用户名: 密码: 验证码:
冬小麦对昼夜不同增温的地下生物学响应特征及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自工业革命以来,全球平均气温提高了0.6~0.9℃,IPCC预测1990-2100年全球气温仍将上升1.4~5.8℃、相关预测认为2000-2050年我国平均气温仍将升高2.3~3.3℃。目前,就陆地生态系统对气候变暖响应的试验研究主要集中在自然生态系统地上部分,而地下生物学对昼夜不同增温的响应特征及其作用研究方面很少。在研究手段上也主要是模型分析预测和温室/开顶箱的试验研究,其研究结果存在较大的不确定性。冬小麦作为中国最主要的粮食作物之一,其产量占中国粮食总产的22.5%。研究全球变暖背景下冬小麦对昼夜不同增温的地下生物学响应特征及其机制对增强人类认识全球气候变化与陆地生态系统关系,降低未来气候变化预测的不确定性具有重要的意义。为此,笔者参考国际相关增温系统,于2006-2009年在江苏南京设计并运行了我国首个农田开放式主动增温系统(FATI,Free Air Temperature Increased)研究昼夜不同增温冬小麦土壤化学特性、冬小麦根系特征及活力、土壤呼吸、土壤酶学动态、土壤微生物量和土壤线虫,获得主要结论如下:
     1开放式主动增温系统的增温效应显著,符合气候变暖的农田试验研究要求
     开放式主动增温系统可以在2m×2m面积内增温效果显著,且不影响田间气温的变化趋势。昼夜不同增温略微降低了小麦的土壤水分,影响不显著,但显著缩短小麦生育期进程。田间结果表明本实验设计的开放式主动增温系统符合气候变暖的机制,基本能满足小麦所代表的典型农田生态系统对昼夜不同增温响应与适应的试验研究要求。
     2昼夜不同增温处理降低了土壤pH值和碱解氮,土壤钾和磷有效性的响应差异明显
     昼夜不同增温处理降低了土壤的pH值,影响最大为夜间增温处理,平均下降1.0%,最小为全天增温处理;增温处理也降低了各生育期土壤的碱解氮,影响规律为:夜间增温>白天增温>全天增温,小麦土壤的碱解氮分别下降3.7%、5.2%和7.8%。全天增温和白天增温处理使土壤有效磷平均分别提高5.5%和1.9%,而夜间增温却降低了2.9%。全天增温处理也使土壤的速效钾含量平均提高了10.2%。
     3昼夜不同增温处理降低了小麦根冠比,提高根平均直径,根形态和活力有所变化
     白天增温处理提高了根的干物质积累、根体积、根表面积、根直径、根长和根活力,对根干物质和根体积的影响达到了显著水平。夜间增温显著提高了根的干物质积累、根体积和根活力、年均分别提高10.9%、12.3%和19.3%.全天增温处理对小麦根系形态的影响存在年际差异,但差异都未达到显著水平。昼夜不同增温处理都降低了小麦孕穗-成熟的根冠比,且全天增温处理影响达到显著水平
     4昼夜不同增温处理下,土壤呼吸响应明显,且夜间增温效应显著
     土壤CO:日平均排放速率在越冬期前最大,越冬-拔节期最小。昼夜不同增温处理显著提高了小麦播种至拔节的土壤呼吸,提高幅度为全天增温<白天增温<夜间增温处理,拔节后增温处理对土壤呼吸的影响不显著。全生育期全天、白天增温处理表现略有下降,平均降低2.8%和2.3%,夜间增温处理使土壤呼吸了提高7.2%,差异达到显著水平。
     5昼夜不同增温显著影响土壤酶活性,不同土壤酶的响应特征存在显著差异
     全天增温处理使小麦各生育期土壤脲酶、蛋白酶和蔗糖酶活性年均分别提高6.3%、6.3%和2.7%;白天增温处理增加了小麦土壤脲酶和蔗糖酶活性.年均分别提高3.8%和1.2%,但降低了土壤蛋白酶活性;夜间增温处理降低了土壤的脲酶、蛋白酶和蔗糖酶活性,年均降低10.9%、16.7%和5.6%;3种增温处理都降低了小麦土壤的过氧化氢酶活性,其降低幅度为:夜间增温>白天增温>全天增温
     6昼夜不同增温降低了小麦土壤微生物量碳氮和可溶性碳氮.处理间差异显著
     昼夜不同增温处理降低了小麦土壤微生物量碳和可溶性碳,影响最大为夜间增温,最小为全天增温。全天增温、白天增温和夜间增温处理分别使小麦土壤微生物量碳和可溶性碳年均降低8.4%、15.1%、29.1%和7.1%、19.2%、27.7%,小麦土壤微生物量氮和可溶性氮也表现为降低,影响最大为全天增温处理,最小为夜间增温处理。分析显示夜间增温和白天增温处理对小麦土壤微生物量碳和可溶性碳的影响达到显著水平,全天增温处理对小麦土壤微生物量氮和可溶性氮的影响也达显著水平
     7昼夜不同增温处理降低了土壤线虫群体数量,改变了线虫的空间分布和营养类群
     全天增温和白天增温处理使小麦0-25 cm土层线虫平均分别下降19.7%和12.6%,且全天增温处理降低达到显著水平。增温处理对0-10cm土壤线虫影响最大,全天增温和白天增温处理线虫平均分别下降37.5%和20.4%;在10-25cm土层,3种增温处理也降低了土壤线虫数量,但差异未达到显著水平。增温处理增加了0-25 cm各耕作层的食细菌线虫,略降低植食线虫,全天增温、白天增温和夜间增温处理使土壤中的食细菌线虫比例年均分别提高13.6%、18.0%和26.9%,杂食和其它食性的线虫比例有增有减,差异都未达到显著水平
Human activities and the use of fossil fuels had led the earth temperature to increase 0.6~0.9℃from the industrial revolution bingening. IPCC forecasts that the global temperatures will rise by 1.4~5.8℃from 1990 to 2100, and China's average temperature will rise by 2.3~3.3℃from 2000 to 2050 related to Chinese forecast. At present, researches of the responses of terrestrial ecosystems to experimental warming mostly focus on aboveground of natural ecosystems, while responses and adaptation of belowground biological processes to different diurnal warming are relatively scarce. Meanwhile, the main research approaches are base on modeling and the greenhouse/open-top warming methods, they cannot truely reflex crop biological processes above and below ground under the global warming. Winter wheat, as one of the most important food crops of China, produced 22.5% of total grain yield. In the context of global warming, to learn the responses of crop production to different diurnal warming scenarios and the belowground biological mechanisms plays a important role for people to enhance the understanding of relationship between global climate change and terrestrial ecosystems, and to reduce uncertainty of the future climate change prediction. Therefore, based on existing field warming facilities in the world, we designed the first Free Air Temperature Increased system for agroecosystems of China in Nanjing. Jiangsu province. In order to explore the response characteristics and mechanism of the crop belowground biological process to global warming, we conducted three diurnal warming scenarios (AW:All-daytime warming; DW:Daytime warming; NW:Nighttime warming) in the wheat field during 2007-2009. Our objectives are to (1) assess the practicability of the FATI system and effect of warming on winter wheat. (2) investigate the responses of soil physical and chemical characteristics, winter wheat root characteristics and vitality, soil and root respiration, soil enzymology dynamics, microbial biomass. soil nematodes and functional components. The main conclusions are as follows:
     1 Warming effects of Free Air Temperature Increased (FATI) facility
     The free air temperature increased system could significantly increase the temperature of farmland ecosystem microenvironment within the 4 m2,but did not affect the variation trend of the night field temperature. The soil water decreased slightly under different diurnal warming scenarios, but the difference did not reach significant level. Under the three different diurnal warming scenarios, the days from sowing to the beginning of earing and sowing to maturitying significantly shortened. Therefore, the free air temperature increased system adopts in the experiment accorded with climate warming mechanism, and basically satisfys the conditions which were required in the research on the responses and adaption of winter wheat to different diurnal warming scenarois.
