用户名: 密码: 验证码:
结构稳定极限承载力分析的力素增量方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究结构稳定极限承载力分析的简便方法。根据物理概念,提出了系统(结构)静、动力平衡状态稳定性分析的力素增量方法。建立了结构单元弹塑性增量平衡方程及结构单元弹塑性增量割线刚度矩阵,推导了五种常见结构单元的弹塑性增量割线刚度矩阵的显式表达式,避免了数值积分运算。提出了一致显式增量割线刚度直接迭代算法,提高迭代效率。根据虚位移原理,采用Updated-Lagrange列式及本文提出的力素增量方法建立了结构单元大变位分析的虚功增量平衡方程,揭示了该式左边各项的物理意义。以平面梁单元为例,得到了反映单元大变形抗力增量与荷载增量相互平衡的代数式,将复杂的积分方程改造成为代数方程,简化了计算。根据以下物理事实:单元大变形过程可分解为自然变形阶段和整体刚性运动阶段,单元只在自然变形过程中才会改变节点抗力大小,而刚体运动不会改变单元抗力的大小,只会改变其方向,导出了结构单元大变位分析的增量割线刚度方法并推导了四种结构单元大变位分析的增量割线刚度矩阵。主要的研究内容和取得的成果如下:
     (1)提出了结构静力平衡状态稳定性分析的力素增量评判准则:当抗力增量大于荷载增量时,平衡状态稳定;小于时,平衡状态不稳定;等于时,结构处于临界失稳状态。建立了系统运动稳定性分析的位移变分法,解决了非线性系统稳定性简便分析以及系统稳定性分布区域的确定问题。
     (2)推演了杆单元、抛物线索单元、平面梁单元、空间梁单元、板壳单元等的弹塑性刚度矩阵计算表达式,无需数值积分运算,简化了计算过程,提高运算效率。
     (3)提出了一致显式增量割线刚度直接迭代算法,上一迭代步“校正”阶段形成的结构单元增量割线刚度矩阵可以用于本次迭代步“预测”阶段计算结构单元增量位移,迭代过程简单,提高求解效率。
     (4)以平面梁单元为例,揭示了结构单元大变形三维虚功增量平衡方程中虚应变能增量的物理意义:分别表示单元抵抗自然变形的抗力虚功,单元刚体变位引起的单元自然变形抗力增量虚功以及单元初始节点力增量虚功,从而建立了单元大变形力素增量平衡方程。
     (5)建立了结构单元几何非线性分析的增量割线刚度列式、四种常见结构单元增量割线刚度计算表达式,以及提出了这些单元大变形分析的增量割线刚度方法。
     (6)提出了基于增量割线刚度的柱面弧长算法,求解结构弹塑性大变形非线性平衡方程,追踪结构从开始加载直到顺利跨越极值点全过程的平衡路径。该算法可以有效地避免传统柱面弧长法中由于荷载增量因子选取不当引起求解路径回溯并最终导致迭代过程发散的问题,求解过程简单,可以收敛于正确解。
     (7)基于本文理论研究成果,编制了结构稳定极限承载力分析的计算程序。分析了文献中选取的11例结构非线性响应计算的经典考题,得到的结果均与解析解或者与其它学者提出的数值解非常吻合,计算了三汊矶湘江大桥在全桥满布荷载工况下的稳定极限承载力,从而验证了本文分析方法的正确性和有效性。
This doctoral thesis is mainly focused on the development of a simplified method for the evaluation of ultimate load carrying capacity of structures. According to the basic concepts of structural stability also unveiled herein, an incremental force component approach is put forward to investigating the stability behavior of static and dynamic equilibrium state of mechanical systems(structures). A general procedure for deriving incremental equilibrium equations of elasto-plastic structural element and its incremental secant stiffness matrix becomes available. By following this procedure, one can explicitly formulate the incremental inelastic secant stiffness matrix for five types of structural elements that often used in practice, which renders the numerical integration of high cost unnecessary. A consistent direct iterative solution scheme consistent with present incremental secant stiffness formulation is developed to solve the path-dependent nonlinear equilibrium equations with a comparable high level of efficiency. By using the principle of virtual displacements, the Updated Lagrange formulation for large deformation analysis, and the proposed incremental force component approach, the incremental virtual work equations describing the large deformation behavior of structural elements has been established. From these equations, the physical sense of each integral at the left hand side has extensively been investigated. With such physical significance bearing in mind and by considering the large displacement process experienced by a planar beam element, a set of algebraic equations representing the equilibrium relationships between the resistance of the element due to large deformations and applied load increments can be derived as an alternative to the conventional more complicated integral equations. By doing so, the analysis process is greatly simplified. Recall the following reality that the large deformation can usually be divided into two stages, namely, the natural deformation and the purely rigid body motion, only the natural deformation will generate nodal resisting forces, while according to the rigid body motion rule the nodal forces shall remain their magnitude, but rotate through a definite angle when rigid body motion takes place, an incremental secant stiffness formulation for the large deformation analysis of structural elements can consequently be derived. At this point, the incremental secant stiffness matrix for use in the geometric nonlinear analysis of four types of typical structural elements is explicitly given. According to the above brief discussion, the main characteristics of this dissertation can be summarized as follows:
     (1) A general criterion in terms of incremental force components has been presented for checking the stability of the static equilibrium state of structures. The global structural form will remain stable if a structure has sufficient capacity to accommodate the externally applied forces when being disturbed. The structure becomes unstable when the applied loads dominate the structural resistance. A critical state can be obtained as the applied loads fulfill the residual load carrying capacity of the structures. Following the concepts of instability analysis of systems at rest, a procedure called the displacement-based variational method is proposed to solve the stability problems of nonlinear systems in motion in a more efficient way and to mark out the stable zone and unstable zone.
