用户名: 密码: 验证码:
无级变速混合动力汽车动力耦合及速比控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传动系统的控制是混合动力汽车的关键技术之一,其中,动力耦合装置和变速装置的控制关系到整车性能的发挥。本文在设计开发某无级变速混合动力汽车(H-CVT)过程中,重点研究了该车的行星机构动力耦合器和无级变速器(CVT)的速比控制问题。
     本文的创新之处在于提出了H-CVT的行星机构动力耦合器的模糊控制策略和CVT速比控制策略。动力耦合器的模糊控制策略综合考虑了驾驶员操作意图和车辆运行状态等信息,使模式切换过程满足舒适性和动力性要求。CVT速比控制策略包括目标速比制定和速比跟踪算法两部分:目标速比需要根据动力源的工作特性制定,H-CVT目标速比分为发动机驱动、电机驱动和再生制动3种模式;为了消除在工作模式切换过程中由目标速比“跃变”引起的速比跟踪瞬态和稳态误差,本文设计了智能PID速比跟踪算法,以快速地跟踪目标速比的变化。
     利用仿真模型对H-CVT的动力耦合器控制策略和CVT速比控制策略进行调试和验证。将通过仿真验证的控制策略下载到H-CVT的控制器中,进行实车道路试验,验证了本文提出的控制策略。
     本文的研究成果为今后混合动力汽车的模式切换控制及CVT速比控制等两方面的研究提供了有价值的借鉴和参考。
During a hundred years of vehicle history, people have benefited much from the convenience and pleasure in living and manufacturing, at the same time suffered from the energy crisis and environment pollution delivered by vehicles. Energy and environment problems have already drew worldwide attentions and became the main obstacle of vehicle development. Accordingly, to develop a kind of energy-saving or new energy car is the only feasible way to solve the problems. HEV, which is the most appropriate member with current technologies in the green energy car family, can decrease the fuel consuming and emission effectively. Vehicle giants have promoted out their characteristic productions sequentially. In domestic, some R&D activities on HEVs have proceeded, as well as a large number of representative research projects have been completed. Under the push of which, domestic HEV techniques have been developed by leaps and bounds. Driveline is one of the key technologies in HEV research. Currently, control of power coupling and transmission has been raised well enough on abroad, yet very few deep studies started in domestic. The dissertation bases on Coupled by Planetary Gears Hybrid Electric Vehicle with Continuously Variable Transmission (H-CVT) developed by Hunan Changfeng Motor Co.
     Ltd., focusing on the control of power coupler and CVT ratio. Planetary gears have two degrees of freedom, which will fitful for the“Two input-single output”requirement of HEV. Through the control of clutches and brakes in power coupler, 10 working modes would be achieved conveniently with the vehicles’smoothness and dynamics fulfilled. With the CVT ratio adjusting function, H-CVT will make the power unit work under the economic rotation speed of current load (above the“Optimal Operation Line, OOL”), consume less energy in traction mode, recover more energy in regenerative braking mode and accordingly will increase the fuel economy of HEV. Computer simulation will proceed helping verify the power coupler control strategy, CVT ratio control strategy as well as H-CVT vehicle control strategy. Finally the consummate control strategy will be loaded to H-CVT model vehicle for road test.
     1. Control Strategy of Planetary Gears Power Coupler
     Math model is established based on the dynamics of planetary gears system, using of which H-CVT power delivering route and the components’motion relationship is analyzed to determine the engaging/separating status of clutches and brakes in power coupler under every working modes. A fuzzy control strategy is proposed ensuring that the switching process synthetically considers the driver’s intention and vehicle operating status based on the mode switching requirement of HEV. Subsequently, a simulation model of planetary gears is set up with MATLAB/Simulink software for the off-line simulation of typical working mode. The results illustrate that the fuzzy control strategy of clutches and brakes in power coupler would diminish about 0.5 seconds of switching and reduce more than 50% of slipping friction work. The control strategy of planetary gears power coupler offers a reference for future problems on switching impact for HEV.
