用户名: 密码: 验证码:
显微立体视觉系统标定与微结构半遮挡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于体视显微镜(Stereo Light Microscope,SLM)的显微立体视觉系统在微观研究领域得到广泛应用,通过视觉反馈可实现高精度的三维测量和定位。半遮挡(Half-Occlusion)是影响立体匹配和三维重构的一个重要因素。为了分析微结构在显微立体视觉中的半遮挡情况,首先研究了视觉系统的标定方法,获得了内外参数,然后建立了分析模型,对微沟道在显微立体视觉中的半遮挡情况进行了初步分析与实验验证。
     本文借鉴张正友的线性视觉模型标定理论,考虑显微立体视觉的特性,建立了一种两步标定方法:①把多幅图像做为数据源,通过Harris算子获得图像的角点。进行一次标定,获得光学放大倍率。然后,在SLM定值工作距离的约束条件下,求解出焦距,从而获得了完整的内参数;最后通过第二步标定获得视觉系统的外参数;②在显微立体视觉系统的基础上搭建了视觉系统标定硬件平台,完成了标定样板的设计与制作。并且对相应部件进行了调平、对准等工作。实验中,验证了此标定系统的实用性;③对采用CMO-SLM的显微立体视觉系统进行了标定,对每个参数的标定值分别求解其均值、均方差以及相对误差,其中放大倍率和焦距的相对误差小于1.7%。
     分别针对G-SLM与CMO-SLM中微结构的半遮挡问题进行阐述,研究了实验验证方案,进行了实验验证。共开展五方面工作:①基于针孔视觉模型和共轴球面透镜成像模型,分别建立了G-SLM和CMO-SLM的微结构半遮挡分析视觉模型;②求取了单子光路的视野范围,半遮挡临界角与物点坐标、子光路半夹角、焦距、CCD靶面宽度等参数的关系式;③分析了微沟道的遮挡问题。分别针对理想微沟道与非理想微沟道,利用分析模型对特定内壁倾角的微沟道进行了半遮挡分析;④对半遮挡分析结果进行了实验验证。利用标定样板与硅模具热压而成的不存在半遮挡的微沟道来模拟各个连续内壁倾角的微沟道,实验中,求得9.0×时,视野中心的半遮挡临界角为82.6°,绝对误差的平均值为1.04°;⑤分析了对侧内壁遮挡的微沟道,求取了不发生对侧遮挡的微沟道深宽比的范围。
     视觉系统的标定为微结构的半遮挡提供了前提,而半遮挡的分析与实验验证为半遮挡的解决奠定了基础。
Micro stereovision system based on stereo light microscope (SLM) has been applied insome micro-domains widely. Highly accurate measurement and location are implemented bythe vision feedback. Sequentially, the micro-actor is controlled to complete the expectedoperation. Half-cclusion is an important influencing factor in stereo matching and 3Dreconstruction. To analyse half-occlusion of microstrucmre in SLM, vision system iscalibrated firstly, whose intrinsic and extrinsic parameters can be acquired subsequently, thenanalytical models are built, finally, half-occlusion of mircostructures including microchannelare analysed, in mircro stereovision.
     The purpose of calibration of micro stereovision system is to get the intrinsic andextrinsic parameters of the corresponding vision model. For reference of Zhang ZY's linearvision model calibration theory and consideration of micro stereovision character, a two-stepcalibration method is put forward. The study on calibration is as follows:①Data source arecomers which are extracted from many images using Harris arithmetic operators. First, only aproportional value namely magnification is acquired from elementary calibration since SLM'sdepth of focus is finite and the calibration pattern can only rotate in a plane, then, forthe constraint that operating distance is constant, foci can be got, then intrinsic parameters canbe achieved; second, extrinsic parameters can be acquired from the further calibration;②Based on SLM micro stereovision system, a set of calibration device system was assembledand calibration patternⅡwas designed. Some components were levelling and collimated. Thefollowing experiments verified the practicability of this system;③The average, standarddeviation and the relative error of foci, ubiety and magnification of binocular system aregained by the calibration of the CMO-SLM under three common-used objective lensmagnifications (2.0X, 2.5X, 3.2X). The relative errors of magnification and foci are less than1.7 percentages, while the relative errors of the fitting straight lines' rate of grade which isclose to 5 and a criteria for evaluation of the angle around z axis are less than 0.6 percentages.The relative deviation between left and right translation vectors can judge the accuracy of thetranslation vector, which is less than 0.116mm.
