用户名: 密码: 验证码:
栽培稻籼粳亚种基因组的比较研究及用野生稻的比较核型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.利用亚州栽培稻(Oryza sativa L.)的籼稻亚种“广陆矮四号(”Oryza sativa ssp.indica cv Guangluai No.4)的基因组总DNA作为探针,不同的洗脱严谨度条件下对自身和粳稻亚种“日本晴”(Oryza sativa ssp.japonica cv Nipponbare)进行基因组原位杂交(genomic in situ hybridization,GISH)分析。结果发现,杂交信号在两个亚种染色体的分布相似,表明它们亲缘关系较近。通过采用不同洗脱度,杂交信号出现明显不同的带型分布,尤其是在95%的洗脱严谨度下,籼稻和粳稻第1、7、8、9、11染色体上的杂交信号带型明显不一致,说明即使在基因组亲缘关系极近的亚种之间个别染色体同源性程度也较低。这几条同源性相对比较低的染色体可能是进化中比较活跃的染色体,易于发生各种遗传事件,是染色体组进化中的“先行者”,它们的变化可能最终导致了整个基因组水平上的差异并体现在亚种以及种间差异上。
     2.利用同时分布在栽培稻(O. sativa)和用野生稻(O. officinalis)第9和第11染色体上的紧密连锁的RFLP (Restriction Fragment Length Polymorphism)标记为探针,对用野生稻进行荧光原位杂交(fluorescence in situ hybridization ,FISH)。比较分析了栽培稻和用野生稻的第9和第11染色体。结果发现,与用野生稻的常规核型分析不同,本研究中所确定的用野生稻第9和第11染色体不是遵循染色体长度随染色体编号递减的顺序进行的,而是在比较分子遗传图基础上结合染色体常规核型分析进行的,是比较基因组学细胞水平上的研究,有助于在同一个属中对不同种作比较研究。
     3.基于AA、CC基因组中高度重复序列C0t-1DNA杂交带型,对栽培稻、用野生稻进一步进行了比较核型分析,并构建了相应的杂交带型模式图。研究发现栽培稻和用野生稻第9和第11染色体着丝粒与端粒均有信号分布,染色体中部则明显不同。这说明在进化的过程中中高度重复序列在如维持染色体稳定的着丝粒与端粒等重要结构区域受到的选择压力大,保守性较强,其它区域则变化要快,这可能是形成种特异性染色体的重要原因之一。
1. Genomic in situ hybridization (GISH) procedure was adopted for genome analysis between Oryza sativa ssp. indica cv Guangluai No.4 and Oryza sativa ssp.japonica cv Nipponbare under several different post-hybridization washing stringencies with genomic DNA from Oryza sativa ssp. indica cv Guangluai No.4 as probes . The signals on the chromosomes of the two subspecies were similar showed that the relationship of these two AA genomes is very close. While under different post-hybridization washing stringencies, signal bands were some different. Especially under the 95% post-hybridization washing stringency , the signal bands on chromosome 1,7,8,9,and 11 of the two subspecies were obviously different. The results indicate that even in the subspecies genomes which have close relationship, the special chromosomes have low homology, these chromosomes maybe make genome evolution. The changes on these chromosomes may induce the differences in the whole genome, and incarnated in the differentiation on subspecies and species.
     2. Fluorescence in situ hybridization was adopted for comparative karyotype analysis of chromosome 9 and chromosome 11 between O. sativa and O. officinalis with the Restriction Fragment Length Polymorphisms (RFLPs) as probes .These RFLPs based on the comparative Restriction Fragment Length Polymorphism map between O. sativa and O. officinalis..The results showed that chromosome 9 and 11 ascertained in this research did not followed the general rule that the length of chromosome decreases with the chromosome number increases. It is obviously different from the general karyotype analysis. The results are based on the comparative genetic maps and integrated the general karyotype analysis. It is in the comparative genomics and the cellular level, and will facilitate the comparative analysis on different species in the same genus.
     3. Karyotype analysis of O. sativa, and O. officinalis were made according to C0t-1DNA sigal bands, and the C0t-1DNA signal bands mode chart were constructed. It was observed the signals existed on telomeres and centromeres in chromosome 9 and chromosome 11 of O. officinalis , while few signals on other parts of chromosome arms . It indicated that the moderate and highly repetitive sequences in these regions were conservative, while moderate and highly repetitive sequences in other regions changed quickly .These regions were important for preserving the stability of chromosome . It may be one of the most important reasons why the specific chromosome formed.
