用户名: 密码: 验证码:
发掘人工合成小麦中增加千粒重的QTL
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最重要的粮食作物之一,由于瓶颈效应与长期选择,使现代栽培小麦的遗传基础狭窄。小麦野生近缘种中存在有大量可用于小麦改良的优异基因。因此,发掘并利用小麦野生近缘种中的优异基因,有利于拓宽栽培小麦的遗传基础。千粒重是小麦产量的构成因素之一,进一步提高千粒重是小麦超高产育种的一条重要途径。然而千粒重与穗粒数和穗数通常呈负相关,与株高正相关,成为小麦超高产育种的重要限制因素。本研究利用四倍体波斯小麦(2n=28,AABB)与粗山羊草Ae38(2n=14,DD)杂交人工合成的六倍体小麦Am3为供体亲本,普通小麦莱州953为轮回亲本,经5次回交的两个F_(2:3)次级分离群体(高千粒重群体85个家系和低千粒重群体75个家系)为材料,通过分子标记检测,发掘人工合成小麦中增加千粒重的QTL,并对其它农艺性状进行QTL定位,为QTL的进一步精细定位和克隆等研究奠定基础。主要结果如下:
     1.采用SSR荧光标记分析技术和银染技术相结合的方法用648对不同来源的SSR引物对亲本莱州953和Am3进行多态性检测,其中348对引物在两亲本间有稳定的多态性,多态性频率为53.7%。有66对SSR引物在高千粒重导入系群体中出现多态性,占多态性标记的18.96%。有63对SSR引物在低千粒重导入系群体中出现多态性,占多态性标记的18.1%。
     2.利用Map Manager软件,将高千粒重导入系群体的58个多态性SSR标记定位在小麦8条染色体上,连锁图总长为344.6cM,平均每个标记间的遗传距离为5.9cM。同样的方法将低千粒重导入系群体的52个多态性SSR标记定位在小麦9条染色体上,连锁图的总长为366.9cM,平均每个标记间的遗传距离为7.1cM。导入片段远远大于理论值。
     3.利用Windows QTL Cartographer 2.0软件,采用复合区间作图法取LOD≥2.5为阈值,对两个群体进行QTL检测。在高千粒重群体中共检测到10个QTL,其中3个千粒重QTL分别位于1A、3D和4B染色体上,1个粒长QTL位于7B染色体上,2个粒宽QTL分别位于1A、和4B染色体上,2个穗数QTL分别位于4B和7B染色体上,2个株高QTL分别位于3D和4B染色体上。在低千粒重群体中共检测到17个QTL,其中3个千粒重QTL分别位于1A、4B和7B染色体上,4个粒长QTL分别位于1A和2D染色体上,1个粒宽QTL位于7B染色体上,2个穗数QTL分别位于4B和7B染色体上,2个株高QTL分别位于2D和4B染色体上,5抽穗期QTL分别位于2A、2D、6B和7B染色体上。
     4.在高千粒重导入系群体中,共检测到3个来自Am3增加千粒重的新的QTL位点(QGw.caas-1A1、QGw.caas-3D、QGw.caas-4B1)。QGw.caas-3D在3个环境中都检测到,解释表型变异18.1%-31.8%,增加千粒重2.3-4.8 g,表明该QTL是一个稳定的主效QTL。QGw.caas-1A1在2个环境中检测到,解释表型变异21.4%-33.8%,增加千粒重2.7-3.8 g。QGw.caas-4B1在2个环境中检测到,解释表型变异10.9%-30.2%,增加干粒重3.9-4.8 g。所发现的增加千粒重QTL与穗数、穗粒数和株高不存在不利的相关关系,有利于千粒重、穗数、穗粒数的同步提高及株高的降低,因此是较为理想的提高千粒重的QTL。
     5.虽然轮回亲本Am3的农艺性状比莱州953的差,但在导入系群体中,通过表型选择和QTL分析,选出了一些农艺性状比轮回亲本莱州953有较大改良的导入系。如高千粒重导入系IL6的平均千粒重为60.5g,平均穗粒数53.3粒,平均株高83.6cm,平均单株穗数5.8个;多粒导入系IL39的平均穗粒数83.6粒,千粒重45.9g,平均穗数5.3个,株高84.3cm。这些导入系已分发到小麦育种单位用于小麦品种的遗传改良,选育含有人工合成小麦有利基因/QTL的小麦新品种。
Common wheat is one of the most important crops in the world.During the long domestication process for common wheat,its genetic diversity has been narrowed by bottleneck effect and selection.Wild species are likely to contain favorable genetic factors that can increase the yield of modern varieties.Broadening the genetic base of common wheat by using exotic germplasm resources is an important germplasm development goal. In common wheat,thousand-gain weight(TGW) is an important component of grain yield. Increasing thousand-gain weight is one way to improve grain yield.However,it is negative correlation frequently with grain number per spike and spike number per plant, positive correlation with plant height.Am3,a synthetic wheat from crossing Triticum carthlicum(2n=28,AABB) with Aegilops tauschii(2n=14,DD),was used as donor lines and Laizhou953,a commercial Chinese cultivar used as recurrent parent in this study. After five generations of backcrossing,two BC_5F_(2:3) populations(high TGW population consisting of 85 lines and low TGW population consisting of 75 lines) were employed for genotyping and phenotyping in the present study.Our goal is to detect the favorable TGW alleles of the synthetic wheat and to fine map QTLs for TGW in the future.The results obtained were listed as below.
