用户名: 密码: 验证码:
基于共旋坐标法的结构非线性计算理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代桥梁结构不断向大跨、结构复杂与轻型方向发展,迫切需要提高桥梁结构非线性分析的精度和效率,在学习国内外相关文献的基础上,本文开展了如下研究工作:
     1、基于共旋坐标法和静力平衡条件,利用微分方法导出了平面杆元在结构坐标系下考虑几何非线性的单元切线刚度矩阵及杆端力的全量算法,列式简单但精度很高。
     2、通过采用即时构形几何参数来计算单元状态变量对已有文献提出的几何非线性平面梁单元共旋坐标法列式进行了改进,在此基础上,为考虑实际结构模型中存在的梁端带铰和刚臂等特殊情况,根据带铰处梁端弯矩为零的受力特征及刚臂在受力后只有刚体运动而无变形特点,利用微分方法导出带铰梁元和带刚臂梁元的非线性切线刚度矩阵表达式,该表达式与普通梁元切线刚度矩阵表达式在形式上完全一致,通过多个实例进行了考证。
     3、以建立预应力钢筋混凝土几何与材料双非线性梁单元分析模型为例,将上述平面梁单元只考虑几何非线性的算法拓展到同时考虑几何与材料双非线性,先利用虚功原理计算共旋坐标系下完全粘结任意截面预应力钢筋混凝土梁考虑材料非线性的切线刚度矩阵,再通过结构坐标系与共旋坐标系下节点力之间及节点位移之间的总量关系及微分导出的增量关系,获得预应力钢筋混凝土梁在结构坐标系中考虑几何与材料双重非线性的切线刚度矩阵,对多个钢筋混凝土及预应力钢筋混凝土结构进行了考证。
     4、基于共旋坐标法导出能模拟预应力钢筋的空间杆元在结构坐标系下考虑几何与材料双非线性的单元切线刚度矩阵,联立已有的非线性实体退化壳单元,根据实体退化壳单元内部的位移场模式,形成了由实体退化壳单元与预应力钢筋空间杆元组成的非线性组合单元,对钢筋混凝土及预应力钢筋混凝土结构进行了考证。
     5、以四边形八节点平面应力单元为例,基于共旋坐标法导出平面应力单元在结构坐标系下考虑几何非线性的单元切线刚度矩阵表达式,再将考虑几何非线性的方法推广到同时考虑几何与材料双非线性分析,将平面应力单元视为第三章实体退化壳单元分层模型中主平面13、23上剪应力τ13、τ23均为0的特殊情况,因此可利用实体退化壳单元所采用的混凝土本构关系、屈服准则和破坏准则等,基于钢筋及预应力钢筋与周围混凝土完全粘结的特点,导出共旋坐标系下考虑材料非线性的带预应力钢筋平面应力单元切线刚度矩阵,再利用结构坐标系与共旋坐标系下节点力的总量及增量关系导出结构坐标系下同时考虑几何与材料非线性的单元切线刚度矩阵,对钢筋混凝土及预应力钢筋混凝土结构进行了考证。
     6、为提高钢管混凝土拱空间非线性分析的精度和效率,首先基于共旋坐标法,利用Euler转角公式及微分法,导出空间梁在结构坐标系下考虑几何非线性的单元切线刚度矩阵表达式;参照平面梁单元双非线性分析思路,将上述考虑几何非线性的方法推广到同时考虑几何与材料双非线性分析,即基于共旋坐标系下小变形的假定利用线性的应变-位移关系,采取与第二章类似的方法先导出共旋坐标系下考虑材料非线性的单元切线刚度矩阵,再导出结构坐标系下同时考虑几何与材料双非线性的单元切线刚度矩阵,通过平面与空间钢管混凝土拱试验模型进行了考证。
     7、为进行大跨柔性混凝土结构考虑几何非线性与徐变效应耦合算法研究,基于能描述空间矢量有限转动的EULAR-Rodrigues公式,采用与第六章相类似的方法导出结构坐标系下考虑几何非线性的空间梁单元切线刚度矩阵表达式,与第六章方法比较而言,该算法更能有效将刚体位移和变形成分完全分离,因而减少在变形较大时计算结果的误差,借鉴平面梁中考虑梁端带铰和刚臂的分析思路,基于带铰处梁端弯矩为零的受力特征和将刚臂视为空间矢量,利用空间矢量有限转动公式及微分方法导出结构坐标系下梁端带铰和刚臂的空间梁元切线刚度矩阵显式表达式,从而使该问题得到彻底解决;在此基础上,参照已有文献建立的考虑混凝土收缩徐变的UL列式虚功增量方程算法,本文建立空间梁中考虑混凝土收缩徐变效应的共旋坐标法列式算法,对一模拟大跨径混合梁斜拉桥混凝土桥塔进行了考虑混凝土徐变效应的几何非线性分析。
With the development of modern bridge structure aiming for long span, complicated structure and light type, the need to improve calculation accuracy and efficiency of spatial nonlinearity analysis for bridge structure is urgent. On the basis of researching the related literature home and abroad, the following work has been done as:
     1, Based on co-rotational procedure and static balance condition, a geometrical non-linear tangent stiffness matrix of plane truss element in global coordinate system has been successfully derived by means of differential method, and total algorithm of nodal force has also been acquired. The numerical results demonstrate that these formulations are simple but highly accurate.