     2. Control Strategy of Ratio for H-CVT
     The CVT ratio control includes target ratio determination and ratio tracking algorithm. Target ratio is decided by rotation-load of power unit. H-CVT has 10 working modes, each of which differs in rotation-load characteristic on the different working status of power unit. Accordingly, target ratio of H-CVT is determined with different working modes.
     a).Target ratio under engine driving mode. Engine power plays the major role under the engine driving mode, motor assisting mode and engine driving-and-generating mode. Because engine fuel consuming rates under different load is different and the motor run efficiency is relatively high, the target ratio of the three working modes are decided according to the engine’s rotation-load characteristic to ensure that engine always working above the“OOL”during the three modes, which would lead to a minimum fuel consuming for engine. Motors here work for assisting or generating.
     b).Target ratio under motor driving mode. In H-CVT, motor is located before CVT, which makes the possibility that under motor driving mode motor works on the most efficient rotation speed under current load through the regulating of CVT (motor works above the“OOL”). As the CVT target ratio could conform to motor’s optimal driving operation line. The control target is to make the motor deliver the same driving power while consuming less energy.
     c).Target ratio under regenerative braking mode. In regenerating mode, H-CVT could also take use of the rotation speed regulating function of CVT and the motor works on the most efficient rotation speed under current braking load(motor works above the“OOL”). CVT regulating could recovery more energy under regenerative braking mode. It can be showed in the following two aspects: 1.Under the same braking condition, power generating efficient is higher and more energy would be recovered for the motor’s working on the optimum rotation speed under current braking load. 2.Speed regulating of CVT could make H-CVT maintain motor’s rotation speed for generating when the vehicle velocity is very low, which could accordingly prolong the range and time of regenerative braking and recover more energy.
     Target ratio of other working mode would be the largest CVT ratio to ensure the vehicle could get the largest torque for driving.
     H-CVT has three target ratios. When the working mode switches, the rotation speed-load character alters accordingly which might lead the jump of target speed. To make the real CVT ratio follow the target ratio closely and overcome the jumping impact caused by mode switching, an improved PID tracking algorithm is designed in this dissertation. By applying this algorithm, H-CVT could track the target ratio as a common CVT, as well the overshot and hysteretic caused by jump of target ratio could be eliminated.
     Control strategy of H-CVT ratio provides several target ratios in a HEV to fit the requirement of all kinds of rotation speed-load character of power unit under different working modes, tracks the target ratio with the ratio tracking algorithm and makes a further enhancing of HEV fuel economy. It provides a valuable reference for the future controlling research of HEV with CVT.
     3. Simulation of H-CVT Control Strategy
     To optimize and verify the control strategy of planetary coupler and ratio for H-CVT, the dissertation sets up the computer simulation model which takes the utility of CRUISE software to establish the whole vehicle model and the model of H-CVT control strategy including the planetary coupler control strategy and H-CVT ratio Control strategy is based on MATLAB/Simulink. After the co-simulation of vehicle model and control strategy model, results show that control strategy of power coupler could guarantee the smooth of power transmission for every mode of H-CVT and satisfy the requirement of dynamics and smoothness when switching; CVT ratio control strategy can make the power unit work above the“OOL”, with which H-CVT reduces 28% fuel compare with traditional vehicle; under regenerative braking mode, the equivalent braking torque according with the driver demand, which prolongs the regenerative range and time, thus recover much more energy.
     4. Road Test of H-CVT
     After verifying the control strategy of power coupler and ratio for H-CVT, it should be downloaded to the controller of H-CVT for the road test of controlling performance. Experiment would be divided into three groups: controlling performance of typical working mode of power coupler and ratio; controlling performance of typical switching mode of power coupler; tracking performance of target ratio based on typical cycling. The result shows that the strategy of power coupler could control the engaging/separating status of clutches and brakes according to the requirement of working mode. The ratio tracking algorithm in this dissertation could make the real ratio of H-CVT catch up with the target ratio quickly.
引文
[1]. International Energy Agency(IEA). World Energy Outlook 2004 [R]. 2004
    [2]. Scott M. Hartley-Cedarville College. Can Government and Industry Work Together to Develop Technology: a Case Study of the Partnership for a New Generation of Vehicles (Pngv) [C]. SAE Paper//:951046.