     Half-occlusion of the microstrucmre in the G-SLM and CMO-SLM are formulatedseparately, after that experimental scheme is presented and primary experimental verificationis completed. The study on occlusion is as follows:①Analytical vision models ofhalf-occlusion are built. G-SLM analytical model is derived from the coaxial spherical planes lens model while CMO-SLM analytical model is from the common-used pinhole model;②Field of vision and the relational expressions between coodianates of object point and criticalocclusion angle which depends on included angle, foci, effective width of CCD areformulated;:③Occlusion of microchannel is analysed weightily. As to ideal and nonidealmicrochannel which have fixed rake angle of inwall, half-occlusions are explained byanalytical vision models, after that quantitative conclusions are achieved;④Study onexperimental method which can verificate relational expressions in③is completed, after thatprimary experiments are done. Microchannel's continuous rake angles are simulated bycalibration pattern and a microchannel which has no occlusion and was hot embossed withsilicon mould. The average of absolute error is 1.04°;⑤The range of depth-to-width ratio ofmicrochannels which have no opposite side occlusion after some formulation.
     Calibration is a prerequisite of analysis of half-occlusion, while the correspondinganalysis lends itself to half-occlusion solution.
引文
[1] 徐光佑.计算机视觉.北京:清华大学出版社,1999.
    [2] Kim N H, Bovik A C, Aggarwal S J. Shape description of biological objects via stereo light microscopy. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(2): 475-489.
    [3] Codourey A, Zesch W, Buchi R, et al. A robot system for automated handling in micro-world. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 1995, 3: 185-190.
    [4] Pappas I, Codourey A. Visual control of a microrobot operating under a microscope. Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan. 1996, 2: 993-1000.
    [5] Codourey A, Rodriquez M, Pappas I. Human machine interaction for manipulations in the microworld. Proceedings of the 1996 5th IEEE International Workshop on Robot and Human Communication, Tsukuba, Japan, 1996, 244-249.
    [6] Rodriguez M, Codourey A. Graphical user interface to manipulate objects in the micro world with a high precision robot. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 1997, 4:3031-3036.
    [7] Kim D H, Kim K, Kim K Y, et al. Dexterous Teleoperation for micro parts handing based on haptic/visual interface. Proceedings of 2001 International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 2001, 211-217.
    [8] Kim K, Kim D H, Lee S J, et al. Hybrid Microassembly System for Three-Dimensional MEMS Components. Korea institute of Science and Technology, 2001.
    [9] Schreier H W, Garcia D, Sutton M A. Advances in light microscope stereo vision. Experimental Mechanics. 2004, 44(3): 278-288.
    [10] Tanikawa T, AraiandT, Ojala P.Two-finger micro hand. IEEE International Conference on Robotics and Automation, 1995: 1674-1679.
    [11] Tomomasa S, Takayuki K, Hideki M, et a. Hand-Eye System in Nano Manipulation World.IEEE international Conference on Robotics and Automation 1995, 6:59-66.
    [12] Larsson L, Sjodahl M, Thuvander F. Microscopic 3-D displacement field measurements using digital speckle photography. Optical and Lasers in Engineering. 2004, 41(5): 767-777.
    [13] 郑巍.徐毓娴.李庆祥.用于微器件装配的微操作系统.机器人.1999.1(21):12-16.
    [14] 于波,王立鼎.一种双目分时显微立体成像系统的研制.光学精密工程.1997,5(4):49-52.
    [15] 李路明,王立鼎,任延同等.可用于克隆技术的微操作系统构成原理的研究.光学精密工程.1998.6(1):42-46.
    [16] 陈平,姜成上,章云等.用于微细作业系统的立体成像技术研究.光学精密工程.2000,8(5):444-447.
    [17] 王英翘,徐征,刘冲等.一种基于操纵杆控制微操作系统三维运动的方法.光学精密工程.2001,9(6):553-556.
    [18] 刘冲,徐征,王立鼎等.微操作系统的实时显微立体成像研究.中国机械工程.2002,13(18):1567-1570.