     2, The co-rotational formulations of plane beam element for geometrical nonlinear in existing literatures has been improved because that geometric parameters of instant configuration rather than initial configuration is adopted to calculate displacement and strain in this paper. Moreover, according to the mechanical characteristics of hinged beam that bending moment is equal to zero and the characteristics of no deformation but rigid motion of the forced rigid arm, the explicit expressions of nonlinear tangent stiffness matrix of plane beam element with rigid arms or hinges in both ends are obtained by employing differential method. The Numerical results demonstrate that the proposed plane beam element can solve the structural analysis of plane beam with rigid link or hinge. Moreover, the developed beam element is valid and practicable due to the same format as the general beam element without rigid arms or hinge.
     3, The above-mentioned has been extended from only geometrical nonlinearity to geometrical and material bi-nonlinearity algorithm by taking a prestressed concrete as an example. A numerical model for a given section considering material and geometrical nonlinear analysis of prestressed concrete beam element is developed. Firstly, by means of virtual work, a tangent stiffness matrix for material nonlinearity of perfectly-bonded prestressed concrete beam element is derived in co-rotational coordinate system. Then, through building total and incremental relationships derived from differential equations of nodal displacements and forces between global coordinate system and co-rotational coordinate system, respectively, tangent stiffness in global coordinate system prestressed concrete beam element is developed considering geometric and material nonlinearity. Nonlinear analysis of several reinforced concrete and prestressed concrete structure have been performed to demonstrate the usefulness of the developed method.
     4, Based on co-rotational procedure, the geometrical and material bi-nonlinearity tangent stiffness matrix of spatial truss element in global coordinate system has been developed because that this element can simulate prestressing steels. Combined with the existing nonlinear degenerated shell element, the tangent stiffness matrix of nonlinear composite elements has been derived by use of internal displacement field model of degenerated shell element. The nonlinear analysis of several reinforced concrete and prestressed concrete structures have been employed to verify the effectiveness of the developed method.
     5, Taking quadrilateral8-node plane element as an example, geometrical nonlinear element tangent stiffness matrix for plane stress element under a large rotation with small strain is presented based on co-rotational procedure. The above-mentioned algorithm has been extended from only geometrical nonlinearity to geometrical and material bi-nonlinearity when shear stress τ13and τ23of principal plane are0in layered model of degenerated shell element mentioned in the third chapter, it is special for plane stress element, Thus the constitutive relation yield criterion and failure criteria of concrete for degenerated shell element can been used for bi-nonlinearity plane stress element, Firstly, by means of virtual work, a tangent stiffness matrix for material nonlinearity of perfectly-bonded reinforced concrete beam element is derived in co-rotational coordinate system. Then, through building total and incremental relationships derived from differential equations of nodal displacements and forces between global coordinate system and co-rotational coordinate system, respectively, tangent stiffness in global coordinate system reinforced concrete beam element is developed considering geometric and material nonlinearity. Nonlinear analysis of several reinforced concrete and prestressed concrete structure have been performed.
     6, In order to improve calculation accuracy and efficiency of spatial nonlinearity analysis for concrete filled steel tube arch. In this paper, based on co-rotational procedure, a numerical model considering material and geometrical nonlinear analysis for concrete filled steel tube beam element is developed. Firstly, using Euler formulas and variable method, a tangent stiffness matrix for material nonlinearity of perfectly-bonded concrete filled steel tube beam element is derived in co-rotational coordinate system by means of virtual work. Then, based the method as nonlinear analysis of plane beam element, the method has been extended from geometric nonlinearity to Bi-nonlinearity, that is to say, the small strain is assumed as linear strain-stress relation in co-rotational coordinate system. The tangent stiffness for material nonlinearity in co-rotational coordinate system is developed based on method mentioned in chapter two. Thus, a tangent stiffness in global coordinate system concrete filled steel tube beam element is developed considering geometric and material nonlinearity. Plane and spatial comparisons between the results in this paper and those from model test of concrete-filled steel tubular arch rib shows the accuracy of the developed method is very high.
     7, In order to analyze the coupled effect of geometric nonlinearity and concrete creep for long-span concrete structures, based on Euler-Rodrigues formula for spatial rotation, a tangent stiffness matrix of spatial beam considering geometric nonlinearity using the method mentioned in Chapter6in co-rotational coordinate. Compared with method in Chapter6, the developed method in this chapter can separate the displacement and deformation of rigid body, and then decrease calculation error when the deformation is large. Using the method of plane beam considering hinge and rigid arm of beam end, based on the mechanical characteristics of hinged beam that bending moment is equal to zero and taking rigid arm as spatial vector, the explicit expressions of nonlinear tangent stiffness matrix of plane beam element with rigid arms or hinges in both ends are obtained by employing limit rotation formulas of spatial vector differential method. Based on this, refer to the algorithm of concrete shrinkage and creep, the explicit expressions of spatial beam element considering concrete shrinkage and creep is developed in co-rotational coordinate system. Finally, a geometric nonlinearity analysis of concrete tower of hybrid beam cable-stayed bridge has been performed considering concrete shrinkage and creep.