     2 Responses of soil chemical characteristics to different diurnal warming scenarios
     The three diurnsl warming scenarois all reduced the soil pH. The all-day warming treatment, in which the soil pH reduced 0.6%, had the minimum effect, while night warming treatment had maximum effect, in which the difference also reached significant level in booting stage and heading stage. There was no significant effect of warming on the total soil nutrient content. Warming reduced soil alkalined-nitrogen in the whole growth and development period by 3.7%,5.2% and 7.8%. respectively, in the NW, DW and AW. All-daytime warming (AW) and Daytime warming (DW) increased soil available phosphorus by 5.5% and 1.86% respectively, however. Nighttime warming (NW) reduced by 2.9%. All-daytime warming (AW) also increased soil available potassium by average 10.2%, while Daytime warming (DW) and Nighttime warming (NW) increased soil available potassium by 3.3% and 7.5% respectively before heading stage.
     3 Responses of wheat root to different diurnal warming scenarios
     All-daytime warming (DW) treatments increased the root dry matter accumulation. root volume, root surface area, root diameter, root length and root activity, in which the differences of root dry matter and root volume reached significant level. Nighttime warming (NW) significantly increased root dry matter accumulation, root volume, and root activity by 10.9%.12.3% and 19.3% respectively. Wheat root morphology had inter-annual differences under All-daytime warming (AW) treatment, but did not reach significant level. All the three diurnal warming scenarois reduced the ratio of root/shoot from booting stage to maturity, in which All-daytime warming (AW) reached significant level.
     4 Responses of soil respiration to different diurnal warming scenarios
     Under three diurnal warming scenarios and the control, the average daily soil CO2 efflux, during the whole growth period, reached maximum before wintering period and came up to minimum during the wintering period and shooting stage. All the warming treatments significantly improved soil respiration from sowing to jointing stage, and soil respiration increased 4.9%,14.2%,23.2% for All-daytime warming (AW). Daytime warming (DW), Nighttime warming (NW) respectively. Soil respiration declined slightly for All-daytime warming (AW) and Daytime warming (DW) after jointing stage. During the whole growth period, soil respiration declined by 2.8% and 2.3% respectively for All-daytime warming (AW) and Daytime warming (DW), but did not reached significant level, however, soil respiration of Nighttime warming (NW) increased by 7.2%, and reached significant level. All the warming treatments had no effect on the daily dynamic changes of soil respiration.
     5 Responses of soil enzymology to different diurnal warming scenarios
     All-daytime warming (AW) treatment increased soil urease. protease and sucrase average activities by 6.3%,6.3% and 2.7% respectively. Daytime warming (DW) treatment increased two-year average activities of soil urease and sucrase by 3.8% and 1.2% respectively, but reduced the activity of soil protease. Night warming (NW) treatment yearly reduced the activities of urease, protease and sucrase by 10.9%,16.7% and 5.6% respectively. Nighttime warming (NW). Daytime warming (DW) and All-daytime warming (AW) reduced the activity of soil hydrogen peroxide by 12.3%,3.2% and 6.1% respectively. After comparing the effect of warming treatments to the activity of soil enzyme, we found that the warming effect sizes were All-daytime warming (AW)> Daytime warming (DW)> Nighttime warming (NW).
     6 Responses of microbial biomass to different diurnal warming scenarios
     All the warming treatments reduced the soil microbial biomass carbon and soil soluble carbon, in which Nighttime warming (NW) had maximum impact while All-Daytime warming (DW) showed the minimum effect. All-daytime warming (AW), Daytime warming (DW) and Nighttime warming (NW) treatments reduced the average soil microbial biomass carbon by 8.4%,15.1% and 29.1%, and soil soluble carbon by 7.1%, 19.2% and 27.7%, respectively. The three different diurnal warming scenarios reduced the soil microbial biomass nitrogen and soil soluble nitrogen, in which All-daytime warming (AW) had maximum impact while Nighttime warming (NW) showed minimum effect. Statistic analysis revealed that the impact of Nighttime warming (NW) and Daytime warming (DW) on the soil microbial biomass carbon and soil soluble carbon reached significant level, and only the impact of All-daytime warming (AW) to soil microbial biomass nitrogen and soil soluble nitrogen reached significant level.
     7 Responses of soil nematode to different diurnal warming scenarios
     All-daytime warming (AW) and Daytime warming (DW) treatment reduced the total number of nematodes which inhabited in the 0-25cm soil layer by 19.7%and 12.6% respectively. The impact of All-daytime warming (AW) on nematodes reached significant level. The warming treatments mostly affected nematodes in the 0-10cm soil layers, and All-daytime warming (AW) and Daytime warming (DW) reduced nematodes by 37.5 and 20.4% respectively. In the 10-25cm soil layer. Nighttime warming (NW). Daytime warming (DW) and All-daytime warming (AW) reduced the number of nematodes by 17.6%.14.5% and 11.4% respectively, but all the differences did not reach significant level. Warming increased the bacterivorous nematode and slightly reduced Plant-parasites All-daytime warming (AW). Daytime warming (DW) and Nighttime warming (NW) increased the numbers of nematodes averagely by 13.6%.18.0% and 26.9%. respectivlity. during the four stages, in which the booting stage and heading stage had the maximum impact. The proportions of omnivorous nematodes and other feeding habit nematodes had inconsistent variation, but none reached significant level.
引文
[1]Karl T R. Jones P D. Knight R W. et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum minimum temperature [M]. Bulletin of the American Meteorological Society,1993,74(6):1007-1023
    [2]Jones. P D. Maximum and minimum temperature trends in Ireland. Italy, Thailand, Turkey and Bangladesh[J]. Atmospheric Research 1995.37.67-78
    [3]Peng S P. Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proc Natl Acad Sci USA,2004.101(27):9971-9975
    [4]Bardgett. R D. Bowman. W D, Kaufmann. R., et al. A temporal approach to linking, aboveground and belowground ecology[J]. Trends Ecology and evolution,2005,20(11):634-640
    [5]Farrar J. Hawes M, Jones D. et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology,2003.84:827-837
    [6]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49:1226-1233
    [7]熊伟,居辉,许吟隆,等.气候变化对中国农业温度阈值影响研究及其不确定性分析[J].地球科学进展.2006,21(1):70-76
    [8]王铮,黎华群,孔祥德,张正远,等.气候变暖对中国农业影响的历史借鉴[J].自然科学进展,2005,6:68-75
    [9]方修琦,王媛,徐锬,等.近20年气候变暖对黑龙江省水稻增产的贡献分析[J].地理学报, 2004,59(6):820-868
    [10]金之庆,葛道阔,石春林,等.东北平原适应全球气候变化的若干粮食生产对策的模拟研究[J].作物学报,2002,1:25-32
    [11]Richard J N. Luo Y q. Evaluating ecosystem responses torising atmospheric CO; and global warming in a multifactor world[J]. New Phytologist.162:281-293
    [12]Gorissen A, Tietema A, Joosten N N. Climate change affects carbon all ocation to the soil in shrub lands[J]. Ecosystems,2004,7:650-661
    [13]李家洋,葛全胜.全球变化与人类活动的相互作用,我国下阶段全球变化研究工作的重点[J].地球科学进展,2005,20(4):371-377
    [14]Gaffen D J. Santer, J S Boyle. Christy J R. et al. Multidecadal changes in the vertical temperature structure of the tropical troposphere[J]. Science,2000,287:1242-1245
    [15]Santer B D, Wigley T M L, Gaffen D J. et al. Interpreting differential temperature trends at the surface and in the lower troposphere [J]. Science.2000.287.1227-1232
    [16]Mann M E. Bradley R S. Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries[J]. Nature,1998,392:779-787
    [17]IPCC. Climate change:Atmospheric Chemistry and Greenhouse Gases. Cambridge University Press[M].2007,239-287
    [18]秦大河,丁一汇,苏纪兰.等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展.2005,1(1):4-9
    [19]任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征[J].气象学报,2005,63(6):693-956
    [20]李崇银,翁衡毅,高晓清,等.全球增暖的另一可能原因初探[J].大气科学,2003,27:789-797
    [21]Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000.48:7-20
    [22]Ostle N, Bailey M J Bailey. Active microbial RNA turnover in a grassland soil estimated using a 13CO2 spike[J]. Soil Biology and Biochemistry,2003.35:877-885
    [23]Waldrop M P, Firestone M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions[J]. Biogeochemistry,2004.67(2): 235-248
    [24]Boone R D. Nadelhoffer K J. Canary J D. et al. Roots exerta strong influence on the temperature sensitivity of soil respiration[J]. Nature,1998,396:570-572.
