L.Vladimir.Ageing characteristics Alex nanosize aluminum[R].AIAA,2001-3287.
    [26]S.Valliappan,J.Swiatldewicz,J.A.Puszynski.Reactivity of aluminum nanopowders with metal oxides[J].Powder Technology,2005:156:164-169.
    [27]杨毅,李凤生,刘宏英.金属铝粉表面纳米膜包覆[J].中国有色金属学报,2005,15(5):716-720.
    [28]Y.S.Kwon,A.A.G-romov,J.I.Strokova.Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin[J].Applied Surface Science,2007,253:5558-5564.
    [29]张教强,庞维强,张琼方,等.AP包覆超细硼粉的改进方法[J].含能材料,2007,15(4):382-386.
    [30]L.M.Liz-Marzan,M.Giersig,P.Mulvaney.Synthesis of nanosized gold-silica core-shell particles[J].Langmuir,1996,12:4329-4335.
    [31]王敏,叶红齐,唐新德.三元共聚法包覆片状铝粉[J].粉末冶金材料科学与工程,2007,12(5):301-304.
    [32]韩爱军,叶明泉,马明,等.Al/TiO_2超细复合粒子制备研究[J].化学世界,2006,11:650-652.
    [33]刘永峙,韩爱军,叶明泉,等.均匀沉淀法制备Al/ZnS复合粒子[J].化工进展,2004,23(9):990-992.
    [34]韩爱军,刘永峙,叶明泉.Al/NiO复合粒子的制备与表征[J].精细化工,2005,22(12):881-883.
    [35]刘耀鹏,杨毅.纳米SiO_2/Al复合粒子的制备[J].化工进展,2005,24(2):178-181.
    [36]刘辉,叶红齐,邹晓黎,等.颜料铝粉包覆SiO_2的研究[J].材料导报,2006,20:258-260.
    [37]张小塔,宋武林,郭连贵,等.激光-感应复合加热法制备碳包覆纳米铝粉[J].推进 技术,2007,28(3):333-336.
    [38]L.G.Guo,W.L.Song,C.S.Xie,et al.Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane[J].Materials Letters,2007,61:3211-3214.
    [39]熊晓东,田彦文,翟秀静,等.化学镀法制备镍包覆铝粉[J].中国有色金属学报,1996,6(4):39-42.
    [40]熊晓东,翟玉春,田彦文,等.铝粉化学镀纯镍的机理[J].东北大学学报,1996,17(5):512-516.
    [41]熊晓东,翟玉春,田彦文,等.铝粉化学镀Ni-Mo合金的析出行为[J].材料保护,1996,29(11):18-20.
    [42]刘小娣,杨毅,李凤生.化学镀法制备纳米Cu/Al复合粉末[J].功能材料,2006,37(8):1335-1337.
    [43]M.L.Pantoya,J.J.Granier.The effect of slow heating rates on the reaction mechanisms of nano and micron composite thermite reactions[J].Journal of Thermal Analysis and Calorimetry,2006,1:1-7.
    [44]J.Sun,M.L.Pantoya,S.L.Simon.Dependence of size and size distribution on reactivity of aluminum nanoparticles in reaction with oxygen and MoO_3[J].Thermochimica Acta,2006,444:117-127.
    [45]K.B.Plantier,M.L.Pantoya,A.E.Gash.Combustion wave speeds of nanocomposite Al/Fe_2O_3:the effects of Fe_2O_3 particle synthesis technique[J].Combustion and Flame,2005,140:299-309.
    [46]K.Engelen,L.Vanneste,M.H.Lefebvre.Influence of the particle size on the combustion properties of a pyrotechnic mixture[C].The International Pyrotechnics Society,The 28~(th) International Pyrotechnics Seminar,Adelaide,November 4-92001.
    [47]J.J.Granier,M.L.Pantoya.Laser ignition of nanocomposite thermites[J].Combustion and Flame,2004,138:373-383.
    [48]杨圣品,施雨湘.高能球磨法制备金属微粉的研究[J].焊接设备与材料,2002,31(3):43-44.