引文
[1]邵旭东.桥梁工程.北京:人民交通出版社,2004,1-2
    [2]邓文中.桥梁跨径的世界纪录之争.公路,2009,5(2):19-23
    [3]何君毅.工程结构非线性问题的数值解法.北京:国防工业出版社,1993,30-182
    [4]Bathe K J,E Ramm,E L Wilson.Finite element formulations for large deformation dynamic analysis.International journal for Numerical Methods in Engineering,1975,9:353-386
    [5]Bathe K J. An assessment of current finite element analysis of nonlinear problems in solid mechanics.Symp.Methods for Partial Differential Equations, Academic Press,1979
    [6]Bathe K J,Said Bolourchi.Large displacement analysis of three-dimensional beam structures.International journal for Numerical Methods in Engineering, 1979,14:961-986
    [7]吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论.计算结构力学及其应用.1995,12(4):485-490
    [8]Wempner G. Finite elements, finite rotations and small strains of flexible shells. International Journal of Solids & Structures,1969,5:117-153
    [9]Belytschko T, Hseih B J. Non-linear transient finite element analysis with convected co-ordinates.International Journal for Numerical Methods in Engineering,1973,7:255-271
    [10]Belytschko T, Glaum L W. Applications of higher order corotational stretch theories to nonlinear finite element analysis. Computers and Structures,1979,10: 175-182
    [11]Argris J H, Balmer H, Doltsinis J St. Finite element method-the natural approach. Computer Methods in Applied Mechamics and Engineering,1979,17-18:1-106
    [12]Oran C, Kassimali A. Large deformation of framed structures under static and dynamic loads. Computers& Structures,1976,6:539-547
    [13]Oran C. Tangent stiffness in space frames. ASCE, Journal of the Structural Division,1973,99(6):973-985
    [14]Rankin C C, Brogan, E A.An Element Independent Corotational Procedure for the Treatment of Large Rotations. Journal of Pressure Vessel Technology, 1986,108:165-174
    [15]Crisfield M A,Moita, et al.Unified co-rotational framework for solids,shell and beams.International Journal of Solids and Structures,1996,33:2969-2992
    [16]Simo J C,Vu-Quoc L. A finite strain beam formulation.The three-dimensional dynamic problem.Part I, Computer Methods in Applied Mechnics and Engineering,1985,49:55-70
    [17]Simo J C, Vu-Quoc L.A Three Dimensional Finite Strain Rod Model.Part Ⅱ: Computational Aspects,Computer Methods in Applied Mechanics and Engineering.1986,58:79-116
    [18]Simo J C.Non—linear dynamics of three-dimensional rods:exact energy and momentum conserving algorithms,International journal for Numerical Methods In Engineering.1995,38(9):1431-1473
    [19]Simo J C,Fox D D.On a stress resultant geometrically exact shell model.Part I,Formulation and optimal parametrization.Computer Methods in Applicd Mechanics and Engineering.1989.72:267-304
    [20]Simo J C,Fox D D Rifai M S.On a stress resultant geometrically exact shell model.Part Ⅱ:the linear theory,computational aspects Computer Methods in Applied Mechanics and Engineering archive.1989,73(1):53-92
    [21]Simo J C,Fox D D Rifai M S.On a stress resultant geometrically exact shell model.Part Ⅲ:computational aspects of the nonlinear theory,Computer Methods in Applied Mechanics and Engineering.1990,79(1):21-70
    [22]Simo J C,M S Rifai,D D Fox,On a stress resultant geometrically exact shell model.Part VI:Conserving algorithms for non-linear dynamics,International Journal for Numerical Methods in Engineering.1992,34(1):117-164
    [23]Nour-Omid B, Rankin C C,Finite rotation analysis and consistent linearisation using projectors.Computer Methods in Applied Mechanics and Engineering. 1991,93(2):353-384
    [24]Ibrahimbegovic A.On the choice of finite rotation parameters,Computer Methods in Applied Mechanics and Engineering.1997,149:49-71
    [25]Pacoste C.Co-rotational flat facet triangular elements for shell instability analyses,Computer Methods in Applied Mechanics and Engineering.1998,156: 75-110
    [26]Eriksson A,Pacoste C.Element formulation and numerical techniques for stability problems in shells.Computer Methods in Applied Mechanics and Engineering.2002,191(35):3775-3810
    [27]Scordelies,A C Past.Present and Future development,Finite Element Analysis of Reinforced Structure,ASCE,1986
    [28]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997,2-4
    [29]Franklin,H A.Nonlinear analysis of reinforced concrete frames and panels,Ph.D.Dissertation,Division of Structural Engineering and Structural Mechanics,University of California,Berkeley,March,1970.
    [30]Zienkiewiez,0 C,Owen,et al.Finite element method in analysis of reactor vessels,Nuclear Engineering and Design,20(1972)
    [31]Lin,C S,Scordelis, et al.Nonlinear analysis of reinforced concrete shells of general form,Journal of Structural Division,ASCE,Vol.101,No.ST3,March,1975.