    [3]. Valerie Hovland, Ahmad Pesaran, Richard M. Mohring, Ian A. Eason, Rolf Schaller, Doanh Tran, Tom Smith, Greg Smith. Water and Heat Balance in a Fuel Cell Vehicle With a Sodium Borohydride Hydrogen Fuel Processor [C].SAE Paper//:2003-01-2271
    [4].王宇宁,姚磊,王艳丽.国外电动汽车的发展战略.汽车工业研究2005.(9)
    [5].万钢.中国“十五”电动汽车重大科技专项进展综述[J].中国科技产业.2006.(2)
    [6].金振蓉.我已构筑电动汽车三纵三横研发布局.光明日报.[N].2004-12-25
    [7].任勇,秦大同,杨亚联,杨阳.混合动力电动汽车的研发实践.重庆大学学报2004.27(4)
    [8].王世新,徐勇.混合动力电动汽车动力传动系统的研究.机械研究与应用.2005.18(6)
    [9].黄贤广,何洪文.混合动力车辆动力耦合装置特性研究[J].上海汽车.2008.(14)
    [10].黄贤广,林逸,何洪文,魏跃远.混合动力汽车机电动力耦合系统现状及发展趋势[J].上海汽车. 2006.(7).
    [11].高建平,何洪文,孙逢春.混合动力电动汽车机电耦合系统归类分析[J].北京理工大学学报. 2008.28(3)
    [12]. Akihiro Kimura. Drive force control of a parallel - series hybrid system [J].JSAE.1999.
    [13].曾小华.混合动力客车节能机理与参数设计方法研究[D].吉林大学博士学位论文,2006.6
    [14].李美军.混合动力电动汽车动力耦合方式的分类与比较[J].公路与汽运. 2008.(2)
    [15].钟勇,钟志华,李克,王柏峰.基于CVT的PHEV中内燃机的功率选择与控制策略研究.内燃机工程.2006.27(3)
    [16].钟勇,钟志华,金秋谈,曾志伟,胡朝晖.一种新型HEV动力耦合器的ADAMS建模与仿真研究[J].汽车工程.2006.28(10)
    [17].詹迅,秦大同,杨阳,杨亚联,胡建军.轻度混合动力汽车再生制动控制策略与仿真研究[J].中国机械工程. 2006. 17(2)
    [18].詹迅.轻度混合动力汽车再生制动系统建模与仿真[D].重庆:重庆大学硕士学位论文.2005.4
    [19].张玉玺,程秀生,陆中华.轻度混合动力节能离合器控制策略研究及仿真分析[J].汽车技术2007.(8)
    [20].初亮.混合动力总成的控制算法和参数匹配研究[D].长春:吉林大学博士学位论文. 2002.12
    [21]. Walter Ortmann, Daniel Colvin, S. Robert Fozo, Michael Encelewski and Marvin Kraska. Incorporating an Electric Machine into the Transmission Control of Ford's Modular Hybrid Transmission. [C]//SAE paper. 2004-01-0069
    [22].吉林大学.混合动力车的动力传动装置:中国,200610016888.3[P].2006-12-13. (单位专利申请)
    [23].牛铭奎.干式DCT离合器温度模型及其灰色预测控制研究[D].长春:吉林大学博士论文.2008.12
    [24].舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势[J].重庆大学学报(自然科学版),2001.24(6)
    [25].杨亚联,秦大同,谢勇.汽车无级变速器的类型及基本原理[J].汽车技术.1997.(3):57~59
    [26].张伯英.金属带式无级变速传动机理与控制的研究[D].吉林大学博士学位论文.2002.12
    [27]. Isaya Matsuo, Shinsuke Nakazawa, Hiromasa Maeda and Eiji Inada. Development of a High-Performance Hybrid Propulsion System Incorporating a CVT. [C]//SAE paper. 2000-01-0992
    [28].杨妙梁.丰田Estima混合动力装置. [J].汽车与配件. 2002.17(9)
    [29].杨妙梁.丰田Alphard混合动力小型厢式车. [J].上海汽车. 2004.(4)
    [30]. Hiroatsu Endo, Masatoshi Ito, Tatsuya Ozeki. Development of Toyota’s transaxle for mini-van hybrid vehicles. [C]. JSAE Review. New Technologies & New Cars 24 (2003) 109~116.