    [25]郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异[J].江苏农业学报,2005,21(4):249-254
    [26]Chapin F S. Matson P A. Mooney H. Principles of terrestrial ecosystem ecology[J]. New York: Springer-Verlag,2002
    [27]Schlesinger W H. Carbon sequestration in soils[J]. Science,1999.284:2095
    [28]Chapin F S. Ruess R W. The roots of the matter[J].Nature,2001.411:749-752
    [29]Copley J. Ecology goes underground[J]. Nature,2000,406:452-454
    [30]Bazzaz F A. Plant in Changing Environments:Linking Physio-logical, Population, and Community Ecology[M]. Cambridge:Cambridge University Press.1996
    [31]Richardson S J. Hartley S E. Press M C. Climate warming experiments, are tens a potential barrier to interpretation [J]. Ecological Entomology,2000,25.367-370
    [32]Stenstrom M. Gugerli F. Henry G H R. Response of Saifraga oppositifolia L to simulated climate change atthree contrasting latitudes. Global Change Biology.1997,3 (Suppl.1).44-54
    [33]Klein J A, Harte J. Zhao X Q. Dynamic and complexmicro-climate responses to warming and grazing manipulations[J]. Global Change Biology,2005.11.1440-1451
    [34]Chapin P S Ⅲ. Shaver G R. Individualistic grow response of tundra plant species to environmental manipulations in the field[J]. Ecology.1985.66.564-576
    [35]Havstrim M. Challaghan T V, Jonasson S. Differential growth responses of Cassiope tetragona. an arctic dwarf-shrub, to environmental perturbations amongthree contrasting high and subarctic sites[J]. Oikos,1993.66.389-402
    [36]Walker M D, Wahren C H. Wookey P A. et al. Plant community response to experimental warming across the tundra biome[J]. Proceedings of the National Academy of Sciences,2006,103. 1342-1346
    [37]Kennedy A D. Simulated climate change:are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations[J]. Global Change Biology,1995.1.29-42
    [38]Rykbost K A. Boersma L, Mack H J. et al. Yield response to soil warming:agronomic crops[J]. Agronomy Journal.1975.67.733-738
    [39]Peterjohn W T. Melillo J M. Soil warming and trace gas fluxes:experimental design and preliminary flux results[J]. Oecologia,1993.93.18-24
    [40]NSFESP (National Science Foundation. Ecosystem Studies Program). Soil warming experiments in global change research[M]. Woods Hole,1991.9.27-28
    [41]Emmett B A, Beier C, Estiarte M. et al. The response of soil processes to climate change:results frommanipulation studies of shrublands across an environmental gradient[J]. Ecosystems,2004.7. 625-637
    [42]Beier C. Emmett B. Gundersen P. et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field:drought and passive nighttime warming[J]. Ecosystems,2004.7, 83-597
    [43]Harte J. Torn M S. Chang F R. et al. Global warming and soil microclimate:results from a meadow-warming experiment[J]. Ecological Applications,1995.5.132-150
    [44]Bridgham S D. Pastor J. Updegraff K. et al. Paper presented at the Ecological Society of America Annual Meeting[M]. Snowbird. Utah,1995, July 30 to August 3
    [45]Nijs I. Kockelbergh F. Teughels H. et al. Free AirTemperature Increase (FATI):a newtool to study global warming effects on plants in the field[J]. Plant, Cell and Environment,1996,19.495-502
    [46]牛书丽,韩兴国,万师强,等.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271
    [47]Xiao X. Melillo J M. Kicklighter D W. et al. Transient climate change and net ecosystem production of the terrestrial biosphere[J]. Global Biogeochemical Cycles,1998.12:345-360
    [48]Kirschbaum M U E. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology & Biochemistry,1995.27: 753-760
    [49]Carpenter S R. Decay of heterogeneous detritus:a general model[J]. Journal of Theoretical Biology. 1981.89:539-547
    [50]徐小锋,田汉勤,万师强.气候变暖对气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188
    [51]陈全胜,李凌浩,韩兴国.等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J].植物生态学报,2004,24(4):831-836
    [52]Peng C H. Guiot J. Van Campo E. et al. Temporal and spatial variations of terrestrial biomes and carbon storage since 13.000 years BP in Europe:Reconstruction from pollen data and statistical models[J]. Water Air Soil Pollut,1995,82 (1-2):375-390
    [53]Melillo J M. Steaudler P A. Aber J D, et al. Soil warming and Carbon-cycle feedbacks to the climate system[J]. Science,2002,298 (13):2173-2176
    [54]Kirschbaum M F. Will changes in soil organic carbon act as a positive or negative feedback on global warming[J]. Biochemistry,2000,48(1):21-51
    [55]Hyvonen R, Agren G L, Dalias P. Analysing temperature response of decomposition of organic matter[J]. Global Change Biology,2005,11 (5):770-778
    [56]Oechel W C. Vourlitis G L, Hastings S J. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to climate warming[J]. Nature,2000,406 (6799):978-981
    [57]Vitousek, P M. Nutrient cycling and nutrient use efficiency[J]. American Naturalist,1982,119: 53-57
    [58]Pastor J J. Claugherty M. M elillo J M. et al. Aboveground production and N and Pcycling along a nitrogen mineralization gradient on Blackhawk lsland. Wisconsin[J]. Ecology.1984.65:256-268
    [59]Quemada. M, Cabrera M L. Temprature and moisture effects on C and N mineralization from surface applied cloverresidue[J]. Plant and Soil,1997.189:127-137
    [60]Eno C F. Nitrate production in the field by incubating the soil in po lyethylene bags[J]. Soil Science Society of America P roceeding.1960,24:277-299
    [61]Stanford G, Eptein E. Nitrogen mineralization water relations in soils[J]. Soil Science Society of America Proceeding,1974.38:103-107
    [62]Vitousek P M. Aber J. Howarth R W. et al. Human alteration of the global nitrogen cycle:causes and consequences [J]. Ecological Applications.1997.7:737-750
    [63]姚贤良,程云生.土壤物理学[M].北京:农业出版社,1983
    [64]范爱武,刘伟,刘炳成.土温对植物生长的影响及其机理分析[J].工程热物理学报,2004,25(1):124-126
    [65]Pregitzer K S. King J S. Burton A J. et al. Responses of tree fine roots to temperature[J]. New Phytologist.2000.147:105-115
    [66]Bassiri R H. Kinetics of nutrient uptake by roots:responses to global change[J]. New Phytologist. 2000.147:155-169
    [67]Zha T S. Kellomaki S, Wang K Y. Seasonal variation respirationof 1-year-old shootsofScotspine exposed to elevated carbon dioxide and temperature for 4 years[J]. Annals of Botany,2003.92: 9-96