     (2) The governing incremental equilibrium equations of inelastic structures are formulated through a novel incremental secant stiffness approach, by which the element and therefore the structural global secant stiffness matrices are explicitly calculated. Such procedure facilitates the task of formulation and implementation of finite element model in that the cumbersome numerical integration is completely unnecessary. For the purpose of illustration, the incremental secant stiffness matrices are derived for five types of commonly used structural elements, i.e., truss, parabolic cable, planar beam, spatial beam and flat plate or shell, respectively.
     (3) A consistent direct iterative solution scheme consistent with the present formulation is presented. In a typical iterative step, the structural stiffness matrix does not need to be reformed at the very beginning of the 'predictor'stage. Rather, it will be replaced by the one obtained from the 'corrector' stage of last iteration. Consequently, the iteration process itself is efficient in its implementation and minimize the amount of computation time.
     (4) From large deformations of a planar beam element, the physical meaning of three integrals for each representing the corresponding incremental virtual strain energy in the incremental virtual work equation of equation (4-17) can be individually interpreted as the virtual work of element end forces induced by structural natural deformations, the virtual work of element end force increments caused by rigid body motion of the element, and the virtual work of initial nodal force increments also due to element moves as a rigid body. In this work, the foregoing physical interpretations serve as a valid basis for establishing the incremental equilibrium equations when element undergoing large deformations.
     (5) An element formulation using the incremental secant stiffness properties is presented for analyzing the geometric non-linear behavior of structures. As an illustration, explicit expressions for the incremental secant stiffness matrices of four typical types of structural elements are derived for future reference.
     (6) An incremental secant stiffness based cylindrical arc-length method is proposed as an attempt to solving material and geometric non-linear incremental equilibrium equations and to tracking the equilibrium path throughout whole loading history. The proposed solution algorithm can effectively tackle the problem of 'tracing back'when predicting a correct equilibrium path by conventional cylindrical arc-length method, as a misleading applied load factor may occasionally be selected. Meanwhile, the solution scheme is quite simple for implementation, and can always be converged to the correct equilibrium path.
     (7) Based on the proposed method in current study, a computer program for calculating the ultimate load carrying capacity of structures and components has been written. Subsequently, this program is applied to solving 11 benchmark problems of analyzing the response of nonlinear structures under static loads of gradually increasing magnitude. The obtained numerical results are in closely agreement with the available analytical solutions or the numerical results reported by other researchers. In addition, as an attempt to solving practical problems, the ultimate load carrying capacity of a self-anchored suspension bridge subject to full-span uniformly distributed live loads has been evaluated. All of the above works successfully demonstrate the capabilities and effectiveness of the present formulation.