     1.Two parents,Lalzhou953 and Am3,were screened for polymorphism with 648 SSR markers by using fluorescence and silver-staining detection systems of microsatellite markers.Among them,348 of them detect polymorphism between the parents.66 of the 348 SSR markers detected polymorphism in the high TGW population.The frequency of polymorphism was 18.96%.63of the 348 SSR markers detected polymorphism in the low population.The frequency of polymorphism was 18.1%.
     2.Using Map Manager software,a map of 58 markers distributing on 8 chromosomes was constructed in the high TGW population.The total length of the linkage map was 344.6 cM with an average genetic distance of 5.9 cM.In the low population,a map of 52 markers distributing on 9 chromosomes was constructed.The total length of the linkage map was 366.9 cM with an average genetic distance of 7.1 cM.
     3.The QTL analysis was performed with software Windows QTL Cartographer 2.0 based on composite interval mapping(CIM).QTL was claimed to be significant at a LOD value of 2.5.A total of 10 putative QTLs were detected in the high TGW population including 3 QTL for TGW located on chromosomes 1A,3D and 4B;1 QTL for grain length located on chromosome 7B;2 QTLs for grain width located on chromosomes 1A and 4B;2 QTLs for spike per plant located on chromosomes 4B and 7B;2 QTLs for plant height located on chromosomes 3D and 4B.A total of 17 putative QTLs were detected in the low TGW population including 3 QTL for TGW located on chromosomes 1A,4B and 7B;4 QTL for grain length located on chromosomes 1A and 2D;1 QTL for grain width located on chromosome 7B;2 QTLs for spike per plant located on chromosomes 4B and 7B;2 QTLs for plant height located on chromosomes 2D and 4B;5 QTLs for day to heading located on chromosomes 2A,2D,6B and 7B.
     4.In the high TGW population,3 new QTLs(QGw.caas-1A1、QGw.caas-3D、QGw.caas-4B1) for TGW were detected.QGw.caas-1A1 was detected in two environments with phenotypic variation explained(PVE) from 21.4%to 33.8%and increasing TGW 2.7-3.8g.QGw.caas-3D was detected in three environments with PVE 18.1%-31.8%and increasing TGW 2.3-4.8 g.QGw.caas-4B1 was detected in two environments with PVE 10.9%-30.2%and increasing TGW 3.9-4.8 g.TGW was not corrected to other traits except for GINS.A significant positive correlation between TGW and GNS was found in Luoyang (r=0.232,P<0.05),but it was not significant in Beijing.QTL mapping revealed that the QTL of TGW detected here were not located in the same regions with the other yield components and plant height except for the Qph.caas-3D,suggested that we can select these favorable traits/QTL separately and pyramid them with the other yield components, such as SP and SN.Those QTLs were not correlated with other agronomic traits.We could select the favorable traits/QTLs separately and pyramid them with the other yield components,so the QTLs were the favorable QTLs conferring increasing thousand-grain weight.
     5.Despite inferior agronomic traits of donor parent Am3 to the recurrent parent Laizhou953,in the populations,some of ILs have superior agronomic traits to the recurrent parent Laizhou953,such as IL6 with:TGW 60.5g,GNS 53.3,PH 83.6 cm,SP 5.8;IL39 with:GNS 83.6,TGW 45.9g,SP 5.3,PH 84.3 cm.In this study,some of favorable lines have been distributed to breeders for improving grain yield.