    [68]Johnson I R. Plant respiration in relation to growth, maintenanceion uptake and nitrogen assimilation[J]. Plant. Cell and Environment.1990,13:319-328
    [69]Boone R D, NadelhofferK J. Canary J D, et al. Roots exert astrong influence on the temperature sensitivity of soil respiration [J]. Nature,1998.396:570-572
    [70]Bouma T J. NielsenK L. Eissenstat D M. et al. Estimating respiration of roots in soil Interactionswith soil CO2, soil temperature and soil water content[J]. Plant and Soil,1997,195: 221-232
    [71]Gunn S, Farrar J F. Effects of a 4℃ increase in temperature on partitioning of leafarea and drymass, root respiration and carbo hydrates[J]. Functional Ecology,1999.13 (Supp.11):12-20
    [72]Covey Crump E M,Attwood R G,Atkin O K. Regulation of root respiration in two species of plant ago that differ in relative growthrate:the effect of short and long term changes in temperature[J]. Plant. Cell and Environment,2002.25:1501-1513
    [73]Amthor J S. Plant respiratory responses to the environment and their effects on the carbon balance[J]. In Plant Environment Interactions,1994:501-554
    [74]Atkin O K. Edwards E J. Loveys B. Response of root respirationto changes in temperature and its relevance to global warming[J]. New Phytologists.2000,147:141-154
    [75]崔骁勇,陈佐忠,陈四清.草地土壤研究进展[J].生态学报,2001,21(2):315-325
    [76]董云社,齐玉春,李克让.陆地生态系统温室气体通量测定方法和结果:土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002
    [77]邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统大气净交换估算[J].科学通报,2004,49(3):258-264
    [78]Singh J S. Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. The Botanical Review.1977.43:449-528
    [79]Raich J W. Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus.1992,44 (B):81-99
    [80]Fung I Y, Tucker C J. Prentice K C. Application of advanced very high resolution vegetation index to study atmosphere-biosphere exchange of CO2[J]. Journal of Geophysical Research,1987,92: 2999-3015
    [81]Kicklighter D W. Melillo J M. Peterjohn W T. et al. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils[J]. Journal of Geophysical Research,1994.99:1303-1315
    [82]Janssens I. Pileggaard K. Large seasonal change in Q10 of soil respiration in a beech forest[J]. Global Change Biology.2003,9:911-918
    [83]Xu M. Qi Y. Soil surface CO2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California[J]. Global Change Biology.2001.7:667-677
    [84]Oechel W C. Vourlitis G L. Hastings S J. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming[J]. Nature,2000.406:978-981
    [85]Qi Y. Tang J. Xu M. Biospheric models in global change research (Ⅱ):Respiration and decomposition. In:Wu J, Han X. Huang J, et al. Lectures in modern ecology (Ⅱ):from basic science to environmental issues[M]. Beijing:Chinese Scientific & Technological Press,2002, 205-212
    [86]Rustad L E. Norby R J. Mitchell M J. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001.126:543-562
    [87]Lin G, Ehleringer J R. Rygiewicz P T. et al. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglasfir terracosms[J]. Global Change Biology.1999.5: 157-168
    [88]Chen Q S. Li L H. Han X G. et al. Sensitivity of soil respiration to temperature[J]. Advances in Plant Sciences,2003.5:215-521
    [89]Dai A, Meehl G A. Washington W M. et al. Ensemble simulation of 21st century climate changes: business as usual vs CO2 stabilization[J]. Bulletin of the American Meteorological Society,2001.82: 2377-2388
    [90]Christensen T R. Johnasson S. Callaghan T V. et al. On the potential CO2 release from tundra soils in a changing climate[J]. Application of Soil Ecology.1999,11:127-134
    [91]Reich P B. Grigal D F. Aber J D, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils[J]. Ecology.1997.78:335-347
    [92]Ryan M G. Effects of climate change on plant respiration[J]. Ecological Application.1991.1: 157-167
    [93]Amthor J S. The Me Cree-dewit-penning de vries-thornldy respiration paradigms:30 years later[J]. Annals of Botany,2000,86:1-20
    [94]Yang Y S. Dong B. Xie J S. et al. A review of tree root respiration:significance and methodologies[J]. Acta Phytoecologica Sinica,2004.28 (3):426-434
    [95]Saxe H. Cannell M G R. Johnsen. et al. Tree and forest functioning in response to global warming[J]. New Phytologist.2001.149:369-400
    [96]Vogel J G, Valentine D W. Ruess R W. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates[J]. Canadian Journal of Forest Research. 2005.35:161-174
    [97]PartonW J. Scurlock J O, Ojima D S. et al. Observation and modeling of biomass and soil organic matter dynamics for the grassland biome world wide[J]. Global Biogeo chemistry Cycles.1993.7: 785-809
    [98]Boone R D, NadelhofferK D. Canary J D. et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature,1998,396:570-572
    [99]Vose JM, RyanM G. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N. and photosynthesis[J]. Global Change Biology,2002,8:182-193
    [100]Desrochers A, Landhausser S M, Lieffers V J. Coarse and fine root respiration in aspen (Populus tremuloides)[J]. Tree Physiology,2002.22:725-732
    [101]GillR A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist,2000,147:13-31
    [102]Maier C A. Kress LW. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected bvmoisture and nutrient availability[J]. Canadian Journal of Forest Research,2000,30:347-359
    [103]Bryla D R. Bouma T J. Hartmond U, et al. Influence of temperature and soil drying on respiration of individual roots in citrus:integrating greenhouse observations into a predictivemodel for the field[J]. Plant Cell and Environment,2001.24:781-790
    [104]Burton A J, Pregitzer K S. Zogg G P. et al. Droughtreduces rootrespiration in sugarmaple forests[J]. Ecological Applications,1998.8:771-778
    [105]Pregitzer K S. King J S, Burton A J. et al. Responses of tree fine roots to temperature[J]. New Phytologist,2000,147:105-115
    [106]Zogg G P, Zak D R. Burton A J, et al. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability[J]. Tree Physiology,1996.16:719-725
    [107]Burton A J, Pregitzer K S. RuessR W. et al. Root respiration inNorthAmerican forests:effects ofnitrogen concentration and temperature acrossbiome[J]. Oecologia,2002.131:559-568
    [108]Ekblad A. H gberg P. Natural abundance of 15C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration[J]. Oecologia.2001.127:305-308