引文
[1]F. Bleich. Buckling Strength of Metal Structures, New York:McGraw-Hill,1952
    [2]S. P. Timoshenko, J.M.Gere. Theory of Elastic Stability,2nd ed. New York:McGraw-Hill,1961
    [3]V. Z. Vlasov. Thin Walled Elastic Beams,2nd ed. Washington DC National Science Foundation,1961
    [4]W.F.Chen, T.Atusta. Theory of Beam-columns:In-plane Beahviour and Design. Vol.1. McGraw-Hill, New York,1977
    [5]W. F. Chen, T. Atusta. Theory of Beam-columns:Space Beahviour and Design. Vol.2. McGraw-Hill, New York,1977
    [6]吕烈武等.钢结构构件的稳定理论.北京:中国建筑工业出版社,1994
    [7]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997
    [8]K. J. Bathe. Finite Element Procedures. Prentice Hall, New Jersey,1996
    [9]J.S.普齐米尼斯基.矩阵结构分析理论.王德荣,等译.北京:国防工业出版社,1974
    [10]殷万寿,汪秀鹤.世界桥梁技术发展概况及趋势.桥梁建设,1981,l:1-33
    [11]陈绍蕃.钢结构设计原理.北京:科学出版社,1998
    [12]陈骥.钢结构稳定理论与设计(第三版).北京:科学出版社,2005
    [13]刘坚.基于结构极限承载力的轻型钢框架结构的计算理论及应用研究:[博士学位论文].重庆:重庆大学,2003
    [14]J. K. Paik, A. K. Thayamballi. Ultimate Limit State Design of Steel-Plated Structures. John-Wiley & Sons, Chichester,2003
    [15]李国强.我国高层建筑钢结构设计理论的发展概略.工程力学(增刊),1995,1799-1803
    [16]S. P. Timoshenko. History of Strength of Materials. Dove Publications, New York,1983
    [17]H. Ziegler. On the concept of elastic stability. Advances in Applied Mechanics,1956,4:351-403
    [18]N. S. Trahair. Flexural-torsional Buckling of Structures. CRC Press, Boca Raton,1993
    [19]Y. L. Pi, N. S. Trahair, S. Rajasekaran. Energy equation for beam lateral buckling. Journal of Structural Engineering (ASCE); 1992,118(6):1462-1479
    [20]Y. L. Pi, N. S. Trahair. Pre-buckling deflections and lateral buckling, Ⅰ:Theory. Journal of Structural Engineering (ASCE),1992,118(11):2949-2966
    [21]D.O. Brush, B.O.Almroth. Buckling of Bars, Plates and Shells. McGraw-Hill, New York,1975
    [22]L. H. Donnell, C. C. Wan. Effects of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics (ASME),1950,17(1):73-83
    [23]T. Von Karman, H. S. Tsien. The buckling of spherical shells by external pressure. Journal of Aeronautical Science,1939,7(1):43-50
    [24]W. T. Koiter, Thesis, Delft (1945); English translation published as NASA TTF-10,1967,833
    [25]D.Bushnell. Static collapse:a survey of methods and modes of behavior. Finite Elements in Analysis and Design,1985,1 (2):165-205
    [26]R. T. Haftka, R. H.Mallett, W. Nachbar. Adaption of Koiter's method to finite element analysis of snap-through buckling behavior. International Journal of Solids and Structures,1971,7(10):1427-1445
    [27]任伟新,曾庆元.薄壁结构局部整体相关屈曲研究现状.力学进展,1993,23(3):407-414
    [28]J. W. Hutchinson. Plastic buckling. Advances in Applied Mechanics, 1974,14:67-144
    [29]曾庆元.薄壁梁和柱极限荷载的空间分析法.长沙铁道学院学报,1987,5(3):1-14
    [30]孟凡中.弹塑性有限变形理论和有限元法.北京:清华大学出版社,1985
    [31]殷有泉.固体力学非线性有限元引论.北京:北京大学出版社、清华大学出版社,1987
    [32]何君毅,林祥都.工程结构非线性问题的数值解法.北京:国防工业出版社,1994
    [33]凌道盛,徐兴.非线性有限元及程序.杭州:浙江大学出版社,2004
    [34]P.G.Hodge. Plastic Analysis of Structures. McGraw-Hill, New York, 1959
    [35]D.W.White. Plastic hinge methods for advanced analysis of steel frames. Journal of Constructional Steel Research,1993,24(2):121 - 152
    [36]F. L. Porter, G.H. Powell. Static and Dynamic Analysis of Inelastic Frame Structures. Report No. EERC 71-3. University of California, Berkeley,1971
    [37]舒兴平.钢框架结构弹塑性有限变形理论分析及试验研究:[博士学位论文].长沙:湖南大学,1992
    [38]J. G. Orbison, W. McGuire, J. F.Abel. Yield surface applications in nonlinear steel frame analysis. Computer Methods in Applied Mechanics and Engineering,1982,33(1-3):557-573
    [39]A. Conci, M. Gattass. Natural approach for thin-walled beam-columns with elastic-plasticity. International Journal for Numerical Methods in Engineering,1990,29(8):1653-1679
    [40]M. B. Wong, F. T. Loi. Yield surface linearization in elastoplastic analysis. Computers & Structures,1987,26(6):951-956
    [41]F. G. A. Al-Bermani, S. Kitipornchai. Elasto-plastic large deformation analysis of thin-walled structures. Engineering Structures,1990,12(1): 28-36