引文
[1]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,9:41
    [2]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    [3]Chen Z,Devey M,Tuleen N A,et al.Use of recombinant substitution lines in the construction of RFLP-based genetic maps of chromosomes 6A and 6B of tetraploid wheat (Triticum turgidum L.).Theoretical and Applied Genetics,1994,89:703-712
    [4]Anderson J A.Ogihara Y,Sorrells M E,et al.Development of a chromosomal arm map for wheat based on RFLP markers.Theoretical and Applied Genetics,1992,83:1035-1043
    [5]Devos K M,Alkinson M D,Chinoy C N,et al.RFLP-based genetic map of the homoecologous group-3 chromosomes of wheat and rye.Theoretical and Applied Genetics,1992,83:931-939
    [6]Kojima T,Ogihara Y.High resolution RFLP map of the arm chromosome 5A in wheat and its synteny among cereals.Genes Genet Syst,1998,73:51-58
    [7]吴长明,孙传清,陈亮等.利用RFLP图谱定位分析稻米粒型的QTL.吉林农业科学,2002,27(5):3-7
    [8]Kato K,Miura H,Sawada S.Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat.Theoretical and Applied Genetics,2000,101:1114-1121
    [9]贾继增,张正斌,Devos K,Gale M D.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学(C辑),2001,31(1):13-21
    [10]Xu D H,Abe J,Kanazawa Aet al.Identification of sequence variations by PCR-RFLP and its application to the evaluation of cpDNA diversity in wild and cultivated soybeans.Theoretical and Applied Genetics,2001,102:683-688
    [11]Williams J G,Kubelik A R,Livak K J,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic marker.Nucleic Acide Res,1990,18:6531-6535
    [12]Vos P,Hogers R,Bleeder M,et al.AFLP:a new technique for DNA fingerprinting.Nucleic Acide Res,1995,23(21):4407-4414
    [13]Dong N V,Subdhi P K,Luong N,et al.Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP,RFLP and SSR techniques.Theoretical and Applied Genetics,200,100:727-734
    [14]王美,张风兰,孟祥栋,等.中国白菜AFLP分子标记遗传图谱的构建.华北农学报,2004,19(1):28-33
    [15]Incirli A,Akkaya M S.Assessment of genetic relationships in durum wheat cultivars using AFLP markers.Genetic Resources and Crop Evolution,2001,48:233-238
    [16]Chen L,Liang C Y,Sun C Q,et al.comparison between AFLP and RFLP markers in detecting the diversity of rice(Oryza sativa L.).Agricultural scicene in China,2002,1(7):713-719
    [17]周延清.DNA分子标记技术在植物研究中的应用.北京,化学工业出版社,2005,131:4
    [18]Taramino G,tingey S.Simple sequence reports for germplasm analysis and mapping in maize.Genome,1996,39:277-287
    [19]Akkaya M S,Bhagwa A A,Cregan P B.Integration of simple sequence repeat DNA markers into a soybean linkage map.Crop Science,1995,35:1439-1445
    [20]Roder MS,Korzun V,Wendehake K,et al.A microsatellite map of wheat.Genetics,1998,149(4):2007-2023
    [21]Wan X Y,Wan J M,Jiang L,et al.QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects.Theoretical and Applied Genetics,2006,112:1258-1270
    [22]Roder M,Huang X-Q,Borner A.Fine mapping of the region on wheat chromosome 7D controlling grain weight.Functional & Integrative Genomics,2008,8(1):79-86
    [23]Doldi M L,Woollmann J,Lelley T.Genetic diversity in soybean sequence repeat (SSRs) markers to assay genetic variation in soybean.Theoretical and Applied Genetics,1997,95:723-733
    [24]Brown-Guedira G L,Thompson J A,Nelson R L,et al.Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers.Crop Science,2000,40(3):815-823
    [25]张博,邱丽娟,常汝镇.利用大豆育成品种的SSR标记遗传距离预测杂种优势的初步研究.大豆科学,.2003,22(3):166-171
    [26]Mochida K,Yamazaki Y,Ogihara Y.Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags.Mol Gen Genomics,2003,270:371-377
    [27]Batley J,Baker G,Sullivan H,et al.Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data.Plant Physiol,2003,32:84-91
    [28]郝岗平,吴忠义,陈茂盛等.拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性.农业生物技术学报,2004,12(2):122-131