引文
[1]蔡星星,刘晶,仇吟秋等.籼稻“93-11”和粳稻“日本晴”DNA插入缺失差异片段揭示的水稻籼粳分化.复旦学报(自然科学版).2006,45(3):309–315.
    [2]陈成斌,李道远,林登豪等.普通野生稻性状籼粳分化观察.西南农业学报,1994, 7(2):1–6.
    [3]程祝宽,颐铭洪.籼粳稻及其杂种粗线期的核型.分析遗传学报,l994,21(5): 385–392.
    [4]程祝宽等.一种新的籼稻初级三体的选育和细胞学鉴定.遗传学报,1996,23(5): 363–371.
    [5]程祝宽,颜辉煌,顾铭洪.水稻染色体的长度顺序和编号问题.遗传,1999,21(1):46–49.
    [6]丁颖.中国稻作之起源.中山大学农学院农艺专刊,1949(7):11–24.
    [7]丁颖.中国栽培稻的起源于进化.农业学报,1957 ,8(3) :243–260.
    [8]丁颖.中国水稻栽培学.北京:中国农业出版社,1961,688.
    [9]董玉琛.作物野生种质资源及其利用.中国野生稻研究与利用.第一届全国野生稻大会论文集,2003:3–7.
    [10]董正伟,柳哲胜,王德彬等.利用栽培稻C0t-1DNA和基因组DNA比较分析斑点野生稻和短野生稻基因组.植物遗传学报,2007.8(3):343–346.
    [11]高露,王德彬,刘新琼等.栽培稻、斑点野生稻、用野生稻基因组比较分析.湖北农业科学,2007,46(7):491–494.
    [12]关妮,邱小芬,宋发军等.两种CCDD型野生稻的基因组原位杂交比较分析.周口师范学院学报.2007,24(5):94–97.
    [13]何光存.细胞工程与分子生物学结合——野生稻优异种质资源的有效途径.生物工程进展.1998,18(2):41–45.
    [14]何光存,舒理慧.野生稻遗传基础研究与有利基因的发掘和利用.中国野生稻研究与利用--第一届全国野生稻大会论文集, 2003: 193–201.
    [15]黄超武.水稻品种种性研究.广州:广东科技出版社,1995,197–221.
    [16]黄艳兰,张乃群,何光存等.我国三种野生稻及其与栽培稻种间杂种外禾孚表面显微特征的比较观察.中国水稻科学,1999,13(2) :77–801.
    [17]金危危,覃瑞,余舜武等.一种提高水稻FISH检出率的新方法——RFLP混合标记.遗传,2001(3):263–265.
    [18]李霞,李宗芸,覃瑞等.与Pi-2(t)基因连锁的栽培稻BAC克隆在用野生稻和栽培稻中的比较物理定位.武汉大学学报(理学版),2001,47(4):503–507.
    [19]李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究,1985,,3(4) :297–302.
    [20]林世成,闵绍楷.中国水稻品种及其系谱.上海:上海科学技术出版社,1991, 254-262.
    [21]蓝伟侦,覃瑞,李刚等.利用C基因组C0t-1DNA比较分析稻属A,B,C,D基因组.科学通报,2006a,51(12):1422–1431.
    [22]蓝伟侦,何光存,吴士筠等.利用水稻C0t-1DNA和基因组DNA对栽培稻、用野生稻和疣粒野生稻基因组的比较分析.中国农业科学,2006b,39(6):1083–1090.
    [23]李牧尧.荧光原位杂交(FISH)技术.国外医学遗传学分册,1994,1: 8–13.
    [24]卢宝荣,葛颂,桑涛.稻属分类的现状及存在问题.植物分类学报, 2001,39: 373–388.
    [25]卢永根等.我国三个野生稻种粗线期核型的研究.中国水稻科学.1990,4(3):97–105.
    [26]罗家角考古队.桐乡罗家角遗址发掘报告.浙江省文物考古研究所学刊,1981.