    [49]M.A.Trunov,M.Schoenitz,X.Y.Zhu,et al.Effect of polymorphic phase transformations in Al_2O_3 film on oxidation kinetics of aluminum powders[J].Combustion and Flame,2005,140:310-318.
    [50]杨富宝,吴希俊.纳米晶Al及Al-Mg合金的合成与性能研究进展[J].材料导报,2004,18(9):30-32.
    [51]Hirrh,J.P.Lothe.Theory of dixlocations[M].2~(nd) New York,NY:wiley,1982.
    [52]F.Zhou,X.Z.Liao,Y.T.Zhu,et al.Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling[J].Acta Materialia,2003,51:2777-2791.
    [53]Z.Lee,F.Zhou,R.Z.Valiev,et al.Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion[J].Scripta Matedalia,2004,51:209-214.
    [54]Y.L.Shoshin,M.A.Trunov,X.Y.Zhu,et al.Ignition of aluminum-rich Al-Ti mechanical alloys in air[J].Combustion and Flame,2006,144:688-697.
    [55]Y.L.Shoshin,R.S.Mudryy,E.L.Dreizin.Preparation and characterization of energetic Al-Mg mechanical alloy powders[J].Combustion and Flame,2002,128:259-269.
    [56]J.Mei,R.D.Halldeam,P.Xiao.Mechanisms of the aluminum-iron oxide thermite reaction[J].Scripta Materialia,1999,41(5):541-548.
    [57]R.H.Plovnick,E.A.Richards.New combustion synthesis route to TiB_2-Al_2O_3[J].Materials Research Bulletin,2001,36:1487-1493.
    [58]K.W.Ciurowa,K.Gamrat,Z.Sawowicz.Characteristics of CuAl_2-CugAl_4/Al_2O_3nanocomposites synthesized by mechanical treatment[J].Journal of Thermal Analysis and Calorimetry,2005,80:619-623.
    [59]潘功配.烟火技术基础与应用[M].南京:江苏科学技术出版社,1989.
    [60]M.Liu,S.Yin,Y.P.Wei,et al.The characteristics of combustion in a centrifugal-thermite process[J].Journal of Materials Science,1997,32:4711-4713.
    [61]张廷安,豆志河,徐淑香.铝热自蔓延制备CuCr合金渣系的粘度测量及模型建立(I)[Jr].东北大学学报,2004,25(1):58-61.
    [62]林涛,殷声,赵文武,等.添加剂对Cr_2O_3-Al系SHS反应的影响[J].粉末冶金技术,1997,15(1):5-8.
    [63]林立,薛群基,刘惠文.铝热反应的活化增强机制的研究[J].无机材料学报,1996,11(4):745-748.
    [64]潘功配,杨硕.烟火学[M].北京:北京理工大学出版社,1997.
    [65]易建坤,等.用于弹药燃烧销毁的高热剂配方试验研究[J].爆破,2005,22(1):107-111.
    [66]日本化学会.无机固态反应[M].北京:科学出版社,1985.
    [67]苏勉曾.固体化学导论[M].北京:北京大学出版社,1986.
    [68]张克立.固体无机化学[M].武汉:武汉大学出版社,2005.
    [69]J.J.Granier,M.L.Pantoya.The effect of size distribution on burn rate in nanocomposite thermites:a probability density function study.Combustion[J],Theory and Modeling, 2004,8(3):555-565.
    [70]徐锦仁,何国宝.含能反应式破片材料用于舰船反(高)超音速导弹的设想[J].水雷战与舰船防护,2006,(4):69-72.
    [71]Committee on Advanced Energetic Materials and Manufacturing Technologies.Advanced Energetics Materials[M].Washington:The National Academies Press,2004.
    [72]黄亨建,黄辉,阳世清,等.毁伤增强型破片探索研究[J].含能材料,2007,15(6):566-569.
    [73]李向东.弹药概论[M].北京:国防工业出版社,2004.
    [74]E.Hugh.Reactive fragment[P].United States Patent:3961576,1976.