    [29]Kanazin V,Talbert H,See D,et al.Discovery and assay of single-nucleotide polymorphisms in barley(Hordeum vulgate).Plant Mol Biol,2002,48:539-537
    [30]孔繁玲.植物数量遗传学.北京,中国农业大学出版社,2006,358
    [31]Soller M,Brody T,Genizi A.On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines.Theoretical and Applied Genetics,1976,47:35-39
    [32]Tanksley S D,Medina-Filho H,Rick C M.Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspectific backcross of tomato.Heredity,1982,49:11-25
    [33]惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23:129-136
    [34]Lander E S and Botstein D.Mapping mendelian factors underlying quantitative traits using RLFP linkage maps.Genetics,1989,121:185-199
    [35]Janson RC.A general mixture model for mapping quantitative trait loci by suing molecular markers.Theoretical and Applied Genetics,1992,134:1277-1288
    [36]Zeng Z B.Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468
    [37]Jansen R C.Interval mapping of multiple quantitative trait loci.Genetics,1993,135:205-211
    [38]Jansen R C,Stam P.High resolution of quantitative traits into multiple loci via interval mapping.Genetics,1994,136:1447-1455
    [39]朱军.复杂数量性状基因定位的混合线性模型方法.见:王连铮,戴景瑞,编.全国作物育种学术讨论会论文集.北京,中国农业科技出版社,1998,11-20
    [40]朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报,1999,33(3):327-335
    [41]Tanksely S D.Mapping polygenes.Aaau Rev Genet,1993,27:205-233
    [42]Lin Y R,Schert K F and Paterson A H.Comparative analysis of QTLs affecting plant height and maturity across the Poaceae,in reference to an interspeeific sorghum population.Genetics,1995,141:391-411
    [43]Yano M,Sasaki T.Genetic and molecular dissection of quantitative traits in dee.Plant Mol.Biol,1997,35:145-153
    [44]Paterson A H,Deverna J W,Lanini B,Tanksley S D.Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes,in an interspecies cross of tomato.Genetics,1990,124:735-742
    [45]Yamamoto T,Kubboki Y,Lin S Y.Fine mapping of quantitative trait loci Hd1,Hd2and Hd3 controlling heading date of rice,as single Meadelian factor.Theoretical and Applied Genetics,1998,97:37-44
    [46]Wan X Y,Wan J M,Jiang L,et al.QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects.Theoretical and Applied Genetics,2006,112:1258-1270
    [47]Xie X B,Song M H,Jin F X,et al.Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon.Theoretical and Applied Genetics,2006,113:885-894
    [48]Frary A,Nesbitt T C,Frary A,et al.fw2.2:a quantitative trait locus key to the evolution of tomato fruit size.Science,2000,289:85-88
    [49]Ashikad M,Sakakiara H,Lin S,et al.Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745
    [50]Uauy C,Distelfeld A,Fahima T,et al.A NAC gene regulating senescence improves grain protein,Zinc,Iron content in wheat.Science,2006,314:1298-1301
    [51]Song X J,Huang W,Shi M,et al.A QTL for grain width and weight encodes a previous unknown RING-type E3 ubiquitin ligase.Nature genetics,2007,39:623-630
    [52]Zamir D:Improving plant breeding with exotic genetic libraries.Nat Rev Genet 2001,2(12):983-989
    [53]Yamasaki M,Tenaillion M,Bi I V,et al.A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.The Plant Cell,2005,17:2859-2872
    [54]Cox TS,Sears RG,Bequette RK,Martin TJ.Germplasm Enhancement in Winter Wheat x Tfiticum tauschii Backcross Populations.Crop Science,1995,35(3):913-919
    [55]Fritz AK,Cox TS,Gill BS,Sears RG.Marker-Based Analysis of Quantitative Traits in Winter Wheat x Triticum tauschii Populations.Crop Science,1995,35(6):1695-1699
    [56]Narasimhamoorthy B,Gill BS,Fritz AK,et al.Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population.Theoretical and Applied Genetics,2006,112(5):787-796