    [27]覃瑞,魏文辉,金危危等.与Gm-6和Pi-5(t)连锁的栽培稻BAC克隆在用野生稻中的FISH定位.科学通报,2000,45(22):2427–2430
    [28]覃瑞,魏文辉,宁顺斌等.利用水稻BAC克隆对抗病基因Gm-2和Gm-6在用野生稻中的FISH定位.中国农业科学,2001,1:1–4
    [29]全国野生稻资源考察协作组.我国野生稻资源普查与考察.中国农业科学,1984,6:1–8
    [30]孙传清,袁平荣,吉村淳等.亚洲栽培稻的核DNA、线粒体DNA和叶绿体DNA籼粳分化的比较研究.作物学报,1998,24(6):677–686.
    [31]孙传清,王象坤,吉村淳等.普通野生稻和亚洲栽培稻遗传多样性的研究.遗传学报,2000,27(3)::227–234.
    [32]王太霞,吴春红,黄进勇等.甘蓝rDNA及C0t-1DNA荧光原位杂交及其核型分析.武汉大学学报(理学版),2006,52(2):230––234.
    [33]王象坤,孙传清,才宏伟等.中国稻作起源与演化.科学通报,1998,43(22):2354–2363.
    [34]王象坤,孙传清主编.中国栽培稻起源与演化专集,北京:中国农业大学出版社,1997.
    [35]王振山,陈皓.一个AA基因组特异的串联重复序列的克隆及其在中国普通野生稻和栽培稻中的分化特征.植物学报,1998,40(10):906–914.
    [36]许云华,沈洁.DNA分子标记技术及其原理.连云港师范高等专科学校学报,2003(9)3:78–82.
    [37]杨金水.基因组学.高等教育出版社:2002,240–305.
    [38]杨守仁.籼粳稻杂交问题之研究.杨守仁水稻文选.沈阳:辽宁科学技术出版社,1998,195–216.
    [39]浙江省博物馆自然组.河姆渡遗址动植物遗存的鉴定研究.考古学报,1987,1:102–105.
    [40]曾亚文,李自超,杨忠义等.云南地方稻种籼粳亚种的生态群分类及其地理生态分布.作物学报,2001,27(1):15–20.
    [41]张乃群等.野生稻与栽培稻及种间杂种F1叶表面亚显微结构的研究.武汉植物学研究,1999 ,17(3):193–1961.
    [42]张寿洲,卢宝荣,洪德元.原位杂交技术在稻属研究中的应用.植物分类学报,1998,36(1):87–96.
    [43]周季维.长江中下游出土古稻考察报告.云南农业科技,1981(6):1–6 .
    [44]朱作峰,孙传清,付永彩等.用SSR标记比较亚洲栽培稻与普通野生稻的基因多样性.中国农业科学,2002,35(12):1437–1441.
    [45] Aggarwal R K, Brar D S, Khush G S. Two new genomes in the Oryza complex identified on the basic of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Genet, 1997, 254: 1–12.
    [46] Aggarwal R K, Brar D S, Nandi S, et al. Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet, 1999, 98: 1320-1328.
    [47] Akio Kato, Juan M Vega, Fangpu Han, et al. Advances in plant chromosome identification and cytogenetic techniques. Current Opintion in Plant Biology , 2005 , 8: 148–154.
    [48] Aravind L, Roman L, Tatusov, et al. Evidence for massive gene exchange between archaeal and beacterial hyperthemophiles. Trend Genet, 1998, 14(11): 442-444.
    [49] Bennetzen J L. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell, 2000, 12: 1021–1029.
    [50] Bennetzen J L, Jianxin M A, Devos K M. Mechanisms of recent genome size variation in flowering plants. Ann Bot-London, 2005, 95: 127–132.
    [51] Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980,32,(3): 314–31.
    [52] Causse M A, Fulton T M, Cho Y G. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994, 138: 1251–1274
    [53] Chang T T. Conservation of rice genetic resources: luxury or necessity? Science, 1984: 251–256.
    [54] Cheng C Y, Tsuchimo S, Ohtsubo H, et al.Evolutionary relationships among rice species with AA genome based on SINE insertion analysis.Genes Genent Syst, 2002, 77: 323–334.
    [55] Cheng Z K, Buell C R, Wing R A, et al. Toward a cytological characterization of therice genome. Genome Res, 2001, 11: 2133–2141.
    [56] Cheng Z K, Presting G G, Buell C R, et al. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics, 2001b, 157: 1749-1757.
    [57] Chevalier A. Nouvelle contribution a study system matiquedes Oryza. Rev Bot Appl Agr Trop, 1932, 2: 1014–1032.
