用户名: 密码: 验证码:
有限差分方法在强地面运动模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确模拟地震波在三维复杂介质中的传播过程,对估计强地面运动对地表的破坏过程以及预测地震灾害的严重程度有着重要的意义。在常用的强地面运动模拟数值方法中,有限差分作为一种精确而高效的方法一直被广泛使用。在本文中,将使用曲线网格有限差分方法对地震的强地面运动过程进行模拟。
     2008年5月12日,四川省汶川县映秀镇发生毁灭性的大地震,此次地震是新中国成立以来破坏力最大的地震对中国造成了极大的人员伤亡和经济损失,受灾地区超过10万平方公里。由于汶川地震位于青藏高原东缘与四川盆地的交汇处,地质构造与地形条件非常复杂,所造成的破坏、影响也是个复杂的过程。精确模拟汶川地震的强地面运动过程对于合理认识汶川地震震源破裂过程、致灾因素以及灾后重建和城市的抗震减灾有着重要意义。另外,在本文中,还对北京三河-平谷大地震、2013年4月20日发生的芦山地震和2013年6月2日的台湾南投地震的强地面运动过程进行数值模拟,并对这四次地震的地震波传播过程和强地面运动特征进行详细的分析。
     在强震中,近场方向性效应、上盘效应、盆地效应和地形效应都对地震动峰值分布有着重要的影响,汶川地震动特征主要是由断层的几何性质、破裂方式和四川盆地内沉积层导致的盆地放大效应导致的,而地形效应是导致山体滑坡等次生灾害的主要原因;芦山地震的地震动峰值分布特征主要是上盘效应导致的,地形放大效应会导致宝兴县地区灾害加重;南投地震由于断层处在台湾中央山脉地下,地形效应非常明显,而速度结构的低速区会导致震害加重;在三河-平谷地震强地面运动模拟结果中,地震动峰值分布特征主要由近场方向性效应、上盘效应以及盆地放大效应决定的。通过对四个地震模拟结果中我们可以得出以下结论:断层破裂方向上的峰值速度远大于背离断层破裂方向的峰值速度;断层上盘的峰值速度的大小以及峰值分布的宽度大于断层下盘;较厚的沉积层会导致明显的放大效应,而较浅的沉积层不会对地震波振幅造成明显的放大;断层附近山地的放大系数大于距离断层比较远的山地的放大系数,同时放大效应也会随着山地的高度增大而相应增大。
Seismic wave propagation simulation in3D media is crucial in evaluating failure process of strong ground motion and estimating the damage of earthquake disaster. Finite difference method has been widely used in conventional strong ground motion simulation due to its accuracy and efficiency. In this paper, we apply curved mesh finite difference method to simulate strong ground motion process.
     A deadly earthquake that measured at Ms8.0jolted Wenchuan county, Sichuan province on May12th2008, more than60,000people died and4.8million people were homeless in the earthquake. It is the strongest earthquake in China since1950, the disaster area is over100,000km2, and causes tremendous economic loss. As the Wenchuan earthquake occurred along Longmenshan fault, a thrust structure along the edge of east Qinghai-Tibet Plateau and Sichuan Basin, the complex geology structure and rugged topography strongly influenced the seismic disaster distribution. Accurately simulating strong ground motion of the Wenchuan earthquake is of great significance in studying the earthquake's source rupture dynamic process, disaster factors, and guiding the post-disaster reconstruction.
     In this thesis, we also simulate the strong ground motion process of Sanhe-Pinggu earthquake in Beijing, Lushan earthquake on April20th2013and Nantou earthquake on June2nd2013, and analyze the seismic wave propagation process and strong ground motion distribution of these four seismic events.