    [109]Edwards N T. Norby R J. Below-ground respiratory responses of sugarmaple and redmaple sapling to atmospheric CO2 enrichmentand elevated air temperature[J]. Plant and Soil,1999,206:85-97
    [110]Fitter A H. Graves J D, Self G K. et al. Rootproduction. turnoverand respiration under two grassland types along an altitudinalgradient influence of temperature and solar radiation[J]. Oecologia.1998.114:20-30
    [111]Sowell J B, Spomer G G. Ecotypic variation in root respiration rate among elevational populations of Abies lasiocarpa and Picea engelmannii[J]. Oecologia,1986.68:375-379
    [112]Weger H G, Guy R D. Cytochrome and alternative pathway respiration in white spruce (picea glauca) roots. Effects of growth and measurement temperature[J]. Physiologia Plantarum,1991,83: 675-691
    [113]Atkin O K. Edwards E J, Loveys B R. Response of root respiration to change in temperature and its relevance to global warming[J]. New Phytologist,2000,147:141-154
    [114]Gianfreda L, Sannino F. Vtoante A. Pesticide effects on the activity of free, immobilized and invertase[J]. Soil Biol & Bicohem,1995.27 (9):1201-1208
    [115]李传涵.杉木幼林地土壤酶活性与土壤肥力[J].林业科学研究,1993,6(3):321-326
    [116]曾宪军,刘登魁,朱世民.不同浓度阿特拉津对三种肥力条件土壤过氧化氢酶的影响[J].湖南农业科学.2005,(6):33-35
    [117]关松荫.张德生.张志明.土壤酶及其研究法[M].北京:农业出版社.1986
    [118]Zogg G P, Zak D R. Ringelberg D B. et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Science Society of America Journal.1997.61 (2): 475-481
    [119]Moorhead D L. Linkins A E. Elevated CO2 alters belowground exoenzyme activities in tussock tundra[J]. Plant and Soil,1997,189(2):321-329
    [120]Waldrop M P. Firestone M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions[J]. Biogeochemistry.2004,67 (2): 235-248
    [121]Tscherko D. Kandeler E. Jones T H. Effect of temperature on below ground N-dynamics in a weedy model ecosystem at ambient and elevated atmospheric CO2 levels[J]. Soil Biology & Biochemistry,2001,33 (4/5):491-501
    [122]Kang H J. Freeman C. Phosphatase and arylsulphatase activities in wetland soils:annual variation and controlling factors[J]. Soil Biology & Biochemistry,1999,31 (3):449-454
    [123]Bardgett R D. Kandeler E. Tscherko D. et al. Below ground microbial community development in a high temperature world[J]. Oikos,1999,85 (2):193-203
    [124]Dick W A. Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology & Biochemistry.2000.32 (13):1915-1919
    [125]Hinojosa M B, Carreira J A, Ruiz R G, et al. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils[J]. Soil Biology & Biochemistry.2004.36(10):1559-1568
    [126]Zhang W J, Luo Y Q, Wan S Q. et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie[J]. Global Change Biol,2005.11 (2):266-277
    [127]Luo Y Q. Wan S Q. Hui D F. Wallace L L. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature,2001.413 (6856):622-625
    [128]Liski J. Nissinen A. Nissinen A. et al. Climatic effects on litter decomposition from arctic tundra to tropical rainforest[J]. Global Change Biol,2003,9 (4):575-584
    [129]张卫建.许泉,王绪奎,卞新民.气温上升对草地土壤微生物群落结构的影响[J].生态学报.2004.24(8):1746-1751
    [130]Papatheodorou E M, Stamou G P, Giannotaki A. Response of soil chemical and biological variables to small and large scale changes in climate factors[J]. Pedobiologia,2004,48 (4):329-338
    [131]Bardgett R D, Kandeler E, Tscherko D, Hobbsp J,et al. Below ground microbial community development in a high temperature world[J]. Oikos,1999.85 (2):193-203
    [132]Marilley L, Hartwig U A, Aragno M. Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne. Trifolium repens under field conditions[J]. Microb Ecol.1999.38 (1):39-49
    [133]Rinnan R. Michelsen A. Jonasson S. et al. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biol,2007.13 (1): 28-39
    [134]Zhang W, Parker K M. Luo Y. et al. Soil microbial responses to experimental warming and clipping in a tall grass prairie[J]. Global Change Biology,2005.11 (2):266-277
    [135]Ruess L, Michelsen A. Schmidt I K. et al. Simulated climate change affecting microorganisms. nematode density and biodiversity in subarctic soils[J]. Plant and Soil,1999,212:63-73
    [1]IPCC. Climate Change. Synthesis Report:Summary for Policymakers[M].2007[2010-1-28]. http://www.ipcc.ch
    [2]中国国家发展和改革委员会.中国应对气候变化国家方案[M].中国国家发展和改革委员会组织编制,2007
    [3]FAO. Rice in Human Nutrition. Food and Agriculture Organization of the United Nations[M]. Rome,1993
    [4]Ortiz R, Sayre K D, Govaerts B. Gupta R, et al. Climate change:Can wheat beat the heat? Agriculture[J]. Ecosystems and Environment.2008,126:46-58
    [5]Petra H. Andreas F. Effects of elevated atmospheric CO2 on grain quality of wheat[J]. Journal of Cereal Science.2008,48:580-591
    [6]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature[J]. Bulletin of the American Meteorological Society,1993,74(6):1007-1023
    [7]闫敏华,陈泮勤,邓伟,梁丽乔.三江平原气候变暖的进一步认识:最高和最低气温的变化[J].生态环境,2005,14(2):151-156
    [8]Parry M L, Swaminathan M S. Effects of Climate Change on Food Production[M]. Cambridge: Cambridge University Press,1992
    [9]居辉,熊伟,林而达,等.气候变化对中国小麦产量的影响[J].作物学报,2005,31(10): 1340-1343
    [10]杨修,孙芳,林而达,等.我国水稻对气候变化的敏感性和脆弱性[J].自然灾害学报,2004,13(5):85-89
    [11]Peng S P. Huang J L. Sheehy J E. et al. Rice yields decline with higher night temperature from global warming[J]. Proc Natl Acad Sci USA,2004,101(27):9971-9975
    [12]Lin E D, Xiong W, Ju H, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China[J]. Philosophical Transactions of the Royal Society of London. Series B. 2005.360:2149-2154
    [13]赵平,孙谷畴,曾小平.等.夜间变暖提高荫香叶片的光合能力[J].生态学报,2005,25(10):2703-2708
    [14]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响[J].江西农业大学学报,2008,30(3):427-432
    [15]Norby R J, Luo Y Q. Evaluating ecosystem response to rising atmospheric CO2 and global warming in multi-factor world[J]. New Phytologist,2004,164:281-293
    [16]Pendall E. Bridgham S, Hanson P J. et al. Below-ground process response to elevated CO2 and temperature:a discussion of observations, measurement methods and models[J]. New Phytologist. 2004,162:311-322
    [17]Kimball B A. Conley M M. Wang S P, et al. Infrared heater arrays for warming ecosystem field plots[J]. Global Change Biology,2008,14:309-320
    [18]Beier C, Emmett B. Gundersen P. et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field:drought and passive nighttime warming[J]. Ecosystems,2004, 7:583-597