    [42]Y. B. Yang, S. M. Chern, H. T. Fan. Yield surface for Ⅰ-sections with bimoments. Journal of Structural Engineering (ASCE),1989,115(12):3044-3058
    [43]J. Y. R. Liew, D. W. White, W.F.Chen. Second-order refined plasti-hinge analysis for frame design, Part Ⅰ and Ⅱ. Journal of Structural Engineering (ASCE),1993,119(11):3196-3237
    [44]颜全胜.大跨度钢斜拉桥极限承载力分析:[博士学位论文].长沙:长沙铁道学院,1994
    [45]C. N. Huu, S. E. Kim, J. R. Oh. Nonlinear analysis of space steel frames using fiber plastic hinge concept. Engineering Structures,2007,29(4): 649-657
    [46]M. R. Attalla, G. G. Deierlein, W. McGuire. Spread of plasticity:Quasi- plastic-hinge approach. Journal of Structural Engineering (ASCE),1999, 120(8):2451-2471
    [47]W. S. King. A modified stiffness method for plastic analysis of steel frames. Engineering Structures,1994,16(3):162-170
    [48]L. Duan, W. F. Chen. Design interaction equation for steel beam-columns. Journal of Structural Engineering (ASCE),1989,115(5):1225 -1243
    [49]S.E. Kim, Y. Kim, S.H.Choi. Nonlinear analysis of 3-D steel frames. Thin-walled Structures,2001,39(6):445-461
    [50]R. J. Alvares, C. Birnstiel. Inelastic analysis of multistory multibay frames. Journal of Structural Divisions (ASCE),1969,95(11):2477-2503
    [51]S. Toma, W. F. Chen. European calibration frames for second-order inelastic analysis. Engineering Structures,1992,14(1):7-14
    [52]X. M.Jiang, H. Chen, J. Y. R. Liew. Spread-of-plasticity analysis of three-dimensional steel frames. Journal of Constructional Steel Research, 2002,58 (2):193-212
    [53]L. H. Teh, M. J. Clarke. Plastic-zone analysis of 3D steel frames using beam elements. Journal of Structural Engineering (ASCE),1999,125(11): 1328-1337
    [54]赵金城,沈祖炎.考虑塑性区扩展的钢框架二阶分析.同济大学学报,1995,23(5):488-492
    [55]G.M. Barsan, C.G. Chiorean. Computer program for large deflection elasto-plastic analysis of semi-rigid steel frameworks. Computers & Structures,1999,72 (6):699-711
    [56]C.G.Chiorean, G. M. Barsan. Large deflection distributed plasticity analysis of 3D steel frameworks. Computers & Structures,2005,83(19-20):1555-1571
    [57]C. G. Chiorean. A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks. Engineering Structures,2009,31(12): 3016-3033
    [58]K. Phuvoravan, E. D. Sotelino. Nonlinear finite element for reinforced concrete slabs. Journal of Structural Engineering (ASCE),2005,131(4): 643-649
    [59]盛兴旺.预应力混凝土斜交箱形梁分析理论与实验研究:[博士学位论文].长沙:中南大学,2000
    [60]夏桂云.预应力混凝土箱梁承载力与裂缝研究:[博士学位论文].长沙:中南大学,2006
    [61]ANSYS, Inc. Theory manual(Twelfth Edition). Sas IP, Inc,2001
    [62]C.L. Lee, F. C. Filippou. Efficient beam-column element with variable inelastic end zones. Journal of Structural Engineering (ASCE),2009, 135(11):1310-1319
    [63]任伟新.钢桁梁桥压杆局部与整体相关屈曲极限承载力研究:[博士学位论文].长沙:长沙铁道学院,1992
    [64]任伟新,曾庆元.求解钢压杆极限承载力的有限条塑性系数增量初应力法,固体力学学报,1995,16(1):83-89
    [65]戴公连.混凝土斜拉桥局部与整体相关屈曲极限承载力分析:[博士学位论文].长沙:长沙铁道学院,1997
    [66]戴公连,李德建,曾庆元,梅尧坤.单拱面预应力混凝土系杆拱桥极限承载力分析的截面内力塑性系数法,土木工程学报,1995,35(1):40-44
    [67]王荣辉.板桁组合钢梁非线性分析:[博士学位论文].长沙:长沙铁道学院,1997
    [68]R. H. Wang, Q.S. Li, Q. Z. Luo, J. Tang, H. B. Xiao, Y. Q. Huang. Nonlinear analysis of plate-truss composite steel girders. Engineering Structures, 2003,25(11):1377-1385
    [69]肖万伸.大跨度钢斜拉桥局部与整体相关屈曲极限承载力分析:[博士学位论文].长沙:长沙铁道学院,1999
    [70]梁硕.大跨度砼斜拉桥局部与整体相关屈曲空间极限承载力分析:[博士学位论文].长沙:长沙铁道学院,1999
    [71]韦成龙.大跨度板桁结合主梁斜拉桥极限承载力分析:[博士学位论文].长沙:中南大学,2003
    [72]程进,肖汝城,项海帆.超大跨径缆索承重桥梁极限承载力分析的现状与展望.中国公路学报,1999,12(4):59-63
    [73]K. J. Bathe, S.Bolourchi. Large displacement analysis of three dimensional beam structures. International Journal for Numerical Methods in Engineering,1979,14(7):961-986
    [74]A. Dutta, D. W. White. Large displacement formulation of a three-dimensional beam element with cross-sectional warping. Computers & Structures,1992,45(1):9-24