    [31]. Hidehiro Oba, Akihiro Yamanaka, Hiroshi Katsuta and Kensuke Kamichi. Development of a Hybrid Powertrain System Using CVT in a Minivan. [C] //SAE paper. 2002-01-0991
    [32]. The Clean Green Car Company. Toyota Prius E-CVT Transmission. http://www.cleangreencar.co.nz/page/toyota-prius-iii-hybrid-e-cvt-transmission-info
    [33].美国评出“十大省油车"日系车成为主角.[J]轻型汽车技术.2005. 194(10)
    [34]. [日]奥井重雄,岸勉,石川直宏等. Honda CIVIC混合动力车用1.3L三级电控可变配气正时发动机. [J].国外内燃机. 2008.(1)
    [35].朱蒙.【原创】CIVIC新混合动力车综合汽耗省38%. [J/OL]. [2007-12-18 19:49].中国汽车网. http://news.chinacars.com/news/cjdt/297172.shtml
    [36]. Punch Power-train. The Hybrid Development Project at Punch Power-train[C/OL].2008.
    [37]. http://paultan.org/archives/2007/03/07/proton-and-lotus-engineering-develop-proton-gen2-eve-hybrid-concept/
    [38]. http://www.autobloggreen.com/2007/05/21/kia-rio-hybrid-makes-an-appearance-should-be-here-in-2009/
    [39].颜静.CVT混合动力再生制动控制策略与仿真研究[D].重庆:重庆大学硕士学位论文.2006.3
    [40].谭俊强.CVT混合动力汽车再生制动系统性能仿真与试验研究[D] .重庆:重庆大学硕士学位论文.2006.3
    [41].秦大同,颜静,杨阳,胡建军,杨亚联.HEV再生制动过程中CVT速比控制策略[J].重庆大学学报(自然科学版). 2007.30(1)
    [42].秦大同,谭强俊,杨阳,杨亚联,胡建军.CVT混合动力汽车再生制动控制策略与仿真分析术[J].汽车工程.2007.(29)3
    [43].邓涛.CVT混合动力汽车再生制动系统前向建模与仿真[D].重庆:重庆大学硕士学位论文.2007. 4
    [44].秦大同,邓涛,杨阳,林志煌.基于前向建模的ISG型CVT混合动力系统再生制动仿真研究[J].中国机械工程. 2008.19(5)
    [45]. Christian BALLE. New technological challenges For EV/HEV.2007
    [46].陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.1:79~83
    [47]. Mr. ZHANG Hui .The CVT Localization Strategy of Bosch VDT in China. 2006 China Auto- Transmission Development Seminar
    [48]. The SAE Continuously Variable Transmission Committee, SAE Design Guideline: Metal Belt Drive Continuously Variable Ratio (CVT) Automatic Transmissions.[J], SAE, 2000.J2525 (3).
    [49]. Jerome Meisel. An Analytic Foundation for the Toyota Prius THS-II Powertrain with a Comparison to a Strong Parallel Hybrid-Electric Powertrain. [C]//SAE paper. 2006-01-0666
    [50].周云山,苏建业,刘金刚,邹乃威.混合动力汽车用新型无级变速传动系统的研究[J].农业机械学报.2008. 39(4).
    [51].饶振纲等.行星齿轮传动设计[M].北京:化学工业出版社.2003.