    [57]Tanksley SD,Nelson JC.Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theoretical andApplied Genetics,1996,92(2):191-203
    [58]Bernacchi D,Beck-Bunn D,Emmatty D,ctal.Advanced backcross QTL analysis of tomato.Evaluation of near isogenic lines carrying single-donor introgression for desirable wild QTL-allclcs derived from Lycopcrsicon hirsutum and L.pimpincllifolium.Theoretical and Applied Genetics,1998,97:170-180
    [59]Hanson W D.Early generation analysis of length of heterozygous chromosome segments around a locus held heterozygous with backcrossing or selfing.Genetics,1959,44:833-837
    [60]Stare P,Zeven A C.The theoretical proportion of donor gcnomc in near isogcneic lines of self-fertilizers bred by backcrossing.Euphytica,1981,30:227-238
    [61]Frey K J,Browing JA.Association between genetic factors for crown rust resistance and yield in oats(Avena sativa L).Crop Science,1971,289:85-88
    [62]Frey K J.Stability indexes for isolines of oats(Arena sativa L).Crop Science,1972,12:809-812
    [63]Zeven A C,Knott D R,Johnson R.Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust,leaf rust,yellow rust.Euphytica,1983,32:319-327
    [64]Young N D,Tanksley S D.RFLP analysis of the size of chromosomal segments retained around the Tin-2 locus of tomato during backcross breeding.Theoretical and Applied Genetics,1989,77:353-359
    [65]Fulton T M,Beck-Bunn T,Emmatty D,et al.QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species.Theoretical and Applied Genetics,1997,95:881-894
    [66]Ishimaru K.Identification of a locus increasing dec yield and physiological analysis of its function.Plant Physiology,2003,133:1083-1090
    [67]Kashiwagi T,Ishimaru K.Identification and functional analysis of a locus for improvement of lodging resistancc in rice.Plant Physiology,2004,134:676-683
    [68]Huang XQ,Coster H,Ganal MW,et al.Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat(Triticum aestivum L.).Theoretical and Applied Genetics,2003,106(8):1379-1389
    [69]Huang XQ,Kempf H,Ganal MW,ct al.Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat(Triticum aestivumL.).Theoretical and Applied Genetics,2004,109(5):933-943
    [70]Worland A J.The influence of flowering time genes on environmental adaptability in European wheats.Euphytica,1996,89:49-57
    [71]Wodand A J,Borner A,Korzun V,et al.The influence of photoperiod genes on the adaptability of European winter wheats.Euphytica,1998,100:385-389
    [72]Stelmakh A F.Genetic systems regulating flowering response in wheat.Euphytica,1998,100:359-369
    [73]Pugsley A T.A genetic analysis of the spring-winter habit of growth in wheat.Australian Journal of Agricultural research,1971,22:21-31
    [74]Pugsley A T.Additional genes inhibting winter habit in wheat.Euphytica,1972,21:547-552
    [75]董玉深,郑殿升.中国小麦遗传资源.北京:中国农业出版社,2000,
    [76]Storlie E W,Allan R E,Walker-Simmons M K.Effect of the Vrnl-Frl interval on cold hardness levels in near-isogeneie wheat lines.Crop Science,1998,38:483-488
    [77]Galiba G,Quarrie SA,Sutka J,et al.RFLP mapping of the vernalization(Vrnl) and frost resistance(Frl) genes on chromosome 5A of wheat.Theoretical and Applied Genetics,1995,90:1174-1179
    [78]Sutka J,Galiba G,Vaguifalvi A,et al.Physical mapping of the Vrnl and Frl genes on chromosome 5A of wheat using deletion lines.Theoretical and Applied Genetics,1999,99:199-202
    [79]Law C N,Worland A J,Giorgi B.The genetic control of ear emergence time by chromosome 5A and 5D wheat.Heredity,1976,36:49-58
    [80]Snape J W,Law C N,Parker B B,et al.Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters.Theoretical and Applied Genetics,1985,71:518-526
    [81]Gotoh T.Genetic studies on growth habit of some important spring wheat cultivars in Japan,with special refernce to the identification of the spring genes involved.Japan J Breed,1979,29:133-145