    [75]D. W. White, J. F.Abel. Accurate and efficient formulation of a 9-node shell element with spurious mode control. Computers & Structures,1990, 35(6):621-642
    [76]M. Gattass, J.F.Abel. Equilibrium considerations of the updated lagrangian formulation of beam-columns with natural concepts. International Journal for Numerical Methods in Engineering,1987,24(11): 2119-2141
    [77]R.K. Wen, J. Rahimzadeh. Nonlinear elastic frame analysis by finite element. Journal of Structural Engineering (ASCE),1983,109(8):1952-1971
    [78]R. H. Mallett, P. V. Marcal. Finite element analysis of non-linear structures. Journal of Structural Division (ASCE),1968,94(9):2081-2105
    [79]A. Cardona, M. Geradin. A beam finite element nonlinear theory with finite rotations. International Journal for Numerical Methods in Engineering,1988,26(11):2403-2438
    [80]G. Narayanan, C. S. Krishnamoorthy. An Investigation of geometric non-linear formulations for 3D beam elements. International Journal of Non-linear Mechanics,1990,25(6):643-662
    [81]J. L. Meek, S. Loganathan. Geometrically nonlinear behavior of space frame structures. Computers & Structures,1989,31 (1):35-45
    [82]Y. B. Yang, W. McGuire. Stiffness matrix for geometric nonlinear analysis. Journal of Structural Engineering (ASCE),1985,112(4):853-877
    [83]A. F. Saleeb, T. Y. P. Chang, A. S. Gendy. Effective modeling of spatial buckling of beam assemblages accounting for warping constraint and rotation-dependency of moments. International Journal for Numerical Methods in Engineering,1992,33(3):469-502
    [84]A. Conci,M. Gattass. Natural approach for geometric non-linear analysis of thin-walled frames. International Journal for Numerical Methods in Engineering,1990,30(2):207-231
    [85]A. Conci. Large displacement analysis of thin-walled beams with generic open section. International Journal for Numerical Methods in Engineering,1992,33(10):2109-2127
    [86]B. A. Izzuddin, A. S. Elnashai. Eulerian formulation for large displacement analysis of space frames. Journal of Structural Engineering (ASCE),1993,119 (3):549-569
    [87]B. A. Izzuddin. An Eulerian approach to the large displacement analysis of thin-walled frames. Proceedings of the ICE:Structures and Buildings.1995,110(1):50-65
    [88]B. A. Izzuddin, D. L. Smith. Large-displacement analysis of elasto-plastic thin walled frames, I:'Formulation and implementation. Journal of Structural Engineering (ASCE),1996,122(8):905-914
    [89]T. Belytschko, L. Schwer. Large displacement transient analysis of space frames. International Journal for Numerical Methods in Engineering,1977,11 (1):65-84
    [90]M. A. Crisfield. A consistent co-rotational formulation for non-linear three-dimensional beam.elements. Computer Methods in Applied Mechanics and Engineering,1990,81(2):131-150
    [91]K. M. Hsiao. Co-rotational total Lagrangian formulation for three-dimensional beam element. AIAA Journal,1992,30(3):797-804
    [92]K.M. Hsiao, F. Y. Hou. Nonlinear finite element analysis of elastic frames. Computers & Structures,1987,26(4):693-701
    [93]C. A. Felippa, B. Haugen. A unified formulation of small-strain corotational finite elements:I. Theory. Computer Methods in Applied Mechanics and Engineering,2005,194(21-24):2285-2335
    [94]G. Narayanan, C. S. Krishnamoorthy. A simplified formulation of a plate/shell element for geometrically nonlinear analysis of moderately large deflections with small rotations. Finite Elements in Analysis and Design,1989,4(4):333-350
    [95]P. Mohan.Updated Lagrangian formulation of a flat triangular element for thin laminated shells. AIAA Journal,1998,36(2):273-281
    [96]C. K. Chin, F. G. A. Al-Bermani, S. Kitipornchai. Non-linear analysis of thin walled structures using plate elements. International Journal for Numerical Methods in Engineering,1994,37(10):1697-1711