    [52].张光裕,许纯新.工程机械底盘设计[M].北京:中国建筑出版社.1988
    [53].肖敏,孙逸华.计算行星变速器内外力矩两种方法的比较[J].机械设计与制造.2003.(2)
    [54].滕培智,杨波.行星齿轮变速器传动比和力矩计算与功率流图[J].轻型汽车技术.2006.19(2)
    [55]. Bclliord H L,Leising M B The lever analogy:A new tool in transmission analysis [J] SAE.1981.90:429~437
    [56].李兴华,何国旗.等效杠杆法分析行星齿轮传动[J].机械设计. 2004.21(1)
    [57].葛安林,吴锦秋,郭万富.离合器最佳接合规律的研讨[J].汽车工程. 1988.(2)
    [58].雷雨龙.提高电控机械式自动变速器性能的研究[D].长春:吉林工业大学博士论文.1999
    [59].雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程.2000.22(4)
    [60].申水文,张建武,罗邦杰,葛安林.AMT离合器的综合模糊控制[J].汽车工程.1997.19(6)
    [61].葛安林.车辆自动变速理论与设计[M].北京:机械工程出版社.1995
    [62].罗永革.湿式离合器金属带式无级变速器(CVT)控制策略研究[D].杭州.浙江大学博士论文.2001.7
    [63].周美兰,谢先平,王旭东,马怀俭.汽车湿式离合器模糊控制策略研究及仿真[J].电机与控制学报2005.9(5)
    [64].郝琪,罗永革,冯樱,何晓春.汽车湿式离合器的模糊控制研究[J].湖北汽车工业学院学报.2000.14(3)
    [65].何忠波等.基于驾驶员意图的AMT车辆控制研究[J].军械工程学院学报.2005.17(3)
    [66].郝琪,过学迅,罗永革,冯璎.湿式离合器控制方法的研究[J].陕西汽车.2001.(3)
    [67].张飞铁,周云山,薛殿伦.CVT起步离合器模糊控制算法研究[J].湖南大学学报(自然科学版). 2006.33(5)
    [68]. Zadeh L A. Fuzzy Sets. [J]. Information and Control. 1965.8:338-353.
    [69]. Mamdani E H. Applications of fuzzy algorithms for control of simple dynamic plant.[J] Proc.IEEE 1974,Vol.121(12):1585-1588.
    [70].浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海:上海交通大学博士学位论文.2004.9
    [71]. Zadeh L A. Fuzzy Sets and Their Applications. [M] New York: Academic Press. 1975
    [72]. Kaufmann, A. Theory of Fuzzy Sets.[M] Masson, Paris.1972.
    [73]. Passino K M, Yurkovich S. Fuzzy control.[M] Menlo Park,Calif.:Addison-Wesley.1998.
    [74].彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海:上海交通大学博士学位论文.2007.4
    [75].李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社.1998.2
    [76].张国良,曾静,柯熙政,邓方林.模糊控制及其Matlab应用[M].西安:西安交通大学出版社.2002.11
    [77].邹乃威,刘金刚,周云山,张友坤,黄伟,蔡源春.混合动力汽车行星机构动力耦合器控制策略仿真.[J]农业机械学报.2008.29(3)
    [78]. Talcheol Kim,Hyunsoo Kim,Jaeshin Yi,Heebock Cho.Ratio Control of Metal Belt CVT [C].//SAE Paper 2000-01-0842
    [79].刘金刚,周云山,邹乃威,蔡源春,苏建业.DMC-PID串级控制在CVT速比控制系统中的应用[J].湖南大学学报(自然科学版).2007. 34(10)
    [80].刘金刚,周云山,高帅,邹乃威.智能预测控制在无级变速器速比跟踪中的应用[J].中国机械工程.2008.19(14):1664~1668.
    [81].张伯英.金属带式无级变速传动机理与控制的研究[D].长春:吉林大学博士论文2002.12
    [82]. Heera Lee,Chulsoo Kim,Talchol Kim,Hyunsoo Kim.CVT ratio control algorithm by considering powertrain response lag.2004-01-1636
    [83].王红岩.金属带式无级变速传动系统分析、匹配与综合控制的研究[D].长春:吉林工业大学博士论文.1998.3
    [84].王幼民,唐铃凤.金属带式无级变速器的研究综述[J].机械传动.2007.6
    [85]. Enrico Cacciatori, Baptiste Bonnet and Nicholas D. Vaughan,Matthew Burke and David Price,Krzysztof Wejrzanowski。Regenerative Braking Strategies for A Parallel Hybrid Powertrain with Torque Controlled IVT [C]//SAE Paper 2005-01-3826
    [86]. Y.Gao,L.Chen,M.Ehsani。Investigation of the effectiveness of regenerative braking for EV and HEV,Society of Automotive Engineers (SAE) Journal,SP- 1466, Paper No.1999-01- 2901.1999.