     Near field directivity effect, hanging wall effect, basin effect and topography effect strongly influence the ground peak value distribution in large earthquakes. Characteristics of Wenchuan earthquake are mainly affected by fault's geometry feature, rupture pattern and basin amplification effect in sedimentary deposit of Sichuan basin, while some secondary disasters such as mountain landslides are primarily caused by topography effect. Peak ground motion distribution of Lushan earthquake is mainly caused by hanging wall effect, and topography amplifycation effect leads to much more severe calamities in Baoxing area. As the rupture of Nantou earthquake is located beneath the central range in Taiwan, topography effect is significant in that area, and the subsurface low velocity region results in stronger hazard. In the simulation of Sanhe-Pinggu earthquake, near field directivity effect, hanging wall effect and basin amplification effect all contribute to the peak ground motion distribution.
     From studies on the simulation of the four earthquakes, we can conclude that peak velocity along rupture direction is much larger than that deviate from rupture orientation; both value and region of peak velocity on the hanging wall are larger than that on the foot wall; thick sedimentary deposit leads to significant amplification effect, while shallow sedimentary layer has little effect on amplitude of seismic wave; amplification factor is much larger nearby the rupture, and it also increases with height of the mountains.
引文
常莹,周红,俞言祥.汶川地震强地面运动模拟[J].地震学报,2012,34(2):224-234.
    刘杰,易桂喜,张致伟,官致君,阮祥,龙锋,杜方.2013年4月20日四川芦山M7.0级地震介绍.地球物理学报,2013,56 (4):1404-1407,doi:10.6038/cjg20130434
    罗奇峰,1989.近场加速度的半经验合成[D],中国地震局工程力学研究所
    王栋,2010.近断层地震动的上/下盘效应研究[D],中国地震局工程力学研究所
    王卫民,郝金来,姚振兴,(2013).2013年4月20日四川芦山地震震源破裂过程反演初步结果.地球物理学报,56 (4):1412-1417, doi:10.6038/cjg20130436
    俞言祥,高孟谭.台湾集集地震近场地震动的上/下盘效应[J].地震学报,2004,23(6)615-621
    张勇,许力生,陈运泰,(2013).芦山4.20地震破裂过程及其致灾特征初步分析.地球物理学报,56 (4):1408-1411, doi:10.6038/cjg20130435
    Abrahamson N A and Somerville P G, Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake Bulletin of the Seismological Society of America February 1996 86:S93-S99
    Abrahamson N A, Silva W J. Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seismological research letters,1997,68 (1):94-127.
    Aki, K. and Larner, K.L.,1790. Surface motion of a layered medium having an irregular interface due to incident plane SH waves, J. Geophys. Res.,70,933-954
    Alterman,Z.S.,& Karal F.C.,1968. Propagation of Elastic Waves in Layered Media by Finite Difference Methods, Bull. Seism. Soc. Am.,58,367-398.
    Ashford S A, Sitar N. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the seismological society of America,1997,87 (3):692-700.
    Bassin, C., Laske, G. and Masters, G., (2000). The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU,81, F897,2000.
    Berenger, J.,1994. A perfectly matched layer for the absorption of electromagnetic waves,J.Comput.Geophys.,114,185-200.
    Bjerrum L W, Sorensen M B, Atakan K. Strong Ground-motion simulation of the 12 May 2008 Mw 7.9 Wenchuan earthquake, using various slip models[J]. Bulletin of the Seismological Society of America,2010,100 (5B):2396-2424.
    Burchfiel B C, Royden L H, van der Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008,Sichuan, People's Republic of China. GSA Today, 2008,18 (7),doi:10.1130/GSATG18A.1
    Celebi M. Topographical and geological amplification:case studies and engineering implications[J]. Structural Safety,1991,10 (1):199-217.
    Cerjan, C., Kosloff, D., Kosloff, R.& Reshef, M.,1985. A Nonreflecting boundary-condition for discrete acoustic and elastic wave-equations, Geophysics,50,705-708.