    [82]Iwaki K,Nagakawa K,Kato k.The possible candidate of the Vrn-B in wheat as revealed by monosomic analysis of Vrn gene by Triple Dirk(B),the former Vrn2.Wheat Info Service,2001,92:9-11
    [83]Law C N,Worland A J,Young C F.Developmental studies in wheat using whole chromosome substitution lines.Proc ⅩⅣ Intl Congr Genet Vol.I Book 2,1980,282-294
    [84]McIntosh RA,Hart GE,Devos KM,et al.Catalogue of gene symbols for wheat.In:Proc 9th Int Wheat Genet Symp,vol.5.Saskatoon,Canada,pp 1-235
    [85]Flood RG,Halloran GM.Genetics and physiology of vernalization response in wheat.Adv Agron,1986,39:87-125
    [86]Berry G J,Salisbury P A and Halloran G M.Expression of vernalization genes in nearisogenic wheat lines:duration of vernalization period.Ann Bot,1980,46:235-241
    [87]Rahrnan M S,Wilson J H and Aitken Y.Determination of spikelet number in wheat.11%effect of varying light level on eat development.Aust.J.Agric.Res.,1997,28:575-581
    [88]Stelmakh A F.Geographic distribution of Vrn genes in landraces and improved varieties of spring bread wheat.Euphytica,1990,45:113-118
    [89]张晓科.中国小麦矮秆基因和春化基因分布及小麦品质相关性状多重PCR体系建立.[博士后出站报告].北京,中国农业科学院,2007
    [90]Welsh J R,Keim D L,Pirastheh B,et al.Genetic control of photoperiod response in wheat.Proc.4th Int Wheat GenetSymp,Missouri,1973,879 - 884.
    [91]Scarth R,and Law C N.The control of day - length response in wheat by the group 2chromosomes.Z Pflanzenzuecht,1984,92:140 - 150
    [92]Worland A J.The influence of flowering time genes on environmental adaptability in European wheats.Euphytica,1996,89:49 - 57
    [93]Bomer A,Worland A J,Plaschke J,et al.Pleiotropic effects of genes for reduced height(Rht) and day - length intensivity(Ppd) on yield and its components for wheat crown in middle Europe.Plant Breeding,1993,111:204 - 216
    [94]Worland A J,Borner A,Korzum V,et al.The influence of photoperiod genes on the adaptability of European winter wheats.Euphytica,1998,100:385-394
    [95]Martinic J Z.Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod.Zeitschrift fur Pflanzenzuchtung,1975,75:237-251
    [96]Hunt L A.Photoperiodlc responses of winter wheats from different climatic regions.Zeitschrift fur Pflanzenzuchtung,1979,82:70-80
    [97]Worland A J,Appenclino M L and Sayers E J.The distribution genes influencing ecoclimatic adaptability in European winter wheat varieties.Euphytica,1994,80:219-228
    [98]Martinic Z F.Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod.Z Pflanzenzuchtg,1975,75:237 - 251
    [99]Scarth R,Law C N.The location of the photoperiod gene,Ppd 2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat.Heredity,1983,51:607-619
    [100]Zemetra R S,Morals R,chmidt J W.Gene location for heading date using reciprocal chromosome substitutions in winter wheat.Crop Science,1986,26:531 - 533
    [101]Law C N.The genetic control of day-length response in wheat.Manipulation of flowering.Proc.45th Nottingham Easter School in Agricultural Science.Butterworths,London,U K,1987,225 - 240.
    [102]Flood R G,Halloran G M.The influence of certain chromosomes of the hexaploid wheat cultivar Thatcher on time to ear emergence in Chinese Spring.Euphytica,1983,32:121 - 124
    [103]Li S,Jia J,Wei X,et al:A intervarietal genetic map and QTL analysis for yield traits in wheat.Molecular Breeding,2007,20(2):167-178
    [104]李月华,丁寿康,贾继增,等.我国小麦大粒种质的研究.作物品种资源,1993,1:1-4
    [105]王辉,孙道杰,闵东红,等.关中地区小麦超高产育种问题探讨.见:何中虎,张爱民,编.中国小麦育种研究进展.北京:中国科学技术出版社,2002,126-131
    [106]庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社.2003,499-505
    [107]胡延吉,赵檀方.小麦高产育种中粒重作用的研究.作物学报,1995,21(3):671-678.
    [108]郑有良,颜 济,杨俊良.小麦粒重基因定位研究.作物学报,1993,19(4):304-308.