    [87]. Y.Gao,M.Ehsani. Electronic braking system of HV and HEV integration of regenerative braking, automatic braking force control and ABS[C] in Proceedings of the SAR 2001 Future Transportation Technology Conference, Paper No.2001-01-2526,Costa Mesa, CA, AUG. 2001
    [88].陈围平,孙培德,李俐等.一种电机制动能量回收新技术[J].通信电源技术.2006.23(6)
    [89].邹乃威,方泳龙,王庆年,刘金刚,黄伟,王伟.辅助制动对前驱车辆制动性能的影响分析[J].吉林大学学报(工学版).2009.39(2)
    [90]. S.R.Cikanek, K.E.Bailey. Regenerative Braking System For A Hybrid Electric Vehicle[C] .Proceedings of the American Control Conference.Anchorage, AK May 8-10, 2002.3129~3135
    [91]. Yeo H,Kim T,Kim C,Kim H.Performance Analysis of Regenerative Braking System for Parallel
    [92]. Hybrid Electric Vehicle Using HILS[A].EVS19[C].Korea:2002.438—448.
    [93].张林,杜子学,朱海峰等.电动汽车的再生制动控制策略研究及仿真[J].北京汽车.2006.(5)
    [94]. Nakamura E . Development of Electronically Controlled Brake System for Hybrid Vehicle[C]//SAE Paper.2002-01-030.
    [95].方泳龙,邹乃威,杨志华,洪哲浩.汽车制动专家系统人机界面设计和知识库的建立[J].农业机械学报.[J] 2006.37(6):23~26.
    [96].邹乃威,方泳龙.利用面向对象技术开发汽车制动专家系统的研究[J].汽车技术.2007.(7)
    [97]. Hoon Yeo, Donghyun Kim, Sungho Hwang, Hyunsoo Kim.Regenerative Braking Algorithm for a HEV with CVT Ratio Control During Deceleration[C]//SAE Paper.04CVT-41
    [98]. A. A. Mukhitdinov, S. K. Ruzimov, S. L. Eshkabilov.Optimal Control Strategies for CVT of the HEV during a regenerative process[C].2006 IEEE 0-7803-9794-0/06
    [99]. H. Yeo and H. Kim, Hardware-in-the-loop simulation of regenerative braking for a hybrid electric vehicle [J], ProcInstnMechEngrs Vol. 216, Part D: J Automobile Engineering, pp. 855-864, 2002.
    [100].王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学博士论文2008.12
    [101].于远彬.车载复合电源设计理论与控制策略研究[D].长春:吉林大学博士论文2008.6
    [102]. Byungsoon Min and Ron Matthews,Michael Duoba, Henry Ng and Bob Larsen.Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle [C] //SAE Paper 2003-01-3202
    [103]. The SAE Continuously Variable Transmission Committee.SAE design guideline: metal belt drive continuously variable ratio (CVT) automatic transmissions [J] .SAE ,2000 ,J2525 (3)
    [104].裘熙定,王红岩,杨志华等.轿车金属带式无级自动变速传动技术发展现状与趋势[J].汽车技术.1998.(4):45~47
    [105].于晶.金属带式无级变速器速比控制稳定性研究[D].长春:吉林大学硕士论文.2006.5
    [106].王成.金属带式无级变速器速比控制策略研究[D].长春:吉林大学硕士论文.2007.5
    [107]. Ercole G, Mattiazzo G, Mauro, et al . Co - operating clutch and engine control for servo actuated shifting through fuzzy supervisor. SAE Paper No.1999 - 01 - 0746 , 1999
    [108].孙冬野,秦大同,王玉兴.自动车辆无级变速传动系统模糊控制策略研究[J].农业机械学报.2001.32(3):7~10
    [109].宋锦春,周生浩,程乃士等.车辆无级变速器液压系统的模糊控制[J].中国机械工程.2003.14(8):644~645
    [110].王幼民.溢流阀动态刚度最优控制[J].安徽机电学院学报. 2002.17(1):21~24
    [111]. CHUN J S , KIMM K, JUNG H K. Shape optimization of electromagnetic devices using immune algorithm.[C] IEEE Transactions on Magnetics. 1997.33(2):1876~1879
    [112].唐铃凤,王雷,张峰.最优控制理论在无级变速器控制系统中的应用[J].机械制造.2006.44(7).21~22.