    [19]Peterjohn W T, Melillo J M, Bowles F P, et al. Soil warming and trace gas fluxes:experimental design and preliminary flux results[J]. Oecologia,1993.93:18-24
    [20]牛书丽,韩兴国,马克平,等.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271
    [21]Emmett B A. Beier C, Estiarte M, et al. The response of soil processes to climate change:results from manipulation studies of shrublands across an environmental gradient[J]. Ecosystems,2004. 7:625-637
    [22]Wan S Q, Hui D F, Wallace L, Luo Y Q. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie[J]. Global Biogeochem Cycles,2005.19:1-13
    [23]Nijs I, Kockelbergh F, Teughels H, et al. Free Air Temperature Increase (FATI):a new tool to study global warming effects on plants in the field[J]. Plant. Cell Environment,1996,19:495-502
    [24]Kimball B A. Theory and performance of an infrared heater for ecosystem warming[J]. Global Change Biology,2005.11:2041-2056
    [25]张彬,郑建初,张卫建,等.抽穗期不同灌水深度下水稻群体与大气的温度差异[J].应用生态学报,2008,19(1):87-92
    [26]王晨阳,郭天财,周继泽,等.花后短期高温胁迫对小麦叶片光合性能的影响[J].作物学报,2004,30(1):88-91
    [1]IPCC. Climate Change. Synthesis Report:Summary for Policy makers[M].2007[2010-1-28], http://www.ipcc.ch
    [2]中国国家发展和改革委员会.中国应对气候变化国家方案[M].中国国家发展和改革委员会组织编制,2007
    [3]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature[J]. Bulletin of the American Meteorological Society,1993,74(6):1007-1023
    [4]闫敏华,陈泮勤,邓伟,梁丽乔.三江平原气候变暖的进一步认识:最高和最低气温的变化[J].生态环境,2005,14(2):151-156
    [5]Parry M L. Swaminathan M S. Effects of Climate Changes on Food Production[J]. Cambridge: Cambridge University Press,1992
    [6]Gregory P J, Ingram J 1. Global change and food and forest production:Future scientific challenges[J]. Agriculture. Ecosystems and Environment,2000,82:3-4
    [7]Dobson A P. Bradshaw A D. BakerA M. Hopes for the future:Restoration ecology and conservation biology[J]. Science,1997,277:515-521
    [8]周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J].植物生态学报,2001,25(2)204-209
    [9]陈龙池,廖利平,肖复明,等.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57-62
    [10]胡锋,李辉信,史玉英,等.两种基因型小麦根际土壤生物动态及根际效应[J].土壤通报,1998,29(3):133-135
    [11]涂书新,孙锦荷,郭智芬,等.植物根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67
    [12]陆文龙,王敬国,曹一平,等.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报,1998,35(4):493-500
    [13]李伏生,康绍忠,李志军,等.大气温度对土壤养分迁移和春小麦干物质积累的效应[J].西北农业学报,2002,11(3):132-137
    [14]苗艳芳,李友军,陈明灿,等.氮钾肥对小麦养分吸收的影响及增产效应[J].西北农业大学学报,1999,27(2):43-48
    [15]肖国举,张强,王静.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报,2007,18(8):1877-1885
    [16]Gregory P J. Hinsinger P. New approaches to studying chemical and physical changes in the rhizosphere:an overview[J]. Plant and Soil,1999,211:1-9
    [17]贾丙瑞,周广胜.北方针叶林对气候变化响应的研究进展[J].地球科学研究进展,2009,24(6):668-675
    [18]Brockwell P J. Davis R A, Time Series:Theory and Methods[J]. Springer-verlag New York. Inc-2001
    [19]鲍士旦.土壤农化分析(第三版)[M].北京:农业出版社,2000
    [20]中国土壤学会.土壤农业化学分析方法.北京[M]:中国农业科技出版社,1985
    [21]Niu S L, Yang H J, Wan S Q. et al. Non-Additive effects of water and nitrogen additionon ecosystem carbon exchange in a temperate steppe[J]. Ecosystems,2009,1054-1066
    [1]Lynch J. Root architecture and plant productivity[J]. Plant Physiol,1995,109:7-13
    [2]Fitter A H. Characteristics and functions of root systems. In:Waisel Y, Eshel A. Kafkafi U P, et al. Pant Roots, the Hidden Half,3rd edn[M]. New York:Marcel Dekker Inc.,2002,15-32
    [3]Wang H. Yamauchi A. Growth and function of roots under abiotic stress in soil. In:Huang B ed.Plant-Environment Interactions,3rd edn. Boca Raton[M]. FL:CRC/Taylor&Francis,2006, 271-320
    [4]Eissenstat D M, Wells C E, Whitback J L. Building roots in a changing environment:implications for root longevity [J]. New Phytol,2000,147,33-42
    [5]Richard A G, Robert B J. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytol. 2000,147,13-31
    [6]Weaver. J E. Root development of field crops[M]. Mc Graw-Hil. New York,1926.
    [7]牛书丽,韩兴国,马克平,等.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271
    [8]肖国举,张强,王静.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报,2007,18(8):1877-1885
    [9]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49(13):1226-1233
    [10]侯颖,王开运,邹春静.CO2浓度和温度升高对川西亚高山红桦幼苗根系结构的影响[J].北京林业大学学报,2008,1,29-34
    [11]Pregitzer K S. King J S. Burton A J. et al. Responses of tree fine roots to temperature[J]. New Phytol,2000,147.105-115
    [12]Kuchenbuch R O. Barber S A. Yearly variation of root distribution with depth in relation to nutrient uptake and corn yield[J], Communications in Soil Science and Plant Analysis,1987,18:255-263
    [13]支金虎,马永清.PDJ对不同温度下小麦种子萌发和幼苗根系活力的影响[J].江苏农业科学,2007,5,27-31
    [14]Rasse D P, Smucker A M. Root recolonization of previous root channels in corn and alfalfa rotations[J]. Plant and Soil,1998.204:203-212
    [15]Ehlers W. Kopke U, Hesse F. Bohm W. Penetration resistance and root growth of oats in tilled and untilled loess soil[J]. Soil Tillage Res,1983,3:261-275
    [16]Kocckelbergh N F, Teughels H, Blum H. et al. Free Air Temperature Increase (FATI):a new tool to study global warming effects on plants in the field[J]. Plant. Cell and Environment,1996,19. 495-502
    [17]寇太记,朱建国.谢祖彬,等.冬小麦旺盛生长期间CO2浓度升高对根际呼吸的影响[J].生态学报,2007,27(4):1420-1428
    [18]张宪政,陈风玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994:99-100
    [19]Liao H YanX L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency[J]. Acta Botanica Sinica,2000,42 (2):158-163
    [20]Liao H, Ge Z Y. Ideal root architecture for phosphorus acquisition of plants under water and phosphorus coupled stresses:from simulation to application[J]. Chinese Science Bullet,2001,46 (8):641-646
    [21]吕谋超,冯俊杰,翟国亮.地下滴灌夏玉米的初步试验研究[J].农业工程学报,2003,19(1):67-70
    [22]王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报,2006,22(2):27-32
    [23]王法宏,任德昌,王旭清,等.施肥对小麦根系活性,延缓旗叶衰老及产量的效应[J].麦类作物学报,2001,12(3):51-54
    [24]Mackie Dawson L A. Nitrogen uptake and root morphological responses of defoliated Lolium perenne (L.) to a heterogeneous nitrogen supply[J]. Plant and Soil 1999,209:111-118
    [1]IPCC. Climate Change. Synthesis Report:Summary for Policymakers[M].2007[2010-1-28]., http://www.ipcc.ch
    [2]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):69-477
    [3]杨晶,李凌浩,土壤呼吸及其测定法[J].植物杂志,2003,35-37