    [75]A.Saigal,V.S.Joshi.Strength and stiffness of aluminumiptfe reactive composites[C].Recent Advances in Solids and Structures,2001,P:11-16.
    [76]M.E.Grudza,D.Jann,C.Forsyth.Explosive launch studies for reactive material fragments[C].4~(th) Joint Classified Bombs/Warheads and Ballistics Symposium,2001,P:110-118.
    [77]R.J.Lee,W.Mock.Reactive material studies[C].Shock compression of condensed matter,2005,P:169-174.
    [78]L.Ferranti,N.N.Thadhani.Dynamic impact characterization of Al+Fe_2O_3+30%epoxy composites using time synchronized high-speed camera and VISAR measurements[C].2006 Materials Research Society,2006,P:588-610.
    [79]E.L.Baker,A.S.Daniels,K.W.Ng.Barnie:a unitary demolition warhead[C].19~(th)International Symposium of Ballistics,2001,P:569-574.
    [80]R.G.Ames.Energy release characteristics of impact-initiated energetic materials[C].Materials Research Society,2006.
    [81]R.G.Ames,R.K.Garrett.Detonation-like energy release from high-speed impacts of polytetrafluoroethylene-aluminum projectiles[C].5~(th) Joint Classified Bombs/Warheads and Ballistics Symposium,2002.
    [82]R.G.Ames.Vented chamber calorimetry for impact-initiated energetic materials[C].43~(rd) AIAA Aerospace Sciences Meeting and Exhibit,AIAA 2005,279-281.
    [83]W.Mock,J.W.H.Holt.Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders[C].14~(th) APS Topical Conference on Shock Compression of Condensed Matter,2005.
    [84]J.B.David,D.Ian,M.A.Meyers.Computational modeling of shock compression of power[C].Shock Compression of Condensed Matter.2001,P:1087-1092.
    [85]V.Tomas,M.Zhou.An empirical molecular dynamics potential for an Al+Fe_2O_3 reactive metal power mixture[C].45~(th) AIAA/ASME/ASCE/AHS/ASC Structureal dynamics & Materials conference,2004.
    [86]A.Y.Dolgoborodov,M.N.Makhov,I.V.Kolbanev,et al.Detonation in metal-Teflon mechanoactivated energetic composites[C].International Conference on Mechanical Alloying INCOME,Novosibirsk,2006.
    [87]M.F.Gogulya,M.N.Makhov,M.A.Brazhnikov,et al.Detonation-like processses in teflon/Al-based explosive mixtures[C].13~(th) International Detonation Symposium,Norfolk,2006.
    [88]黄辉,王泽山,黄亨建,等.新型含能材料的研究进展[J].火炸药学报,2005,28(4):9-13.
    [89]Y.P.Wang,J.W.Zhu,X.J.Yang,et al.Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate[J].Thermochimica Acta,2005,437:106-109.
    [90]X.J.Zhang,W.Jiang,D.Song,et al.Preparation and catalytic activity of Ni/CNTs nanocomposites using microwave irradiation heating method[J].Materials Letters,2008,62(15):2343-2346.
    [91]L.L.Liu,F.S.Li,L.H.Tan,et al.Effects of Ni,Cu,Al and NiCu nanopowders on the thermal decomposition of Ammonium Perchlorate[J].Propellants,Explosives,Pyrotechnics,2004,29(1):34-38.
    [92]牟国俊,赵斌.纳米核壳式铜-锡双金属粉的制备及性能研究[J].无机化学学报,2004,20(9):1055-1059.
    [93]刘志杰,赵斌,张宗涛,等.超细核壳铜-银双金属粉的制备[J].无机化学学报,1996,12(1):30-33.
    [94]H.T.Hai,J.G.Ahn,D.J.Kim,et al.Developing process for coating copper particles with silver by electroless plating method[J].Surface and Coatings Technology,2006,201:3788-3792.
    [95]范启义,凌国平,郦剑,等.化学镀铜法制备纳米Cu-Al_2O_3复合粉体的研究[J].材料科学与工艺,2002,10(4):357-361.