    [58] Cordesse F P. Ribosomal gene spacer length variability in cultivated and wild rice species. Theor Appl Genet,1990,(79): 8l–88.
    [59] Dowling N G, Greenfield S M, Fischer K S, editors. Sustainability of rice in the global food system. Davis, Calif. (USA): Pacific Basin Study Center and Manila (Philippines): Intern Rice Res Institute, 1998, 251–283.
    [60] Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus,1990,12:13–15
    [61] Dvorak J, Terlizzi P, Zhang H B. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 1993, 36: 21–31.
    [62] Eliana Regina, Forni Martins, Karine Pablos Calligaris. Chromosomal studies on Neot ropical L imnocharitaceae ( Alismatales ) . Aquatic Botany ,2002 (74) :33–41.
    [63] Fan L, Guo X, Xu G, et al. Incongruent chromosomal size evolution in rice. 2005 Submitted.
    [64] Fan L, Xu G, Zhang Y and Guo X. Duplication of rice (Oryza sativa) genome. Proceedings of 8th National Systematic and Evolutionary Botany Youth Seminar and Systematic & Evolutionary Biology Conference China, 7.20~7.25. 2004.
    [65] Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4 . Nature, 2002, 420: 316–320.
    [66] Flavell R B. Repetitive DNA and chromosome evolution in plants. Philis. Trans. R. Soc. Lond. B., 1986, 312: 227–242.
    [67] Fukui K, Shishido R, Kinoshita T. Identification of the rice D-genome chromosomes by genomic in situ hybridization. Theor Appl Genet, 1997, 95: 1239-1245.
    [68] Gale M D, Devos K M. Plant comparative genetics after 10 years. Science, 1998, 282: 656–659.
    [69] Ge S, Sang T, Lu B R, et al. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl. Acad. Sci. USA, 1999, 96: 14400–14405.
    [70] Goff S A, Rick D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) . Science, 2002, 296, 92–100.
    [71] Gustafson J P , et al . Physical mapping of a low-copy DNA sequencer in rye ( Secale cerale L. ) . Proc Natl Acad Sci USA.1990 ,87 :1899–1902.
    [72] Gustafson J P, Dille J E. Chromosome location of Oryza sativa recombination linkage groups . Proc Natl Acad Sci USA,1992 ,89: 8646–8650.
    [73] Guyot R, Keller B. Ancestral genome duplication in rice. Genome, 2004, 47(3): 610–614.
    [74] Hall A E, Keith K C, Hall S E, et al. The rapidly evolving field of plant centromeres. Curr Opin Plant Biol, 2004, 7: 108–114.
    [75] Hanson R E. Evolution of interspersed repetitive dements in Gossypium (Malvaceae). American Journal of Botany, 1998,85 (10):1364–1368.
    [76] Harushima Y,Yano M,Shomura A, et al. A high-desity rice genetic linkage map with 2275 markers using a single F2 population, Genetics, 1998,148:474–479.
    [77] Hiratsuka J, Shimada H, Whittier R, et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals . Mol Gen Genet , 1989, 217: 185–194.
    [78] Huang H, Kochert G. Comparative RFLP mapping of an allotetraploid wild rice species (Oryza latifolia) and cultivated rice (O. sativa). Plant Mol Biol, 1994, 25: 633–639.
    [79] Ikehashi H,Araki H. Genetics of Fl sterility in remote crosses of rice, .In:Rice Genetics.IRRI Los Bancs Philippines.1986.119–130.
    [80] Ilic K, SanMiguel P J, Bennetzen J L. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc. Natl. Acad. Sci. USA, 2003, 100: 12265–12270.
    [81] Ishii D H.Comparative study of the chloroplast, mitochodrial and nuclear genome differentiation in two cultivated rice species , Oryza sative and O. Glaberrima by RFLP analysis.Theor.App1.Geuet,1993 (86): 88–96.
    [82] Jena K K, khush G S, Kocherl G. Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. sativa. Genome, 1994, 37: 382–389.
    [83] Ji Y., and Chetelat R.T., Homoeologous pairing and recombination in Solanum lycopersicoides monsomic addition and substitution lines of tomato. Theor Appl Genet, 2003, 106: 979–989.
    [84] Jiang J, Gill B S. Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome, 1994, 37: 717–725.