    [32]Darwin D,Pecknold,D A.Analysis of RC shear panels under cyclic loading Journal of Structural Division,ASCE,Vol.102,No.ST2,February,1976.
    [33]张国政.铁路悬索桥非线性分析及其极限承载能力的研究:(铁科院博士学位论文).北京:铁道部科学研究院,1994
    [34]潘家英等.大跨度桥梁极限承载力的几何非线性和材料非线性耦合分析.第十二届全国桥梁学术会议。广州,1996
    [35]夏桂云,李传习.有粘结预应力混凝土杆系结构非线性分析,中国公路学会桥梁和结构工程学会学术论文集.北京:人民交通出版社,2000:822-829
    [36]楼铁炯,项贻强,郭乙木.预应力混凝土平面杆系结构的有限元方法.计算力学学报,2005,22(6):801-804
    [37]XiaoHan Wu, Shunsuke Otani,Hitoshi Shiohara. Tendon model for nonlinear analysis of prestressed concrete structures. Journal of Structural Engineering, ASCE,2001,127(4):398-405
    [38]周世军,朱唏.钢筋混凝土箱梁的非线性有限元分析及模型试验研究.土木工程学报,1993,29(4):21-30
    [39]周世军.钢筋混凝土箱形梁的极限承载力分析.铁道学报,1997,19(2):73-79
    [40]黄弘读.采用虚拟层合单元法分析钢筋混凝土结构的极限承载力.浙江大学博士学位论文.2001
    [41]吴光宇.大跨PC桥梁非线性行为的分析理论及其极限承载力计算研究.浙江大学博士学位论文,2006
    [42]向天宇.预应力高强混凝土箱形连续梁结构行为的非线性分析.西南交通大学博士学位论文,2002
    [43]李艳.钢筋混凝土薄壁箱梁的非线性受力性能分析.湖南大学硕士学位论文,2003
    [44]夏桂云.预应力混凝土箱梁承载力与裂缝研究.中南大学博士学位论文,2006
    [45]张峰.预应力混凝土连续箱梁开裂后的结构行为研究.东南大学博士学位论文,2006
    [46]张彬,李治国.基于ADINA的预应力箱梁承载能力非线性有限元分析.辽宁工程技术大学学报(自然科学版),2008,27(Z1):62-64
    [47]王颁,瞿伟廉.钢管混凝土弹塑性极限承载力研究现状.华中科技大学学报(城市科学版).2004,(2):44-46
    [48]赵雷,杜正国.大跨度钢筋混凝土拱桥劲性骨架施工阶段稳定性分析.西南交通大学学报.1994,29(4):446-452
    [49]赵雷,张金平,彭俊生等.大跨度钢筋混凝土拱桥施工阶段稳定性分析的非线性问题.四川建筑科学研究.1995,(4):7-10
    [50]胡大琳,艾夫·哈依姆,黄安录.大跨径钢管混凝土拱桥空间几何非线性分析.中国公路学报.1998,(2):45-51
    [51]颜全胜,骆宁安,韩大建等.大跨度拱桥的非线性与稳定分析.华南理工大学学报(自然科学版).2000,28(6):64-68
    [52]赵长军,王峰君,陈强等.大跨度钢管混凝土拱桥空间稳定分析.公路.2001,(2):15-18
    [53]杨永清.钢管混凝土拱桥横向稳定性研究:(博士学位论文).成都:西南交通大学,1998
    [54]陈友杰.钢管混凝土肋拱面内受力全过程研究:(硕士学位论文).福州:福州大学,1998
    [55]张建民.大跨度钢管混凝土拱桥承载能力与施工控制研究:(博士学位论文).广州:华南理工大学,2001
    [56]王颁.钢管混凝土拱桥弹塑性极限承载力分析:(硕士学位论文).广州:华南理工大学,2002
    [57]颜全胜,王颁.钢管混凝土拱肋面内弹塑性承载力分析.昆明理工大学学报(理工版).2003,28(5):110-113
    [58]钟善桐.钢管混凝土结构(修订版).哈尔滨:黑龙江省科学技术出版社,1994
    [59]童蔷.钢管混凝土拱结构的非线性分析:(硕士学位论文).成都:四川大学,2000
    [60]毛裕青.钢管混凝土拱桥的极限承载力研究:(硕士学位论文).上海:同济大学,2000
    [61]CHEN W F,CHEN C H.Analysis of conerete-filled steel tubular beam-columns.International Association for Bridge and Structural Engineering, Zurieh:Proceedings for Bridge and Structural Engineering,1973:37-52
    [62]潘有光.钢管混凝土中核心混凝土本构关系的确定.哈尔滨建筑大学学报.1989,22(1):37-47
    [63]韩林海.钢管混凝土结构.北京:科学出版社,2000
    [64]陈友杰,陈宝春.钢管混凝土肋拱面内受力全过程有限元分析.工程力学.2000,2(A02):753-758
    [65]欧智著.钢管混凝土偏心受压本构关系及其在钢管混凝土拱桥受力分析中的应用:(硕士学位论文).福州:福州大学,2000
    [66]陈宝春,王来永,欧智著等.钢管混凝土偏心受压应力—应变试验研究.工程力学.2003,20(6):154-159
    [67]陈宝春,陈友杰,王来永等.钢管混凝土偏心受压应力—应变关系模型研究.中国公路学报.2004,17(1):24-28
    [68]王国鼎,钟圣斌.桥梁计算示例集一:拱桥(第二版).北京:人民交通出版社,2000.