    [97]J. L. Meek, Y. C.Wang. Nonlinear static and dynamic analysis of shell structures with finite rotation. Computer Methods in Applied Mechanics and Engineering,1998,162(1-4):301-315
    [98]C. Oran. Tangent stiffness matrix for space frames. Journal of Structural Division (ASCE),1973,99(6):987-1001
    [99]A. Kassimali, R. Abbasnia. Large deformation analysis of elastic space frames. Journal of Structural Engineering(ASCE),1991,117(7):2069-2087
    [100]J. L. Meek, H. S. Tan. Geometrically nonlinear analysis of space frames by an incremental iterative technique. Computer Methods in Applied-Mechanics and Engineering,1984,47(3):261-282
    [101]H. Chen, G. E. Blandford. Thin-walled space frames. I Large deformation theory. Journal of Structural Engineering (ASCE),1990,117(8):905-914
    [102]Z.M. Elias. Theory and Methods of Structural Analysis, John-Wiley & Sons, New York,1986
    [103]J. Argyris. An excursion into large rotations. Computer Methods in Applied Mechanics and Engineering,1982,32(1-3):85-155
    [104]M. Y. Kim, S. P. Chang, S. B. Kim. Spatial stability analysis of thin-walled space frames. International Journal for Numerical Methods in Engineering,1996,39(3):499-525
    [105]K. M.Hsiao, R. T.Yang, W.Y.Lin. A consistent finite element formulation for linear buckling analysis of spatial beams. Computer Methods in Applied Mechanics and Engineering,1998,156(1-4):259-276
    [106]R. S. Barsoum, R.H.Gallagher. Finite element analysis of torsional and torsional-flexural stability problems. International Journal for Numerical Methods in Engineering,1970,2(3):335-352
    [107]J. Y.R.Liew, H.Chen, N.E.Shanmugan, W.F.Chen. Improved nonlinear plastic hinge analysis of space frame structures. Engineering Structures, 2000,22 (10):1324-1338
    [108]S. L. Chan, Z. H.Zhou.A pointwise equilibrium polynomial element for nonlinear analysis of frames. Journal of Structural Engineering (ASCE), 1994,120(6):1703-1717
    [109]S. Rajasekaran, D. W. Murray. Incremental finite element matrices. Journal of Structural Division (ASCE),1973,99(12):2423-2437
    [110]F. G. A. Al-bermani, S. Kitipornchai. Nonlinear analysis of thin-walled structures using least element/member. Journal of Structural Engineering (ASCE),1990,116(1):215-234
    [111]Y. B. Yang, L. J. Leu. Force recovery procedure in nonlinear analysis. Computers & Structures,1991,41 (6):1255-1261
    [112]Y. B. Yang, L. J.Leu. Non-linear stiffnesses in analysis of planar frames. Computer Methods in Applied Mechanics and Engineering, 1994,117(3-4):233-247
    [113]M. Shugyo. Elastoplastic large deflection analysis'of three-dimensional steel frames. Journal of Structural Engineering (ASCE),2003, 129(9):1259-1267
    [114]S.L.Chan. Large deflection kinematic formulations for three-dimensional framed structures. Computer Methods in Applied Mechanics and Engineering,1992,95(1):17-36
    [115]S. L. Chan. Inelastic post-buckling analysis of tubular beam-columns and frames. Engineering Structures,1989,11 (1):23-30
    [116]A. K. Wai So, S. L. Chan. Buckling and geometrically nonlinear analysis of frames using one element/member. Journal of Constructional Steel Research,1991,20(4):271-289
    [117]Y. B.Yang, H.T.Chiou. Rigid body motion test for nonlinear analysis with beam elements. Journal of Engineering Mechanics (ASCE),1987,113(9): 1404-1419
    [118]Y. B. Yang, S. P. Lin, C. M. Wang. Rigid element approach for deriving the geometric stiffness of curved beams for use in buckling analysis. Journal of Structural Engineering (ASCE),2007,133 (12):1762-1771
    [119]T. Goran, J. Brinc. Nonlinear stability analysis of thin-walled frames using UL-ESA formulation. International Journal of Structural Stability and Dynamics,2004,4(1):45-67
    [120]T. Goran, J. Brinc, J.Prpic-Orsic. ESA formulation for large displacement analysis of framed structures with elastic-plasticity. Computers & Structures,2004,82(23-26):2001-2013