    [19] 孙立宁,陈立国,刘品宽等.微操作机器人显微视觉系统若干问题.光学精密工程.2002.10(2):171-175.
    [20] 陈立国,孙立宁,荣伟彬.基于显微视觉与微力觉柔顺混合控制的微操作机器人.高技术通讯,2003.12:53-56.
    [21] 李丽宏,孙立新,安庆宾等.基于双目显微立体视觉系统的研究.激光与光电子学进展.2003.40(9):30-35.
    [22] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai, Hawaii. 2001:131-140.
    [23] 候晓萍.显微立体视觉系统的标定与三维重建技术研究:(硕士学位论文).天津:河北工业大学,2004.
    [24] 邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述.自动化学报.2000.26(1):43-55.
    [25] Wong K W. Mathematical formulation and digital analysis in close range photogrammetry. Photogrammetric Eng. Remote Sensing, 1975, 41(11): 1355-1373.
    [26] Isaguirre A, Pu P, Summers J. A new development in camera calibration calibrating a pair of mobile cameras. Proc. IEEE Int. Conf. Robotics Automation, St, Louis, 1985, 74-79.
    [27] Faugeras O D, Toscani G. Calibration problem for stereo. Proc. Int. Conf. Comput. Vision Patt. Recogn, Miami Beach, FL, 1986, 15-20.
    [28] Ganapathy S. Decomposition of transformation matrices for robot vision. Proc. IEEE Int. Conf. Robotics Automat, Atlanta. 1984, 130-139.
    [29] 高立志,方勇,林志航等.高精度立体视觉测量中一种通用的摄像机标定技术.机械科学与技术.1998,12(5):808-811.
    [30] Lenz R K, Tsai R Y. Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology. Proc. IEEE Int. Cof. Robotics Automat. Raleigh, NC, 1987, 68-75.
    [31] Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the shelf TV cameras and tenses. IEEE J. Robotics Automat, 1987, 3(4): 323-344.
    [32] Weng J Y. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965-980.
    [33] Danuser G. Photogrammetric calibration of a stereo light microscope. Journal of Microscopy, 1999, 193: 62-83.
    [34] Danuser G. Stereo light microscope calibration for 3D submicron vision. International Archives of Photogrammetry and Remote Sensing, Vienna, 1996, 101-108.
    [35] Tsai R. An efficient and accurate camera calibration technique for 3D machine vision. In: Proc IEEE Conference on Computer Vision and Pat tern Recognition, MiamiBeach, Florida, 1986.346-373.
    [36] Eckert L, Grigat R.-R. Biologically Motivated Precise and Simple Calibration and Reconstruction Using a Stereo Light Microscope. Computer Vision Proceedings. Eighth IEEE International Conference. 2001,7(2):94-101.
    [37] 周敬利,罗秋明,余胜生.使用视差一致性约束的立体匹配与遮掩检测.小型微型计算机系统.2003.10(24):1791-1796.
    [38] Geiger D, Ladendorf B, Yuille A Occlusion and binocular stereo. International Journal of Computer Vision. 1995, 14:211-226.
    [39] Tsai C J, KatsaggelosA K. Dense disparity estimation with a divide and conquer disparity space image technique. IEEE Transactions on Multimedia. 1999, 1(1): 18-29
    [40] Dhond U R. Aggarwal J K. Structure from stereo-a review. IEEE Transaction on Systems, Man and Cybernetics, 1989, 19(6):1489-1510.
    [41] Toh P S, Forrest A K. Occlusion detection in early vision. ICCV 1990, 126-132.
    [42] Zitnick C L, Kanade T. A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(7): 675-684.
    [43] Triantafillou lilies G A, Tovar's D, Steinitz M G. Occlusion and visible background and foreground areas in stereo: a Bayesian approach. IEEE Transactions on Circuits and Systems for Video Techno logy, 2000, 10 (4): 563-575.
    [44] Birchfield S, Tomasi C. Depth discontinuities by pixel to-pixel stereo[C]. Sixth International Conference on Computer Vision, 1998, 1073-1080.
    [45] Werth P, Scherer S. A novel bidirectional framework for control and refinement of area based correlation techniques. IEEE 15th International Conference on Pattern Recognition, Proceedings, 2000, 3: 730-733.