    [96]K.Chi,Z.L.Hu.Electroless copper coating for hydrogen storage alloy powders[J].Battery,1995,25(5):224-227.
    [97]李荻.电化学原理[M].北京:北京航空航天大学出版社,2003.
    [98]E.H.Saarivirta.Observations on the uniformity of immersion tin coating on copper[J].Surface and Coatings Technology,2002,160:288-294.
    [99]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998.
    [100]大连理工大学无机化学教研室.无机化学[M].大连:高等教育出版社,2001.
    [101]O.V.Kravchenko,K.N.Semenenko,B.M.Bulychev,et al.Activation of aluminum metal and its reaction with water[J].Journal of Alloys and Compounds,2005,397:58-62.
    [102]H.L.Lien,X.Y.Zhang.Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al[J].Chemosphere,2002,49:371-378.
    [103]张云,李大鹏,杨立,等.氟铝络合滴定计算分析法测定乙醇-水溶液介质中的铝[J].分析化学,2005,33(7):947-950.
    [104]公建辉,丘泰,沈春英,等.化学镀法制备Co-B包覆羰基铁复合粉体工艺研究[J].材料保护,2007,40(11):30-33.
    [105]高保娇,蒋红梅,张忠兴.用银氨溶液对微米级铜粉镀银反应机理的研究[J].无机化学学报,2000,16(4):669-674.
    [106]J.A.迪安.兰氏化学手册[M].北京:科学出版社,1991.
    [107]姚守拙,朱元保.元素化学反应手册[M].长沙:湖南教育出版社,1998.
    [108]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [109]R.H.Fan,H.L.Liu,K.N.Sun,et al.Kinetics of thermite reaction in Al-Fe_2O_3 system[J].Thermochimica Acta,2006,440:129-131.
    [110]S.Vyazovkin,C.A.Wight.Kinetics in solids[J].Annual Review of Physical Chemistry,1997,48:125-149.
    [111]S.M.Umbrajkar,M.Schoenitz,E.L.Dreizin.Exothermic reactions in Al-CuO nanocomposites[J].Thermochimica Acta,2006,451:34-43.
    [112]M.A.Trunov,M.Schoenitz,X.Y.Zhu,et al.Effect of polymorphie phase transformations in Al_2O_3 film on oxidation kinetics of aluminum powders[J].Combustion and Flame,2005,140:310-318.
    [113]L.P.H.Jeurgens,W.G.Sloof,F.D.Tiehelaar,et al.Composition and chemical state of the ions of aluminium-oxide films formed by thermal oxidation of aluminum[J].Surface Science,2002,506:313-332.
    [114]J.C.S(?)nchez-L(?)pez,A.Fern(?)ndez,C.F.Conde,et al.The melting behavior of passivated nanocrystalline aluminum[J].Nanostructured Materials,1996,7:813-822.
    [115]S.X.Wang,K.M.Liang,X.H.Zhang,et al.Influence of heating-rate on DTA curve of the aluminothermic reaction[J].Journal of Materials Science Letters,2003,22:855-856.
    [116]吴越.催化化学[M].北京:科学出版社,1998.
    [117]M.Schoenitz,T.S.Ward,E.L.Dreizin.Fully dense nano-composite energetic powders prepared by arrested reactive milling[J].Proceedings of the Combustion Institute,2005,30:2071-2078.
    [118]H.Arami,A.Simchi.Reactive milling synthesis of nanocrystalline Al-Cu/Al_2O_3nanocomposite[J].Materials Science & Engineering A,2007,464:225-232.
    [119]张继祥,夏天冬,赵文军,等.混料工艺对Al+Fe_2O_3铝热剂燃烧特性的影响[J].甘肃工业大学学报,2002,28(1):14-17.
    [120]C.J.Bulian,T.T.Kerr,J.A.Puszynski.Ignition studies of aluminum and metal oxides nanopowders[C].Proceedings of 31~(st) International Pyrotechnic,2004,P:327-338.