    [69]Ernst J H.Der E-modul yon seilen unter berueksiehtigung des durehhanges.Der Bauingenieur.1965,40(2):52-55
    [70]Leonhardt F,W Zeliner.Cable-Stayed Bridges,RePort on Latest Developments, Canadian Structural Engineering Conference Proceedings,1970
    [71]Tung D H, Kudder R J.Analysis of cables as equivalent two force member Engineering Joumal,AISC.1968,12-19
    [72]Podoinyw,Sealzi J B.Construction and design of cable-stayed bridge.John Wiley and Sons.1976
    [73]H M Irvine.Tangent stiffness equation of flexible cable and some considerations. Proc,JSCE,270,41-49.(1979).Cable structures,MIT University Press,Cambridge
    [74]O BrienT,Franeis A J.Cable movements under two-dimensional loading.Journal of Structural Engineering.1964,90(ST3):89-123
    [75]O BrienT.General solution of suspended cable Problems.Journal of Structur Engineering.1967,93(STI):1-26
    [76]Peyrot A H,Goulois A M.Analysis of cable structures.Computers and Structures. 1981,14(3-4)
    [77]Ozdemir H.A finite element approach for cable Problems.International Journal of solids and structures.1979,15:424-437
    [78]Jayaraman H B,Knudson W C.A curved element for the analysis of cable structures.Computers and Structures.1981,14(3-4):325-333
    [79]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法.工程力学,2003,20(1):42-47
    [80]罗喜恒,肖汝诚,项海帆.基于精确解析解的索单元.同济大学学报,2005,33(4):445-450
    [81]Saafan S A.Theoretical Analysis of suspension Bridges. Journal of the structural Division,ASCE,1966,92(ST4):1-11
    [82]Fleming J F. Nonlinear Static Analysis of Cable-stayed Bridge Structures. Computers and Structures,1979,10:621-635
    [83]陈德伟.斜拉桥的非线性分析及工程控制:[同济大学博士学位论文].上海:同济大学.1990
    [84]陈务军,关富玲,袁行飞等.斜拉桥施工控制分析中线性与非线性影响分析.中国公路学报,1998,11(2):52-58
    [85]杨炳成,孙明.斜拉桥索力的非线性优化倒拆分析.中国公路学报,1998,11(3):55-61
    [86]杨平,王华林,徐凯燕.斜拉桥三维非线性分析及收敛问题.武汉理工大学学报(交通科学与工程版),2003,27(1):33-36
    [87]Brotton D M.A general Computer Programme for the solution of suspension bridge problems.The Structural Engineer,1966,44(5):161-167
    [88]朱晞,王克海.几何非线性对大跨度斜拉桥的影响.全国桥梁结构学术大会论文集(下册).上海:同济大学出版社,1992
    [89]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究.土木工程学报,1993,6(1):31-37
    [90]周先雁,程翔云.斜拉桥施工阶段主梁纵向面内稳定性试验研究.中国公路学报,1994,7(4)
    [91]李立峰,邵旭东.大跨桥梁几何非线性试验与分析.中国公路学会桥梁与结构工程学会1995年桥梁学术讨论会.北京:人民交通出版社
    [92]王解军,杨文华,刘光栋.大跨悬索桥的几何非线性分析.湖南大学学报,1998,5(3):70-73
    [93]辛克贵.大跨度斜拉桥恒载非线性静力分析.清华大学学报(自然科学版),2002,2(6):818-821
    [94]Bathe K J, Bolourchi S.Large displacement analysis of three-dimensional beam structures.International Journal for Numerical Methods in Engineering,1979,14: 961-986.