    [46] Yu Qian, Helder ARAU' JO. A Stereovision Method for Obstacle Detection and Tracking in Non-Flat Urban Environments. Autonomous Robots. 2005, 19:141-157..
    [47] 沙里瓦特.显微立体视觉中的匹配技术研究:(硕士学位论文).大连:大连理工大学,2005.
    [48] 王跃宗.计算机显微立体视觉量化和三维数据重构研究:(博士学位论文).大连:大连理工大学,2003.
    [49] http://sme.dlut.edu.cn/kys/index.aspx?kysid=7&id=0
    [50] 尉元杰,刘冲,李经民等.微流控芯片微通道热压成形中塑料流动的仿真.传感技术学报.2006.5(19):2010-2014
    [51] 梁军生,刘冲,王立鼎.基于MEMS技术的微型质子交换膜燃料电池.2005增刊(16):46~49.
    [52] 王立鼎,娄志峰.王晓东等.超精密渐开线齿形的测量方法.光学精密工程.2006.6(14):980-985.
    [53] 杜立群,赵海波.吕岩.水热合成法制各PZT压电薄膜工艺研究.中国机械工程.2005增刊(16):464-466.
    [54] Woolley A T, Sensabaugh G F, Mathies R A. High-Speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips. Anal Chem, 1997(69):2181-2186.
    [55] 周小棉,戴忠鹏,罗勇等.一种微流控芯片.中国,实用新型,02274236.0.2003.
    [56] 尉元杰.温度压力作用下塑料流动对微通道成形影响的研究:(硕士学位论文).大连:大连理工大学,2006.
    [57] 马颂德,张正友.计算机视觉.科学出版社.1998.
    [58] 姚吉利.3维坐标转换参数直接计算的严密公式.测绘通报.2006.5:7-11.
    [59] Wei G, Ma S. Complete two-plane camera calibration and experimental comparisons. In Proc. ICCV'93.1993:439-446.
    [60] 张艳珍,欧宗英.一种新的摄像机线性标定方法.中国图形图像学报.2001,27(5):727-731
    [61] 陈爱华,高诚辉,何炳蔚.计算机视觉中的摄像机标定方法.中国机械工程学报.2006,4(4):498:457.
    [62] Zhang ZY, Senior Member. A Flexible New Technique for Camera Calibration. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22(11):1330-1334.
    [63] http://www.bjwn.cn/Index.asp
    [64] 夏泽邑.SLM显微图像的噪声处理与亚像素定位:(硕士学位论文).大连:大连理工大学.2005.
    [65] Harris C G, Stephens M J. A Combined Comer and Edge Detector. Proceedings Fourth Alvey Vision Conference, Manchester, 1988:147-151.
    [66] 谢东海,詹总谦.江万寿.改进Harris算子用于点特征的精确定位.测绘信息与工程.2003,28(2)22-23.
    [67] Gouet V, Montesinos P, Deriche R, etc. Evaluation de Detecteurs Depoints Dint'Eret Pour la Couleur. InReconnaissance des formeset Intelligence Artificielle, Paris, France,2000.2: 257-266.
    [68] 李博,杨丹,张小洪.基于Harris多尺度角点检测的图像配准新算法.计算机工程与应用.2006.35:37-38.
    [69] http://www.intel.com/software/products/ipp/index.htm
    [70] James P.Cohoon, Jack W. Davidson. C++ Program Design, 3th Edition. Beijing: Publishing House of Electronic Industry, 2002.
    [71] Intel corperation. OpenCV Manual. 1999.
    [72] http://www.china-vision.net/technology/soff/200701/4283.html
    [73] Jorge H. Usabiaga. CS791E Computer Vision-Assignmem 03 Calibration.2003.8
    [74] Fiala, M, Shu, C. Fully Automatic Camera Calibration Using Self-Identifying Calibration Targets. NRC/ERB-1130. 2005,11:26-27.
    [75] Sadlo F, Weyrich T, Peikert R et al. A Practical Structured Light Acquisition System for Point-Based Geometry and Texture. Appeared in the Proceedings of Eurographics symposium on Point-Based Graphics, 2005.
    [76] 同济大学数学教研室.高等数学(上册).北京:高等教育出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700