    [121]S.F.Son,B.W.Assay,J.R.Busse,et al.Reaction propagation physics of Al/MoO_3nanocomposite thermites[C].The 28~(th) International Pyrotechnical Seminar,Adelaide Australia,2001,November:4-9.
    [122]L.L.Wang,Z.A.Munir,Y.M.Maximov.Thermite reactions-their use in the synthesis and processing of materials[J].Journal of Materials Science,1993,28:3693-3708.
    [123]J.A.Puszynski.Reactivity of nanosize aluminum with metal oxides and water vapor[C].Materials Research Society Symposia Proceedings,2004,800:AA6.4.1.
    [124]单亚拿,史桂梅.机械化学法制备纳米α-Fe_2O_3及微观结构研究[J].沈阳建筑大学学报,2005,21(6):689-691.
    [125]任福民,曾桓兴.强迫水解法制备α-FeOOH纺锤形微粒的研究[J].科技通报,1991,8:627-629.
    [126]李巧玲,景红霞,周浩力.纳米铁氧化物的微波化学制备及TEM表征[J].电子显微学报,2005,24(4):259.
    [127]储刚,翟秀静,符岩,等.纳米α-Fe_2O_3的燃烧法合成与表征[J].东北大学学报,2005,26(1):274-276.
    [128]B.J.Clapsaddle,A.E.Gash,J.H.S.Jr,et al.Silicon oxide in an iron(Ⅲ) oxide matrix:the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase[J].Journal of Non-Crystalline Solids,2003,331:190-201.
    [129]F.X.Geng,Z.G.Zhao,H.T.Cong,et al.An environment-friendly microemulsion approach to α-FeOOH nanorods at room temperature[J].Materials Research Bulletin,2006,41:2238-2243.
    [130]B.J.Clapsaddle,et al.A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase[J].Journal of Non-Crystalline Solids,2004,350:173-181.
    [131]A.E.Gash,T.M.Tillotson,J.H.S.Jr,et al.Use of epoxides in the sol-gel synthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts[J].Chemical Materials,2001,13:999-1007.
    [132]A.E.Gash,J.H.S.Jr,R.L.Simpson.Strong akaganeite aerogel monoliths using epoxides:synthesis and characterization[J].Chemical Materials,2003,15:3268-3275.
    [133]张胜帮,邵利民,邵学广,等.环氧丙烷在盐酸中开环反应的机理[J].应用化学,2000,17(2):214-216.
    [134]郝志显,刘辉,郭彬,等.以无机铝盐为前驱体用溶胶-凝胶法合成中孔氧化铝[J].物理化学学报,2007,23(3):289-294.
    [135]A.E.Gash,J.H.S.Jr,R.L.Simpson.Monolithic nickel(Ⅱ)-based aerogels using an organic epoxide:the importance of the counterion[J].Journal of Non-Crystalline Solids,2004,350:145-151.
    [136]Y.S.Kwon,A.A.Gromov,A.P.Ilyin,et al.The mechanism of combustion of superfine aluminum powders[J].Combustion and Flame,2003,133:385-391.
    [137]C.Cuadrado-Laborde,L.C.Damonte,L.Mendoza-Z(?)lis,et al.Magnetic characterization of the mechanically induced thermite reaction between Fe_2O_3 and Al[J].Physica B:Condensed Matter,2004,354:125-128.
    [138]P.Matteazzi,G.L.Caer.Synthesis of nanocyrstalline aluminum-metal composites by room temperature ball-milling of metal oxides and aluminum[J].Journal of the American Ceramic Society,1992,75:2749-2755.
    [139]L.Duraes,B.F.O.Costa,R.Santos,et al.Fe_2O_3/aluminum thermite reaction intermediate and final products characterization[J].Materials Science and Engineering A,2007,465:199-210.
    [140]蔡振华,李向东,韩永要,等.柱形破片对有限厚铝靶垂直侵彻过程研究[J].弹箭与制导学报,2005,25(2):533-535.
    [141]赵纯朴.汽油和柴油[M].北京:石油工业出版社,1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700