    [113].王红岩,王立公,孙冬野.无级变速汽车的自适应模糊控制研究[J].控制理论与应用.2004. 21(1).
    [114].李俊明,付维坊,王登峰.汽车无级变速液压系统的神经模糊与数字控制方法研究[J].液压与气动.2001.(1) :14~16
    [115].张艳玲,王耀南,薛殿伦.模糊自适应PID控制器在CVT速比控制中的应用[J].自动化技术与应用.2005.(2)
    [116].王晓东.一种积分分离PID控制器的设计[J].山西科技.2006.(6)
    [117].马永军,殷侠,杨亚琴.数字PID控制及其改进算法的应用[J].机电产品开发与创新.2006.19(6)
    [118].邹乃威,王庆年,刘金刚,张友坤,于晶,贾元华.金属带式CVT速比的改进PID控制[J].湖南大学学报(自然科学版).2008.35(8)
    [119].王士杰.略论PID调节系统的微分先行问题[J].工业自动化及仪表.1983.(5)
    [120].刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社. 2004
    [121].陈芸,王永初.基于神经网络的微分先行PID控制器的研究[J].机械与电子. 2004.(6)
    [122]. Q/OKCM067-2003.湖南长丰汽车制造股份有限公司企业标准[S].
    [123]. Chris Domin , Kourtney L Bailey. Incorporating a mod2el2based approach into a matureproduction environment[C]∥2003 Society Automotive Engineers , Inc. 200320120854.
    [124]. Thomas Thomsen. Integration of international stand2ards for production code generation[C]∥2003 SocietyAutomotive Engineers . Inc. 200320120855.
    [125]. Hauer K H . Analysis tool for fuel cell vehicle hardwareand software (controls) with anapplication to fuel economy comparisons of alternative system designs : [Ph.D Dissertation].University of California Davis.2001.
    [126]. MathWorks.Simulink/Stateflow technical examples—using Simulink and State-flow in automotive applications.Technical Report.1998
    [127]. Crossley P R,Cook J A.A nonlinear engine model for drivetrain system development. Procof’91 IEEE International Control Conference. Edinburgh.UK.1991.(2):921-925
    [128].彭栋,殷承良,张建武.基于模糊控制的并联式混合动力汽车制动控制系统[J].吉林大学学报(工学版)2007. 37(7)
    [129]. GB/T19753-2005.轻型混合动力电动汽车能量消耗量试验方法[S].
    [130].周云山,于秀敏.汽车电控系统理论与设计[M].北京:北京理工大学出版社.1999
    [131].周云山,钟勇.汽车电子控制技术[M].北京:机械工业出版社
    [132]. A. A. Mukhitdinov, S. K. Ruzimov, S. L. Eshkabilov. Optimal Control Strategies for CVT of the HEV during a regenerative process. 2006 IEEE 0-7803-9794-0/06
    [133]. SAE Standard J2711, "Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles",
    [134].彭启琮,李玉柏,管庆.DSP技术的发展与应用(第二版).[M]高等教育出版社.2007.5: 78~85
    [135].黄伟.基于CVT的四轮驱动混合动力汽车传动控制策略研究.[D]长沙:湖南大学博士论文.2008.10
    [136].黄伟,周云山,余群明,薛殿伦.混联式混合动力SUV多能源总成CVT控制系统研发.[J]汽车工程.2008.30(5)
    [137]. Texas Instruments Incorporated. TMS320F2810, TMS320F2811, TMS320F2812, MS320C2810, TMS320C2811, MS320C2812 Digital Signal Processors Data Manual. [M]. Literature Number SPRS174O. 2007.7
    [138]. Texas Instruments Incorporated. TMS320x28xx, 28xxx DSP Serial Communication Interface (SCI) Reference Guide.[M]. Literature Number SPRU051B 2004.11
    [139]. Texas Instruments Incorporated. TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide. [M]. Literature Number SPRU060D 2005.7
    [140]. Texas Instruments Incorporated. TMS320x281x DSP Event Manager (EV) Reference Guide. [M]. Literature Number SPRU065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700