    [121]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997
    [122]龚尧南,王寿梅.结构分析中的非线性有限元素法.北京:北京航空学院出版社,1986
    [123]K. J. Bathe, A. P. Cimento. Some practical procedures for the solution of nonlinear finite element equations. Computer Methods in Applied Mechanics and Engineering,1980,22(1):59-85
    [124]E. Ramm. Strategies for tracing the nonlinear response near limit points. Springer,1981:63-89
    [125]W. E. Haisler, J. A. Stricklin, J. E. Key. Displacement incrementation in non-linear structural analysis by the self-correcting method. International Journal for Numerical Methods in Engineering,1977, 11(1):3-10
    [126]H. Chen, G. E. Blandford. Work-Increment-control method for nonlinear analysis. International Journal for Numerical Methods in Engineering, 1993,36(11):909-930
    [127]M. A. Crisfield. A fast incremental/iterative solution procedure that handles snap-through. Computers & Structures,1981,13(1-3):55-62
    [128]M. A. Crisfield. An arc-length method including line searches and accelerations. International Journal for Numerical Methods in Engineering,1983,19(9):1269-1289
    [129]W. F. Lam, C. T. Morley. Arc-length method for passing limit points in structural calculation. Journal of Structural Engineering (ASCE),1992, 118(1):169-185
    [130]W. McGuire, R.H.Gallagher, R. D. Ziemian. Matrix Structural Analysis, 2nd edition. John-Wiley & Sons, New York,2000
    [131]N.W.Murray. Introduction to the theory of thin walled structures. Clarendon Press, Oxford,1984
    [132]舒仲周等.运动稳定性.北京:中国铁道出版社,2001
    [133]B.B.鲍洛金著,林砚田译.弹性体系动力稳定性.北京:高等教育出版社,1960.
    [134]S. P. Timoshenko. Vibration Problems in Engineering,3rd Edn, New York:Van Nostrand,1955
    [135]и.M.巴巴科夫著,薛中擎译.振动理论(下册).北京:人民教育出版社,1962.
    [136]洪善桃.高等动力学.上海:同济大学出版社,1990.
    [137]傅衣铭.结构非线性动力学分析.广州:暨南大学出版社,1997.
    [138]J. C. Simo, R. L. Taylor. Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering,1985,48(1):101-118
    [139]D. R. J. Owen, E. Hinton. Finite elements in Plasticity:Theory and Practice. Pineridge Press, Swansea, UK,1980
    [140]A. Ibrahimbegovic. A consistent finite element formulation of non-linear elastic cables. Communications in Applied Numerical Methods,1992, 8(8):547-556
    [141]W. D. Pilkey. Analysis and Design of Elastic Beams:Computational Methods. John Wiley & Sons, New York,2002
    [142]A.Prokic. Computer program for determination of geometrical properties of thin walled beams with open-closed section. Computers & Structures,2000,74 (6):705-715
    [143]Y. B. Yang, S. R. Kuo, Y. S. Wu. Incrementally small-deformation theory for nonlinear analysis of structural frames. Engineering Structures,2002, 24(6):783-798
    [144]Y..B. Yang, J. T. Chang, J. D. Yao. A simple nonlinear triangular plate element and strategies of computation for nonlinear analysis. Computer Methods in Applied Mechanics and Engineering,1999,178(3-4):307-321
    [145]Y.B.Yang, J. H. Chou, L. J. Leu. Rigid body considerations for non-linear finite element analysis. International Journal for Numerical Methods in Engineering,1992,33(8):1597-1610
    [146]Y.B.Yang, S.P.Lin, C.S.Chen.Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation. Computer Methods in Applied Mechanics and Engineering,2007,196(3-4):1178-1192
    [147]Y. B. Yang, L. J. Leu, Judy.P.Yang. Key considerations in tracking the post-buckling response of structures with multi winding loops. Mechanics of Advanced Materials and Structures,2007,14(3):175-189
    [148]W. F. Chen, S. L. Chan. Second-order inelastic analysis of steel frames using element with mid-span and end springs. Journal of Structural Engineering (ASCE),1995,121(3):530-541
    [149]A. Franchi.M. Z. Cohn. Computer analysis of elastic-plastic structures, Computer Methods in Applied Mechanics and Engineering,1980, 21 (2):271-294
    [150]M. B. Wong,F. T. Loi. Yield surface linearization in elastoplastic analysis, Computers & Structures,1987,26(6):951-956.