    [109]Varshney RK,Prasad M,Roy JK,et al.Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat.Theoretical and Applied Genetics,2000,100:1290-1294
    [110]Dholakia B B,Ammiraju J S S,Singh H,et al.Molecular marker analysis of kernel size and shape in bread in bread wheat.Plant Breeding,2003,122:392-395
    [111]Elouafi I,Nachit M M.A genetic linkage map of Durum × Tritium dicoccoides backcross population based on SSR and AFLP markers,and QTL analysis for milling traits.Theoretical and Applied Genetics,2004,108:401-413
    [112]Quarrie SA,Steed A,Calestani C,et al.A high-density genetic map of hexaploid wheat(Tritieum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments.Theoretical and Applied Genetics,2005,110(5):865-880
    [113]李斯深.小麦产量性状QTL分子标记定位.[博士学位论文].泰安,山东农业大学,2002
    [114]宋彦霞.小麦抽穗期及其它农艺性状的QTL分析.[博士学位论文].雅安,四川农业大学,2005
    [115]肖永贵.小麦产量性状的QTL分析及其与1BL/1RS易位的关系研究.[硕士学位论文].乌鲁木齐,新疆农业大学
    [116]Giura A,Saulescu N N.Chromosomal location of genes controlling grain size in a large grained selection of wheat(Triticum aestivum L.).Euphytica,1996,89:77-80
    [117]Campbell KG,Bergman CJ,Gualberto DG,et al.Quantitative Trait Loci Associated with Kernel Traits in a Soft x Hard Wheat Cross.Crop Science,1999,39(4):1184-1195
    [118]郑有良,颜济,杨俊良.小麦穗粒数的染色体效应研究.四川农业大学学报,1992,10(2):210-214
    [119]Borner A,Schumann E,Furste A,et al.Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat(Triticum aestivum L.).Theoretical and Applied Genetics,2002,105(6):921-936
    [120]周淼平,任丽娟,张旭,等.小麦产量性状QTL分析.麦类作物学报,2006,26(4):35-40
    [121]Riley R,Champman V.The inheritance in wheat of cross-ablity with rye.Genet Res,Cambrige,1967,9:259-267
    [122]Suenaga K,Khairallah M,William H M,et al.A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat.Genome,2005,48:65-75
    [123]Liu S B,Zhou R H,Dong Y C,et al.Development,utilization of introgression lines using a synthetic wheat as donor.Theoretical and Applied Genetics,2006,112(7):1360-1373
    [124]高睦枪.春小麦重要农艺性状的QTL定位及我国新品种SSR标记遗传差异研究.[博士学位论文].北京.中国农业大学,1999
    [125]赵和.小麦矮秆基因研究和利用现状.河北农业科学,2004,8(4):96-99
    [126]Borner A,Roder M and K0rzun V.Comparative molecular mapping of GA insensitive Rhtl loci on chromosomes 4B and 4D of common wheat(Triticum aestivum L.).Theoretical and Applied Genetics,1997,95:1133-1137
    [127]Sourdlle P,Cadalen T,Guyyomareh H,et al.An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat.Theoretical and Applied Genetics,2003,106:530-538
    [128]刘东成,高睦枪,关荣霞,等.小麦株高性状QTL分析.遗传学报,2002,29(8):706-711
    [129]贾继增,丁寿康,李月华,等.中国小麦的主要矮秆基因及矮源的研究.中国农业科学,1992,25(1):1-5
    [130]Sutka J,Snape J W.Location ofa gene for frost resistance on chromosome 5A of wheat.Euphytiea,1989,42:41 - 44.
    [131]Sourdille P,Sanpe J W,Cadalen,et al.Detection of QTLs for heading time and photoperiod response in wheat using a doubledhaploid population.Genome,2000,43:487-494
    [132]Hanocq E,Niarquin M,Heumez,et al.Detection and mapping of 66 new microsatellite(SSR) loci in bread wheat.Theoretical and Applied Genetics,2004,110:106-115
    [133]Prasad M,Varshney RK,Roy JK,et al.The use of microsatellites for detecting DNA polymorphism genotype identification and genetic diversity in wheat.Theoretical and Applied Genetics,2000,100:584-592.