    [95]Argyris J H, Balmer H, Doltsinis J S.Finite element method-the nature approach. Computer Methods in Applied Mechanies and Engineering,1979,17/18:1-106
    [96]Nakai H, Kitada T, OhminamiR,et al.Elasto-Plastic and Finite DisPlacement Analysis of cable-stayed Bridge.Mem.Fac.Eng.osaka Univ.1985,26:251-271
    [97]Spillers W R.Gemetric stiffness matrix for space frames.Computers and Structures,1990,6(1):29-37
    [98]Narayanan G, K rishnamoorthy,C S.An investigation of geometric nonlinear formulations for 3D beam element.International Joumal of Non-Linear Mechanics,1990,25(6):643-662
    [99]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报,1992,25(5):34-44
    [100]刘德宝,郑信光.徐变系数计算的应用研究.同济大学学报,1998,26(5):533-536
    [101]Neville A M,Dilger W H.Brooks J J. Creep of plain and structural conerete.London & New York,1983
    [102]Branson, D E. Deformation of concrete structures.McGraw Hill Book company, New York,1977
    [103]Bazant Z P.Mathematical Modelling of creep and shrinkage of concrete.Jhon Wdilley & Sons Ltd,1988
    [104]Trost,H Auswirkungen des.SuperpositionsPrinziPs auf kriech and Relaxations probleme Bei Beton and Spannbeton,Beton-und Stahlbetonbau,1967(61): 230-238,261-269
    [105]Bazant Z P.Prediction of concrete creep effects usingage-adjusted effective modulus method.ACI Jourmal,1972(69):212-217
    [106]Zienkiewiez O C, Wanton M.Some creep effeets in stress analysis with particular reference to concrete at pressure vessels.Nuel.Enginering and Design,1966(4)
    [107]Taylor R L, Pister K S,Goudreau G L.Thermomechanical analysis of viscoeoelastic solids.Num.Meth.Eng.,1970(2):45-60
    [108]陈永春,马国强.考虑混凝土收缩徐变和钢筋松弛相互影响的预应力损失的计算.建筑结构学报,1981(6):31-46
    [109]金成棣.混凝土徐变对超静定结构变形及内力的影响-考虑分段加载龄期差异及延迟弹性影响.土木工程学报,1981,14(3):19-32
    [110]朱伯芳.混凝土结构徐变应力分析的隐式解法.水利学报,1983(5):40-46
    [111]陈德伟,郑信光,项海帆.混凝土斜拉桥的施工控制.土木工程学报1993,26(1):1-11
    [112]范立础等.桥梁结构徐变次内力分析.同济大学学报,1991,19(1):23-31.
    [113]祝立君,曾明根,石志源.黄山太平湖大桥施工中及成桥后徐变影响分析.华东公路,1997,108(5):45-49
    [114]段明德.《公路钢筋混泥土及预应力混凝土桥涵设计规范》徐变系数的计算和应用.中国公路学报,1998,11(4):70-76
    [115]陈太聪,苏成,韩大建.桥梁节段施工过程中混凝土收缩徐变效应仿真计算.中国公路学报,2003,16(4):55-55
    [116]颜东煌,田仲初,李学文等.混凝土桥梁收缩徐变计算的有限元方法与应用.中国公路学报,2004,17(2):55-55
    [117]潘家英.混凝土结构的徐变计算.土木工程学报,1983,16(4):29-39
    [118]李国平,张哲元.钢-混凝土组合桥混凝土徐变收缩分析闭.结构分析,1999,(1):12-17
    [119]李传习,杨飞跃,张建仁.节段施工桥梁的徐变变形及内力重分布研究.中国公路学报,2000,13(4):47-52
    [120]胡狄,陈政清.预应力混凝土桥梁收缩与徐变变形试验研究闭.土木工程学报,2003,36(8):79-85
    [121]胡狄,陈政清.从短期试验结果预测新建预应力混凝土桥梁收缩和徐变的长期效应.中国铁道学报,2003,24(3):44-49
    [122]邱文亮,姜萌,张哲.钢一混凝土组合梁收缩徐变分析的有限元方法.工程力学,2004,21(4):162-166
    [123]高政国,黄达海,赵国藩.混凝土结构徐变应力分析的全量方法[J].土木工程学报,2001,34(4):10-14
    [124]王书庆.徐变自动增量分析方法及其实现闭.同济大学学报,2000,28(2):138-142
    [125]Leu.L J,Yang Y B.Effects of Rigid Body and Stretching on Nonlinear Analysis of Trusses.ASCE,Journal of Structural Engineering.1990,116(10):2582-2598
    [126]Ruo,S R,Yang Y B.Tracing Postbuddng Paths of Structures containing MuRiloops.International Journal for Numerical Methods in Engineering, 995,38:4035-4075
    [127]Wen R K,Rahimzadeh J.Nonlinear Elastic Frame Analysis by Finite Element.Journal of Structural Engineering,ASCE,1983,109(8):1952-1971
    [128]Chajes A,Churchill J E.Nonlinear Frame Analysis by Finite Element Method.Journal of Structural Engineering.ASCE,1987,113(6):1221-1235