    [4]杨玉盛,董彬,郭剑芬,等.森林土壤呼吸及其对全球变化的响应[J].生态学报,2004,24(3):583-592
    [5]Lin G H, Ehleringer J R, Rygiewicz P T, et al. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms[J]. Global Change Biology,1999,5: 157-168
    [6]Craine J M, Wedin D A, Reich P B. The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity[J]. Globle Change Biology,2001,7(8):947-953
    [7]Xia J, Han Y, Zhang Z, Wan S, et al. Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe[J]. Biogeosciences,2009,6. 1361-1370
    [8]Rustad L E, Norby R J, Mitchell M J. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001.126:543-562
    [9]Melillo J M. Steaudler P A. Aber J D. et al. Soil warming and Carbon-cycle feedbacks to the climate system[J]. Science,2002.298 (13):2173-2176
    [10]Peterjohn W T. Melillo J M. Steudler P A. et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperature [J]. Ecological Applications,1994,4:617-625
    [11]Rustad L E. Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine. USA[J]. Global Change Biology,1998,4 (6):597-605
    [12]McHale P J. Mitchell M J, Bowles F P. Soil warming in a northern hardwood forest:trace gas fluxes and leaf litter decomposition[J]. Canadian Journal of Forest Research,1998,28:1365-1372
    [13]Bouma. T. J. Kai L N, David P. L. Jonathan.Estimating respiration of roots in soil:interactionswith soilCO2. soil temperature and soil water content[J]. Plant and Soil,1997,195:221-232
    [14]Widen. B, Majdi H. Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation[J]. Canadian Journal of Forest Research,2001.31:786-796
    [15]Desrochers A. Landhausser S M. Lieffers V J. Coarse and fine root respiration in aspen (Populus tremuloides)[J]. Tree Physiology,2002,22:725-732
    [16]Vose J M, Ryan M G. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N. and photosynthesis[J]. Global Change Biology,2002,8:164-175
    [17]Bhupinderpal S. Nordgren A. Mellander P. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:extending observations beyond the first year[J]. Plant. Cell and Environment,2003.26,1287-1296
    [18]Bahn M, Knapp M, Garajova Z, et al. Root respiration in temperate mountain grasslands differing in land use[J]. Global Change Biology.2006,12,995-1006
    [19]刘洪升,刘华杰,李凌浩,等.土壤呼吸的温度敏感性[J].地理科学进展,2008,27(4):51-61
    [20]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地理科学进展,2005,20(7):778-786
    [21]马秀梅,朱波,张中杰,等.土壤呼吸研究进展[J].地理科学进展,2004,6(增刊):491-496
    [22]Chen Q S. Li L H. Han X G, et al. Influnence of temperature and soil moisture on soil respiration of a degraded steppe community in the Xilin River basin of Inner Mongolia[J]. Acta Phytoecologica Sinica,2003,27(2):202-209
    [1]Rihani M, BoRon B, Villemin G, et al. Ultrastructural patterns of beech leaf degradation by St orotriehum pulverulemum[J]. Eur J Soil Biol,2001.37:75-84
    [2]Marx M C, Wood M, Jarvis S C. A microplatc fiuorimetric assay forthe study of enzyme diver sity in soil[J]. Soil Biol Biochem,2001,33:1633-1640
    [3]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004,12(1):83-90
    [4]Burns R G, Dick R P. Enzymes in the Environment:Ecology, Activity and Applications[M]. New York:Marcel Dekker, Inc.,2001
    [5]关松荫,土壤酶及研究法[M].北京:农业出版社,1986,294-295
    [6]Burns R G. Enzyme activity in soil:Location and a possible role in microbial activity[J]. Soil Biol & Bicohem,1982.14:423-427
    [7]周礼恺.土壤酶学[M].北京:科学出版社,1987,241-254
    [8]Gianfreda L, Sannino F, Vtoante A. Pesticide effects on the activity of free, immobilized and invertase[J]. Soil Biol & Bicohem,1995,27 (9):1201-1208
    [9]Zhang Y M. Zhou G Y, Wu N. et al. Soil enzyme activity changes in different-aged spruce forests of the eastern Qinghai-Tibetan plateau[J]. Pedosphere,2004,14 (3):305-312
    [10]Norby R J, Luo Y Q. Evaluating ecosystem response to rising atmospheric CO2 and global warming in multi-factor world[J]. New Phytologist,2004,164:281-293
    [11]Pendall E, Bridgham S, Hanson P J. et al. Below-ground process response to elevated CO2 and temperature:a discussion of observations, measurement methods and models[J]. New Phytologist. 2004,162:311-322
    [12]Shackle V J. Freeman C. Reynolds B. Carbon supply and the regulation of enzyme activity in constructed wetlands[J]. Soil Biology & Biochemistry,2000,32 (] 1):1935-1940
    [13]Tscherko D. Kandeler E. Jones T H. Effect of temperature on belowground N-dynamics in a weedy model ecosystem at ambient and elevated atmospheric CO2 levels[J]. Soil Biology & Biochemistry, 1999,33:491-501
    [14]Zogg G P, Zak D R, White D C, et al. Compositional and functional shifts in microbialcommunities due to soil warming[J]. Soil Science Society of America Journal,1997,61 (2):475-481
    [15]Verburg P J, Van Dam D. Hefting M M. Tietema A. Microbial transformations of C and N in a boreal forest floor as affected by temperature[J]. Plant and Soil,1999,208 (2):187-197
    [16]孙敬克,李友军,黄明,等.不同耕作方式对冬小麦生育期根际土及非根际土土壤酶活性的影响[J].河南科技大学学报,2007,28(2):59-64
    [17]查菲娜,马冬云,郭天财,等.不同种植密度条件下两种穗型冬小麦品种根际土壤酶活性的动态变化[J].水土保持学报,2007,21(2):104-108
    [18]Marcote I, Hernandez T, Garcia C, Polo A.Influence of one or two successive annual applications of organic fertilizers on the enzyme activity of a soil under barley cultivation[J]. Bioresoure Technology 2001.79
    [19]Li X Z, Pariente S. Enzyme activities along a climatic transect in the Judean Desert[J]. Catena. 2003.53
    [20]邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,19(3):24-28
    [21]中国科学院林业土壤研究所.中国土壤酶学研究论文集[M].沈阳:辽宁科学技术出版社, 1988
    [22]周礼恺,张志明,曹承绵.土壤酶活性的总体在评价土壤肥力水平中的应用[J].土壤学报,1983,20(4):413-417
    [23]中国科学院成都分院土壤研究室[M].中国紫色土.北京:科学出版社,1991,1-11
    [24]Brookes P C. Landman A. Pruden G, et al. Chloroform fumigation and release of soil nitrogen:A rapid direct extraction method for measuring microbial biomass nitrogen in soil[J]. Soil Boil Biochem,1985,17
    [25]焦晓光,梁文举,陈利军,等.脲酶/硝化抑制剂对热有效态氮、微生物量氮和小麦氮吸收的影响[J].应用生态学报,2004,15(10):1903-1906
    [26]周礼恺.土壤酶学[M].北京:科学出版社,1987,258-259
    [27]Kang H J, Freeman C. Phosphatase and arylsulphatase activities in wetland soils:annual variation and controlling factors[J]. Soil Biology & Biochemistry,1999,31 (3):449-454
    [28]孙辉,吴秀臣,秦纪洪,等.川西亚高山森林土壤过氧化氢酶活性对升高温度和CO2浓度的响应[J].土壤通报,2007,38(5):891-896
    [1]IPCC. Climate Change. Synthesis Report:Summary for Policymakers[M].2007[2010-1-28]. http://www.ipcc.ch.