    [151]G. Z. Voyiadjis, P. Woelke. General non-linear finite element analysis of thick plates and shells. International Journal of Solids and Structures,2006,43 (7-8):2209-2242
    [152]S. Lee, F. S. Manuel, E. C. Rossow. Large deflections and stability of elastic frames. Journal of Engineering Mechanics (ASCE),1968,94(3): 521-547
    [153]J. C. Simo, L. Vu-Quoc. A three-dimensional finite strain rod model: Part Ⅱ, Computational aspects. Computer Methods in Applied Mechanics and Engineering,1986,58(1):79-116
    [154]C. Pacoste, A. Eriksson. Beam elements in instability problems. Computer Methods in Applied Mechanics and Engineering,1997,144(1-2): 163-197
    [155]D.Karamanlidis. A note on incremental schemes in non-linear structural analysis. Engineering Analysis,1986,3(4):225-234
    [156]C. Cichon. Large displacements in-plane analysis of elastic-plastic frames. Computers & Structures,1984,19(5-6):737-745.
    [157]K. M.Hsiao, F. Y. Hou, K. V. Spiliopoulos. Large displacements analysis of elasto-plastic frames. Computers & Structures,1988,28(5):627-633.
    [158]M.S. Park, B.C.Lee. Geometrically nonlinear and elasto-plastic three-dimensional shear flexible beam element of Von-Mises-type hardening material. International Journal for Numerical Methods in Engineering, 1996,39 (3):383-403
    [159]K.Mattiasson. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals. International Journal for Numerical Methods in Engineering,1981,17(1):145-153
    [160]F. W. Williams. An approach to the nonlinear behavior of the members of a rigid jointed plane framework with finite deflections. Quarterly Journal of Mechanics and Applied Mathematics,1964,17(4):451-469
    [161]A.Jennings. Frame analysis including change of geometry. Journal of Structural Division (ASCE),1968,94(3):627-643
    [162]L. H. Teh, M. J. Clarke. Co-rotational and lagrangian formulations for elastic three-dimensional beam. finite elements. Journal of Constructional Steel Research,1998,48(2-3):123-144
    [163]K. S. Surana, R. M. Sorem. Geometrically non-linear formulation for three dimensional curved beam elements with large rotations. International Journal for Numerical Methods in Engineering,1989,28(1): 43-73
    [164]Z. Q. Chen, T. J. A. Agar. Geometric nonlinear analysis of flexible spatial beam structures. Computers & Structures,1993,49(6):1083-1094
    [165]K. Y. Sze, X. H. Liu,S. H. Lo. Popular benchmark problems for geometric nonlinear analysis of, shells. Finite Elements in Analysis and Design,2004,40(11):1551 -1569
    [166]K. D. Kim, G. R. Lomboy. A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis. Computer Methods in Applied Mechanics and Engineering,2006,195(44-47): 6502-6522
    [167]H. Javaherian, P. J. Dowling. Large deflection elastoplastic analysis of thin shells. Engineering Structures,1985,7(3):154-162
    [168]宋旭明.大跨度自锚式悬索桥受力特性与极限承载力:[博士学位论文].长 沙:中南大学,2009
    [169]刘忠平.三汉矶湘江大桥自锚式悬索桥地震反应研究:[硕士学位论文].长沙:中南大学,2007
    [170]A. Barut, E. Madenci, A. Tessler, J. H. Starnes Jr. A new stiffened shell element for geometrically nonlinear analysis of composite laminates. Computers & Structures,2000,77(1):11-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700