    [85] Jiang J M, Gill B S, Wang G L, et al. Metaphase and inter phase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosome. ProcNatl Acad Sci USA, 1995, 92: 4487–4491.
    [86] Jin WW, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R, et al. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 2004, 16: 571–581.
    [87] Kao F I, Cheng Y Y, Chow T Y, et al. An integrated map of Oryza sativa L. chromosome 5. Theor Appl Genet, 2006, 112: 891–902.
    [88] Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by ferihty of hybrid plants.Bull Sci Fac Ac.,1928,3(2): 132–147.
    [89] Kato A, Vega JM, Han F, Lamb J C, Birchler J A. Advancesin plant chromosome identification and cytogenetic techniques. CurrOpin Plant Biol, 2005, 8: 148–154.
    [90] Kennard W, Phillips R, Porter R, et al. A comparative map of wild rice(Zizania palustris L.2n=2x=30), Theor appl genet,1999,99(5): 793–799.
    [91] Khush G S. Origin ,dispersal ,cultivation and variation of rice. Plant Mol Biol, 1997, 35(1): 25–341.
    [92] Khush G S. Report of meetings to discuss chromosome numbering system in rice, RGN , 1990 , 7 : 12–14.
    [93] Kurata N, T Omura. Karyotype analysis in rice , I. A new method for identifying all chromosome pairs. Jpnan. Genet , 1978 , 53: 251–255.
    [94] Kurata N, Nagamura Y, Yamamoto K. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8: 365–372.
    [95] Langer P R, Waldrop A A, Ward D C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci. USA, 1981, 78: 6633–6637.
    [96] Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA, 1982, 79.
    [97] Le H, Armstrong K, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep, 1989, 7: 150–158.
    [98] Levan A, et al. Nomenclature for cent romeric position on chromosome . Hereditas ,1964 (52) : 201.
    [99] Li C B, Zhang D M, Ge S. Detection of differentiation among BB,CC and EE genomes in the genus Oryza by two-probe genomic in situ hybridization(GISH). Acta Bot Sin, 2000, 42(9): 988–990.
    [100] Li C B, Zhang D M, Ge S, et al. Identification of genome constitution of Oryza malampuzhaensis, O.minuta, and O.punctataby multicolor genomic in situ hybridization. Theor Appl Genet, 2001a, 103: 204–211.
    [101] Li C B, Zhang D M, Ge S, et al. Differentiation and inter-genomic relationships among C, E and D genomes in the Oryza officinalis complex (Poaceae) as revealed by multicolor genomic in situ hybridization. Theor Appl Genet, 2001b, 103: 197–203.
    [102] Li W M, Tang D Z, Wu W R, et al. A molecular map based on an indica/indica recombinant inbred population and its comparison with an existing map derived from an indica/ japonica cross in rice. Chinese J Rice Sci, 2000, 14:71–78.
    [103] Lisa M ,Rieko O,Haruka M ,et a1 . Genome—wide Searching of Single—nucleotide Polymorphisms among Eight Distantly and Closely Related Rice Cultivars (Oryza sativa L)and a Wild Accession(Oryza .rufipogon.Grif).DNA Research, 2006(13):43–51.
    [104] Liu K D,Zhou Z Q,Xu C G,et a1.An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica,japonica and wide compatibility varieties.Euphytica.1996,90: 275–280.
    [105] Longrnire JL,Hahn DC,Roach JL.Low abundance of micromate11ite repeats in the genome of the Brow-headed cowbird[J],The Journal of Heredity, 1999, 90(5)::574–578.
    [106] Lu B R. Taxonomy of the genus Oryza (Poaceae): A historical perspective and current status. Intern Rice Resour Notes, 1999, 24: 4–8.
    [107] Matyasek R, Gazdova B, Fajkus J, et al. NTRS, a new family of highly repetitive DNAs specific for the T1 chromosome of tobacco. Chromosoma, 1997, 106: 369–379.
    [108] McCouch S R, Tanskley S D. The world rice economy: Challenges ahead. In: Khush G S, Toenniessen G H, eds. Rice Biotechnology: Biotechnology in Agriculture Series, No.6 Wallingford: Commonwealth Agricultural Bureaux International Press, 1991.
    [109] Morishima H. Species relationships and the search for ancestors. In: Tsunoda S ,Takahashi Neds.Biology of Rice. Tokyo/ Elsevier, Amsterdam: Japan Sci Soc Press, 1984: 3–301.