    [129]K. J Bathe.Finite Element Procedures In Engineering Analysis, Pr entice-Hall, 1982
    [130]张其林,沈祖炎.空间桁架弹性大位移问题的增量有限元理论,工程力学,1991(3)
    [131]刘小强等.空间桁架结构的非线性追综分析理论,建筑结构,1997(5)
    [132]邓继华,蔡松柏.平面桁架的几何非线性有限元分析,长沙交通学院学报,2005,21(4):39-41
    [133]李传习,夏桂云.大跨度桥梁结构计算理论.北京:人民交通出版社,2002,88-89
    [134]J F Fleming.Computer Analysis of Structural System,Mc Graw-Hill,1988
    [135]肖汝诚.桥梁结构分析及程序系统.北京:人民交通出版社,2002
    [136]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析-Ⅰ.平面问题.计算结构力学及其应用,1995,12(1):7-16
    [137]Crisfield M A, Moita G F. A co-rotational formulation for 2-D continua including incompatible modes. International Journal for Numerical Methods in Engineering,1996,39:2619-2633
    [138]Izzuddin B A. An enhanced co-rotational approach for large displacement analysis of plates. International Journal for Numerical Methods in Engineering, 2005,64:1350-1374
    [139]Z X Li, B A Izzuddin, L Vu-Quoc. A 9-node co-rotational quadrilateralshell element.Computational Mechanics,2008,42:873-884
    [140]Joseph M, Pajot, Kurt Maute. Analytical sensitivity analysis of geometrically nonlinear structures based on the co-rotational finite element method. Finite Elements in Analysis and Design,2006,42:900-913
    [141]蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法.工程力学,2006,23(增Ⅰ):69-72
    [142]G Jelenic,M A Crisfield.Non-linear'master-slave'relationships for joints in 3-D beams with large rotations. Comput. Methods Appl. Mech. Engrg, 1996,135:211-228
    [143]王新敏.ANSYS工程结构数值分析.北京:人民交通出版社,2007
    [144]曾永革,李传习.钢筋混凝土梁单元截面刚度求解方法.铁道科学与工程学报,2009,6(1):62-67
    [145]朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,2000
    [146]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析:[同济大学博士学位论文].上海:同济大学.2004.1987,2:1-25
    [147]Liang J,Olson M D. Large elastic-plastic deformations of slender beams: Co-rotational theory vs. yon Karman theory. Computational Mechanics, 1994,15:117-128
    [148]Kondoh K, Atluri S N.Large-deformation,elasto-plastic analysis of frames under nonconservative loading,using explicitly derived tangent stiffnesses based on assumed stresses. Computational Mechanics,1987,2:1-25
    [149]杨骁,周冬华.非保守集中力作用下饱和多孔悬臂梁的非线性弯曲.上海大学学报(自然科学版),2010,16(3):221-225
    [150]李清禄,李世荣.横向随动分布载荷作用下悬臂梁的非线性弯曲.甘肃科学学报,2010,22(2):91-93
    [151]陈至达.杆、板、壳大变形理论.北京:科学出版社,1996
    [152]朱菊芬,汪海,徐胜利.非线性有限元及其在飞机结构设计中的应用.上海:上海交通大学出版社,2012:114-118
    [153]RODRIGUEZ J A,ARISTIZABAL J D. Partially and fully prestressed concrete sections under biaxial bending and axial load[J]. ACI Structural Journal, 2000,97(4):553-563
    [154]康清梁.钢筋混凝土有限元分析.北京:中国水利水电出版社,1995.
    [155]颜东煌.钢筋混凝土双向加腋板非线性有限元分析:[西安公路学院硕士学位论文].西安:西安公路学院.1986
    [156]楼铁炯.无粘结预应力梁的有限元建模与性能分析研究:[浙江大学博士学位论文].杭州:浙江大学.2005
    [157]潘家英,张国政,程庆国.大跨度桥梁极限承载力的几何与材料非线性耦合分析.土木工程学报,2000,33(1):5-14
    [158]陈克济.钢筋混凝土拱桥面内极限承载力的非线性分析.桥梁建设.1983,(1):24-36
    [159]刘磊,张光卿,袁长卿.杆系结构的高精度非线性分析.土木工程学报,2006,39(1):25-28
    [160]奉龙成,罗小华.钢筋混凝土拱面内极限承载能力的非线性分析.土木工程学报,2002,35(3):20-24
    [161]刘磊.大跨度混凝土桥梁的双非线性分析:[北方交通大学博士学位论文].北京:,2000:70-71
    [162]张阳,邵旭东,蔡松柏等.大跨桁式钢管混凝土拱桥空间非线性有限元分析.中国公路学报,2006,19(4),65-70
    [163]蔡松柏,刘凯远,龙述尧等.空间桁架几何非线性有限元的共旋坐标法.第十三届全国结构工程学术会议论文集(第Ⅰ册),2004,251-255
    [164]贺子龙,蔡松柏,李少华.空间杆系结构极限承载力的非线性有限元分析.中外建筑,2005,5,94-95
    [165]E Hinton,D R J Owen. Finite Element Software for Plates and Shells. Swansea.U.K:PINERIDGE PRESS.1984.