    [134]Fedak G,Chen Q,Conner RL,et al.Petroski R and Armstrong KW Characterization of wheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization.Genome,2000,43:712-719
    [135]贾继增,张正斌,Devos K,Gale MD.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学(C辑),2001,31(1):13-21
    [136]陈国跃.人工合成六倍体小麦的遗传多样性研究与抗条锈病新基因的发掘.[博士学位论文].北京,中国农业科学院,2004
    [137]王丽敏.人工合成小麦中优质高分子量谷蛋白亚基及抗条锈病新基因的发掘.[硕士学位论文].杨凌,西北农林科技大学,2006
    [138]Dewey D R.The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae.In Gene manipulation in plant improvement.16th Stadler Genetics Symposium 1984,Columbia,Mo.Edited by J.P.Gustafson.Plenum Publishing,New York,N.Y.pp.209-279.
    [139]Mujeeb-kazi A,Kimber G.The production,cytology and practicality of wide hybrids in the Triticeae,Cereal Res.Commun,1985,13:111-124
    [140]Sharma HC,Gill BS.Current status of wide hybridization in wheat.Euphytica,1983,32:17-31
    [141]Sharma S,Louwers JM,Karld CB,et al.Postulation of resistance genes to yellow rust in wild emmer wheat derivatives and advanced wheat lines from Nepal.Euphytica,1995,81:271-277
    [142]Jiang J,Friebe B,Gill BS.Recent advances in alien gene transfer in wheat.Euphytica,1994,73:199-212
    [143]Roder MS,Korzun V,Wendehake K,Plaschke J,Tixier M-H,Leroy P,Ganal MW.A microsatellite map of wheat.Genetics,1998,149(4):2007-2023
    [144]Pestsova E,Ganal M W and Roder MS.Isolation and mapping of microsatellite markers specific for the D genome of bread wheat.Genome,2000,43:689-698
    [145]Manly KF,Cudmore JRH,Meet JM.Map Manager QTX,cross-platform software for genetic mapping.Mammalian Genome,2001,12(12):930-932
    [146]Wang S,Basten C,Zeng Z.Windows QTL Cartographer 2.0.Department of Statistics,North Carolina State University,Raleigh,NC.http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm.2004
    [147]Somers D,Isaac P,Edwards K.A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.).Theoretical and Applied Genetics 2004,109(6):1105-1114
    [148]Frey K J,Cox T S,Rodgers D M,et al.Increasing cereal yields with genes form wild and weedy species,pp.51-68 in Proceedings of the 15th International Genetics Congress,New Delhi,India,December 12-21,1983.Oxford and IBH Publishing Co.New Delhi,India.
    [149]Xiao J,Li J,Grandillo S,et al.Identification of trait-improving quantitative trait loci alleles from a wild rice relative,oryza rufipogon.Genetics,1998,150:899-909
    [150]Moncada P,Martinez CP,Borrero J.Quantitative trait loci for yield and yield component in an Qryza sativa × Qryza rufipogon BC_2F_2 population evaluated in an upland environment.Theoretical and Applied Genetics,2001,102:41-52
    [151]Brondani C,Rangel PHN,Brondani RPV,et al.QTL mapping and introgression of yield-related traits from Qryza glumaepatula to cultivated rice(Qryza sativa L) using microsatellite markers.Theoretical and Applied Genetics,2002,104:1192-1203
    [152]李德军.江西东乡普通野生稻渗入系的构建及高产QTL定位.[博士学位论文].北京,中国农业大学,2003
    [153]Kumar N,Kulwal P,Gaur A,Tyagi A,Khurana J,Khurana P,Balyan H,Gupta P.QTL analysis for grain weight in common wheat.Euphytica,2006,151(2):135-144
    [154]张学勇,童依平,游光霞,等.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,2006,39(8):1526-1535
    [155]Peng J H,Ronin Y,Fahima T,et al.Domestication quantitative trait loci in Triticum dicoccoides,the progenitor of wheat.PNAS,2003,100:2489-2494
    [156]Alpert K B,Tanksley S D.High-resolution mapping and isolation of a yeast artificial chromosome eontig eontaining fw2.2:Amajor fruit weight quantitative trait locus in tomato.Proc Nat Acad Sci(USA),1996,93:15503-25507
    [157]Tian F,Li D J,Fu Q,et al.Construction of introgression line carrying wild rice (Oryza rufipogon Giff.) segments in cultivated associated with yield-related traits.Theoretical and Applied Genetics,112:570-580
    [158]Ma Z Q,Zhang C Q,Hang Z Z,et al.Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F_2 populations.Mol Gen Genomics,277:31-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700