    [110] Morishima H, Gadirnab L U.Are the Asian common wild irces diferentiated into the indica and japonica types.Crop Exploration and Utilization of Genetic Resources,1987: 11–20.
    [111] Mukai Y, Gill B S. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 1991, 34: 448–452.
    [112] Nandi H K. The chromosome morphology , secondary association and the origin of cultivated rice ,Genet, 1936 , 33 : 315–36.
    [113] Nasu S,Suzuki J,Ohta R, et a1.Search for and analysis of single Nucleotide polymorphisms(SNPs) in rice (Oryza sativa,Oryza ruffipogon)and establishment of SNP markers.DNA Res,2002,9(5): 163~171.
    [114] Nayar N M. Origin and cytogenetics of rice , Adv Genet ,1973 ,17 :153–2991.
    [115] Nishikawa.T, Vaughan A D, Kadowaki K. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor Appl Genet,2005 ,110: 696–705.
    [116] Ohmido N, Kijima K, Akiyama Y, et al. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet, 2000, 263: 388–394.
    [117] Oke H I. Japan Scientific Societies Press ,Tokyo ,1998 ,25–41;
    [118] Parokonny A.S, Marshall J.A, Bennett M.D, et al., Homoeologous pairing and recombination in backcross derivatives of tomato somatic hvbrids [Lycopersicon esculentum(+)L.peruvianum],Theor.Appl.Genet., 1997,94: 713–723.
    [119] Paterson A H, Bowers J E, Chapman B A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl Acad Sci USA, 2004, 101: 9903–9908.
    [120] Peng Y, Hartemink A J. Theoretical and practical advances in genome halving. Bioinformatics, 2005, 21(7): 869–879.
    [121] Pertuz R A , Ji Y F, Chetelat R T, Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. Theor Appl Genet, 2003, 107: 1391–1401.
    [122] Prodoehl A. Oryzeae monographice describuntur. Bot Arch, 1922, 1: 211–224.
    [123] Polak IN and McGee Jo’d, Hybridization, Principle and Practice . Oxford Science Publications, Oxford University Press, 1990.
    [124] Qi Z X, Song W Q, Jin G. Geneticrelatedness of wild and cultivated rice germplasm revealed by AFLP. Acta Sci Natural Univ Nankai, 2001, 34(3): 74–80.
    [125] Qin R, Wei W H, Jin W W, et al. Physical location of rice Gm-6, Pi-5(t) genes in O. officinallis with BAC- FISH. Chinese Sci Bull, 2001, 46(8): 2427–2430.
    [126] Qin R, Wei W H, Ning S B, et al. The physical location of rice Gm-2 and Gm-6 in O. officinallis with BAC-FISH based on comparative RFLP map of wild rice, O. officinalis and cultivated rice. Agri Sci China, 2002, 1(1): 1–4.
    [127] Rayburn A L, Gill B S. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered, 1985, 76: 78–81.
    [128] Robert H, Eizbieta W ,Marta H.Comparative analysis of rDNA distribution in chromosomes of various species of Brassicacea.Annals of Botany, 2006 ,97(2): 205–216
    [129] Ren F G,Lu B R,Li S Q, et al..A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers.Theor Appl Genet,2003,108:113–120.
    [130] Ren N, Song Y C, Bi X Z, et al. The physical location of genes cdc2 and prh1 in Maize (Zea mays L.). Hereditas, 1997, 126: 211–217.
    [131] Rokka V M, Clark M S, Knudson D L, et al. Cytological and molecular characterization of repetitive DNA sequences of Solanum brevidens and Solanum tuberosum. Genome, 1998, 41: 487–494.
    [132] Romero D, Palacios R. Gene amplification and genomic plasticity in prokaryotes. Annu Rev Gent, 1997, 31: 91–100.
    [133] Roschevicz R J. A contribution to the knowledge of rice. Bull Appl Bot Genet Plant Breed, 1931, 27(4): 131–133.
    [134] Saito A, Yano M, Kishimoto N. Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed, 1991, 41: 665–670.
    [135] Sampath S. The genus Oryza: its taxonomy and species interrelationships. Oryza, 1962,1: 1–291.
    [136] Sano Y,Sano R.Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species.Genome,1990,33: 209–218.
    [137] Sasaki T, Matsumoto T, Yamamoto K, et al. The genome sequence and structure of rice chromosome 1. Nature, 2002, 420: 312–316.