    [166]华孝良,徐光辉.桥梁结构非线性分析.北京:人民交通出版社,1997
    [167]杨冰.预应力混凝土和钢筋混凝土曲线箱梁的非线性有限单元分析和试验:[同济大学博士学位论文].上海:同济大学.1987
    [168]Ruo S R,Yang Y B.Tracing postbucking paths of structures containing multiloops.International Journal for Numerical Methods in Engineering,1995, 38:4035-4075
    [169]S AHMAD,B M IRONS,O C ZIENKIEWICZ. Analysis of Thick and Thin Shell Structures by Curves Finite Elements.International Journal for Numerical Method in Engineering.1970,2:419-451
    [170]蔡松柏,沈蒲生,胡柏学等.基于场一致性的2D四边形单元的共旋坐标法[J].工程力学,2009,26(12):31-34
    [171]Ki-DuKim,Chang-SooLee,Sung-Cheon Han.A 4-node co-rotational ANS shell element for laminated composite structures,2007,80:234-252
    [172]K D Kim,G R Lomboy,S C Han.A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Computational Mechanics,2003,30:330-342
    [173]Z X Li,B A Izzuddin,L Vu-Quoc.A 9-node co-rotational quadrilateral shell element[J],Computational Mechanics,2008,42:873-884
    [174]Joseph M,Pajot,KurtMaute.Analytical sensitivity analysis of geometrically nonlinear structures based on the co-rotational finite element method[J], Finite Elements in Analysis and Design,2006,42:900-913
    [175]Nelvio Dal Cortivo,Carlos A Felippa,Henri Bavestrello,et al. Plastic buckling and collapse of thin shell structures using layered plastic modeling and co-rotational ANDES finite elements[J], Computer Methods in Applied Mechanics and Engineering,2009,198:785-798
    [176]龙述尧,陈莘莘.弹塑性力学问题的无单元伽辽金法.工程力学,2003(2),66-70
    [177]Ernest Hinton,Roger Owen.Computational modeling of reinforced concrete structures,Pineridge press limited,1986
    [178]江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社,1994,150-154
    [179]涂光亚.脱空对钢管混凝土拱桥受力性能影响研究:[湖南大学博士学位论文].长沙:湖南大学.2007
    [180]腾启杰.钢管混凝土拱桥的极限承载力研究:[大连理工大学博士学位论文]大连:大连理工大学.2007
    [181]陈友杰,陈宝春.钢管混凝土肋拱面内受力全过程有限元分析.工程力学(增刊),2000:753-758
    [182]陈宝春,秦泽豹,彦坂熙等.钢管混凝土拱(单圆管)面内受力双重非线性有限元分析.铁道学报,2003,25(4):80-84
    [183]丁发兴,余志武,蒋丽忠.圆钢管混凝土结构非线性有限元分析.建筑结构学报,2006,27(4):80-84
    [184]邓继华.钢管混凝土拱肋节段极限承载力理论分析及试验研究:[湖南大学硕士学位论文].长沙:湖南大学.2004
    [185]陈宝春,林嘉阳.钢管混凝土单圆管拱空间受力双重非线性有限元分析.铁道学报,2005,27(6):77-84
    [186]林嘉阳.钢管混凝土(单圆管)单肋拱空间受力研究:[福州大学硕士学位论文].福州:福州大学.2003
    [187]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究:[博士学位论文].长沙:中南大学,2004:24-27
    [188]Crisfield M A. Nonlinear finite element analysis of solids and structures, vol 2. Chichester:John Wiley & Sons,Inc,1997
    [189]Z Q Chen,T J A,A GAR. Geometric nonlinear analysis of flexible spatial beam structures. Computer & Structures,1993,49(6):1083-1093
    [190]潘永仁.悬索桥结构非线性分析理论与方法.北京:人民交通出版社,2004:23-31
    [191]韩林海.钢管混凝土结构—理论与实践.北京:科学出版社,2004,25-100
    [192]钟善桐.钢管混凝土的工作性能和设计指标.建筑结构,1998,12
    [193]钟善桐.钢管混凝土结构.北京:清华大学出版社,2003,1-469
    [194]秦泽豹.钢管混凝土单圆管肋拱极限承载力研究:[硕士学位论文].福州:福州大学,2002
    [195]Edwards N P,Billington D P. FE analysis of tucker high school roof using nonlinear geometry and creep.Journal of Structural Engineeirng,ASCE,l 998,1 24(9):984-990
    [196]颜东煌,田仲初,李学文等.混凝土桥梁收缩徐变计算的有限元方法与应用.中国公路学报,2004,17(2):55-58
    [197]占玉林,向天宇,赵人达.几何非线性结构的徐变效应分析.工程力学,2006,23(7):45-48
    [198]陈常松,颜东煌,李学文.混凝土收缩徐变分析的虚功增量方程及应用[J].工程力学,2010,27(10):139-144
    [199]Kuo mo hsiao,Chang ming tsay. A motion process for large displacement analysis of spatial frames.International Journal of Space Structures,1991,6(2): 133-139
    [200]John Argyris.An excursion into large rotations[J]. Comput. Methods Appl. Mech. Engrg,1982,32:85-155
    [201]彭苗.空间自锚式悬索桥非线性分析与成桥状态确定.武汉:武汉理工大学,2008
    [202]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004
    [203]李学文,姚康宁,颜东煌.利用最小二乘法实现2004规范徐变系数的指数函数拟合[J].长沙交通学院学报,2006,22(3):21-24
    [204]姚康宁.大跨度混凝土斜拉桥运营阶段混凝土收缩徐变影响研究:[硕士学位论文].长沙:长沙理工大学,2006
    [205]范立础.预应力混凝土连续梁桥.北京:人民交通出版社,1988,291-297
    [206]王书庆.徐变自动增量分析方法及其在BRCAD系统中的实现.中国公路学会桥梁结构和结构工程学会1999年桥梁学术讨论会论文集.北京:人民交通出版社,1999
    [207]匡震邦.非线性连续介质力学基础.西安:西安交通大学出版社,1989
    [208]Espion B, Benchmark. Examples for creep and shrinkage analysis Computer program.In:Proceeding of the 5th International RILEM Symposium,1993. 901-911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700