    [2]Lin Q, Brookes P C. Comparison of methods to measure mierobial biomass in unamended, ryegrass-a-mended and fumigated[J]. Soil Biol & Biochem,1996,28:933-939
    [3]陶水龙 林启美 赵小蓉.土壤微生物量研究方法进展[J].土壤肥料,1998,5,15-19
    [4]Mendham D S, Sankaran K V. OpConnell A M, et al. Grove, eucalyptus globules harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment[J]. Soil Biology and Biochemistry,2002,34:190-192
    [5]薛菁芳,高艳梅,汪景宽,等.土壤微生物量碳氮作为土壤肥力指标的探讨[J].土壤通报,2007,38(2):247-251
    [6]俞慎,李勇.土壤微生物生物量作为红壤生物指标的探讨[J].土壤学报,1999,36(3):413-421
    [7]Zsolnay A. Dissolved humus in soil waters. In:A. Piccolo. Editor, Humic Substances in Terrestrial Ecosystems[M]. Elsevier. Amsterdam:Elsevier,1996,171-223
    [8]王晶,张旭东,解宏图,等.现代土壤有机质研究中新的量化指标概述[J].应用生态学报.2003,14(10):1809-1812
    [9]梁斌,周建斌,杨学云,等.栽培和施肥模式对黄土区旱地土壤微生物量及可溶性有机碳、氮的影响[J].水土保持学报,2009,23(2):132-139
    [10]赵满兴.Kalbitz K.周建斌.黄土区几种土壤培养过程中可溶性有机碳、氮含量及特性的变化[J].水土保持学报,2008,45(3):476-485
    [11]Li X, Chen Z. Soil microbial biomass C and N along a climatic transect in the Mongolian steppe[J]. Biol Fertil Soils,2004.39:344-351
    [12]Xia J Y, Niu S I, Wan S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J]. Global Change Biology,2009,15,1544-1556
    [13]Neill E G. Responses of soil biota to elevated atmospheric carbon dioxide[J]. Plant Soil,1994,165: 55-65
    [14]肖玲,王开运,张远彬,等.岷江冷杉根际土壤微生物对大气CO2浓度和温度升高的响应[J].应用生态学报,2006,17(5):773-777
    [15]周旺明,王金达,刘景双.冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J].生态与农村环境学报,2008,24(3):1-6
    [16]Liu W X, Xu W H, Wan S Q. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe[J]. Biol Fertil Soils,2007,44: 259-268
    [17]Rice C W, Garcia F O, Hampton C O, et al. Soil microbial response in tallgrass prairie to elevated CO2[J]. Plant Soil,1994,165:67-74
    [18]黄懿梅,安韶山,曲东,李盟军.两种测定土壤微生物量氮方法的比较初探[J].植物营养与肥料学报,2005,11(6):830-835
    [19]周桦,宇万太,马强,等.氯仿薰蒸浸提法测定土壤微生物量碳的改进[J].土壤通报,2009,40(1):154-158
    [1]Watson R T. Climate Change 2001:Synthesis Report[M]. UK:Cambridge University Press.2001
    [2]Alexandrov V A. Hoogenboom G. Vulnerability and adaptation assessments of agricultural crops under climate change in the Southeastern USA Theoretical and Applied Climatology[M].2000.67: 45-63
    [3]McCarthy J J. Climate Change 2001:Impact, Adaptation, and Vulnerability[M]. Cambridge University Press,2001
    [4]Peng S P. Huang J L. Sheehy J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proc Natl Acad Sci USA.2004.101(27):9971-9975
    [5]Lin E D, Xiong W, Ju H, Xu Y L, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China[J]. Philosophical Transactions of the Royal Society of London, Series B.2005. 360:2149-2154
    [6]林伟宏,张福锁,白克智.大气CO2浓度升高对植物根际微生态系统的影响[J].科学通报,1999,44(16):1690-1696
    [7]梁文举,史奕Steinberger Y.农业生态系统线虫多样性研究进展[J].应用生态学报,2000,11(增刊):113-116
    [8]牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271
    [9]Kimball B A. Theory and performance of an infrared heater for ecosystem warming[J]. Global Change Biology,2005.11:2041-2056
    [10]Ingram I. Freckman D W. Soil biota and global change preface[J]. Global Change Biology.1998.4: 466-701
    [11]Hoeksema J D, Lussenhop J, Teeri J A. Soil nematodes indicate food web responses to elevated atmospheric CO2[J]. Pedobiologia,2000,44:725-735
    [12]梁文举,刘权海.土壤动物及其在农业生态系统养分循环中的作用[J].辽宁科学技术,1999,285-288
    [13]Wardle D A. Impacts of disturbance on detritus food webs in agroecosystems of contrasting tillage and weed management practice[J]. A dv Ecol Res,199526:105-185
    [14]Sohlenius B. Bostrom S. Effects of global warming on nematode diversity in a Swedish tundra soil-a soil transplantation experiment[J]. Nematology.1999.1.695-709
    [15]Etienne Y. Stef B. George A. K. et al. Size and structure of bacterial. fungal and nematode communities along anAntarctic environmental gradient[J]. Microbiol Ecol,2007.59.436-451
    [16]刘维志.植物病原线虫学[M].北京:中国农业出版社,20003,73-376
    [17]Yeates G W, Bongers T. Feeding habits in soil nematode families and genera-An outline for soil ecologist [J]. J. Nemat,1993.25:315-331
    [18]尹文英.中国土壤动物检索图签[M].北京:科学出版社,1998,51-89
    [19]杨荣铮,陈建军.小麦生育欺简根际线虫垂道分布的研究[J].安徽农学院学报,1985,258-64
    [20]李秀侠,吴海燕,时立波.灌溉对麦田土壤线虫区系的影响[J].浙江大学学报(农业与生命科学版),2007,33(4):413-418
    [1]Gaffen D J. Santer. J S Boyle. Christy J R. et al. Multidecadal changes in the vertical temperature structure of the tropical troposphere [J]. Science,2000.287:1242-1245
    [2]Mann M E. Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries[J]. Nature,1998,392:779-787
    [3]IPCC. Climate change:Atmospheric Chemistry and Greenhouse Gases[M]. Cambridge University Press,2007.239-287
    [4]秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005,1(1):4-9
    [5]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49:1226-1233
    [6]Bardgett, R D, Bowman, W D. Kaufmann, R, et al. A temporal approach to linking, aboveground and belowground ecology[J]. Trends Ecology and evolution,2005,20(11):634-640
    [7]Bardgett. R D. Bowman, W D, Kaufmann, R. et al. A temporal approach to linking. aboveground and belowground ecology[J]. Trends Ecology and evolution,2005.20(11):634-640
    [8]Farrar J, Hawes M. Jones D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology,2003,84:827-837
    [9]赵平,孙谷畴,曾小平,等.夜间变暖提高荫香叶片的光合能力[J].生态学报,2005,25(10):2703-2708
    [10]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响[J].江西农业大学学报,2008,30(3):427-432
    [11]牛书丽,韩兴国,马克平,等.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271
    [12]Richardson S J, Hartley S E. Press M C. Climate warming experiments, are tens a potential barrier to interpretation[J]. Ecological Entomology,2000,25,367-370
    [13]Emmett B A. Beier C. Estiarte M. et al. The response of soil processes to climate change:results from manipulation studies of shrublands across an environmental gradient[J]. Ecosystems,2004,7: 625-637
    [14]Wan S Q. Hui D F, Wallace L, Luo Y Q. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie[J]. Global Biogeochem Cycles,2005.19:1-13
    [15]中国国家发展和改革委员会.中国应对气候变化国家方案[M].中国国家发展和改革委员会组织编制,2007
    [16]Peng S P, Huang J L. Sheehy J E. et al. Rice yields decline with higher night temperature from global warming[J]. Proc Natl Acad Sci USA,2004,101(27):9971-9975
    [17]Lin E D, Xiong W, Ju H, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China[J]. Philosophical Transactions of the Royal Society of London. Series B.2005. 360:2149-2154
    [18]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响[J].江西农业大学学报,2008,30(3):427-432
    [19]陈龙池,廖利平,肖复明,等.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57-62
    [20]胡锋,李辉信,史玉英,等.两种基因型小麦根际土壤生物动态及根际效应[J].土壤通报,1998,29(3):133-135
    [21]涂书新,孙锦荷,郭智芬,等.植物根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67
    [22]陆文龙.王敬国,曹一平,等.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报,1998,35(4):493-500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700