    [138] Schmidt R. Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol, 2002, 48: 21–37.
    [139] Schwarzacher T, Leitch A R, Heslop-Harrison J S, In situ localization of parental genomes in a wide hybrid. Ann Bot,1989,64: 315–324.
    [140] Second G.Origin of the genetic diversity of cultivated flee: study of the polymorphism scored at 40 isozyme loc.Jpn J Genet, 1982.57: 25–57.
    [141] Shastry S et al. Pachytene analysis in Oryza. I Chromoso morphology in Oryza sativa. Genet Plant Breed, l960 20: 15–21.
    [142] Shibata F, Murata M. Differential localization of the centromere specific proteins in the major centromeric satellite of A rabidopsisthaliana. Cell Sci, 2004, 117: 2963–2970.
    [143] Singh K, Multani D S, Khush G S. Secondary trisomics and telotrisomics of rice: origin, characterization, and use in determining the orientation of chromosome map. Genetics, 1996, 143: 517–529.
    [144] Snowdon R J, Fried T W, Kohle R A, et al.Molecular cytogenetic localization andcharacterization of 5 Sand 25 S rDNA loci for chromosome identification in oilseed rape(Brassica napus L.).Annals of Botany,2000,86: 201–204.
    [145] Soller RW, Stander H. Association between salicylates and Reye's syndrome. JAMA. 1983 Feb 18;249(7):883–4.
    [146] Song Y C , Gustafson J P. The physical location of fourteen RFLP markers in rice ( Oryza sativa) . Theor Appl Genet , 1995 , 90 (1) : 113~119
    [147] Tan G X, Jin H J, Li G, et al. Production and characterization of a complete set of individual chromosome additions from Oryza officinalis to Oryza sativa using RFLP and GISH analyses. Theor Appl Genet, 2005, 111: 1585–1595.
    [148] Tateoka T. Taxonomic studies of Oryza, III. Key to the species and their enumeration. Bot Mag Tokyo, 1963, 76: 165–173.
    [149] Uozu S, Ikehashi H, Ohmido N, et al. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol, 1997, 35: 791–799.
    [150] Vaughan D A. The genus Oryza L. Current status of taxonomy. IRRI Res Paper Series, 1989, 138: 1–21.
    [151] Vaughan D A. The wild relatives of rice. IRRI, Los Ba?os, Philippines, 1994: 3–4.
    [152] Vaughan D A, Morishima H, Kadowaki K. Diversity in the Oryza genus. Curr Opin Plant Biol, 2003, 6: 139–146
    [153] Wendel J F. Genome evolution in polyploids . Plant Mol. Biol., 2000, 42: 225–249.
    [154] Xiao J H, Grandillo S, Ahn S N, et al. Genes from wild rice improve yield. Nature, 1996, 384: 223–224.
    [155] Yan H M, Song Y C, Li L J, et al. Physical location of rice Pi-5(t), Glh and RTSV genes by FISH of BAC clones. Wuhan Univ J Nation Sci, 1998, 3(2): 226–230.
    [156] Yan H M, Qin R, Jin W W, et al. Comparative physical mapping of Bph3 with BAC-FISH in Oryza officinalis and O. sativa. Acta Botanica Sinica 2002, 44(5): 583–587.
    [157] Yan K K. Khush G S. Kocnert G. et al. Comparative RFLP mapping of a wild rice.Oryza officinalis. And cultivated rice.O.sativa. Genome,1994,137(3): 383–389.
    [158] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) . Science, 2002, 296: 79–92.
    [159] Zhang Q F, Saghai M A, Maroof T Y, et a1.Genetic diveity and diferentiation of indica and japonica rice detected by RFLP analysis.Theoretical and Applied Genetics,1992(83): 495–499.
    [160] Zhang Y, Xu G H, Guo X Y, et al. Two ancient rounds of polyploidy in rice genome.Journal of Zhejiang University SCIENCE, 2005, 6(2): 87–90.
    [161] Zhu Q H, Zheng X M, Luo J C, et al. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives:Severe bottleneck during domestication of rice .Mol Biol Evol,2007,24(3):875–88.
    [162] Zwick M S, Hanson R E, Mcknight T D, et al. A rapid procedure for the isolation of Cot-1DNA from plants. Genome, 1997,40: 138–142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700