    Chen Dasheng, Shi Zhenliang, XuZonghe,.et al (1999-04-26). "China Seismic I ntensity Scale" (in Chinese). General Administration of Quality Supervision, Inspection, and Quarantine of P.R.C. Retrieved 2008-09-12.
    Chen, X.F.,1990. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method) I. Theory of 2D SH case, Bull.Seism. Soc. Am.,80,1696-1724
    Chen, X.F.,1993. A systematic and efficient method of computing normal-modes for multilayered half-space, Geophys. J. Int.,115,391-401.
    Chen, X.F.,1995. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. II. Applications for 2D SH cas,
    Bull. Seism. Soc. Am.,85,1094-1106
    Chen, X.F.,1996. Seismogram synthesis for multi-layered media with irregular interfaces by global reflection/transmission matrices method. Ⅲ. Theory for P-SV case, Bull. Seism. Soc.Am.,86,389-405
    Chen, X.F.,1999. Seismograms synthesis in multi-layered half-space media. Part Ⅰ. theoretical formulations, Earthquake Res. in China,13,149-174.
    Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America,1977,67 (6):1529-1540.
    Cruz-Atienza V. and J. Virieux,2004. Dynamic rupture simulation of nonplannar faults with a finite-difference approach. Geophys. J. Int.,158:939-954.
    Dalguer L. and S. Day,2006. Staggered-grid split-node method for spontaneous rupture simulation. J. Geophys. Res.,112, B02302, doi:10.1029/2006JB004467
    Day S., L. Dalguer et al.,2005. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. J. Geophys. Res.,110, B12307, doi:10.1029/2005JB003813.
    Geli, L., Bard, P.Y. and Jullien B.,1988. The effect of topography on earthquake ground motion: A review and new results, Bull. Seism. Soc. Am.,78,42-63.
    Ghasemi H, Fukushima Y, Koketsu K, et al. Ground-motion simulation for the 2008 Wenchuan, China, earthquake using the stochastic finite-fault method[J]. Bulletin of the Seismological Society of America,2010,100 (5B):2476-2490.
    Hanks T C, McGuire R K. The character of high-frequency strong ground motion[J]. Bulletin of the Seismological Society of America,1981,71 (6):2071-2095.
    Hartzell S, Harmsen S, Frankel A, et al. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake[J]. Bulletin of the Seismological Society of America,1999,89 (6):1484-1504.
    Hixon, R.,1997. On increasing the accuracy of MacCormack schemes for aeroacoustic applications,AIAA Paper,97-1586
    Hixon, R.,1998. Evaluation of a high-accuracy MacCormack-type scheme using benchmark problems, Journal of Computational Acoustics,6,291-305.
    Hixon, R.& Turkel, E.,2000. Compact implicit MacCormack-type schemes with high accuracy,Journal of Computational Physics,158,51-70.
    Hough S E, Martin S, Bilham R, et al. The 26 January 2001 M 7.6 Bhuj, India, earthquake: Observed and predicted ground motions[J]. Bulletin of the Seismological Society of America, 2002,92 (6):2061-2079.
    Irikura. k. Semi-empirical Estimation of Strong Ground Motions during Large Earthquakes, Bull. Discs. Prev. Res. Inst, Kyoto Univ.1983,63-104
    Ji C, Hayes G. Preliminary result of the 12 May 2008 Mw 7.9 eastern Sichuan, China earthquake.http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault.ph p,2008
    Kanamori, H And J. W Given. Use of long-period surface waves for rapid estimation of earthquake source parameters, Phys. Earth Planet. Interiors 1981,27:8-31
    Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and P. Shen (2005), Three-dimensional Vp and Vs structural model associated with the active subduction and collision tectonics in the Taiwan region,Geophys. J. Int.,162,204-220.
    Kreiss H O, Oliger J. Comparison of accurate methods for the integration of hyperbolic equations[J]. Tellus,1972,24 (3):199-215
    Laske, G.& Masters G., (1997). A Global Digital Map of Sediment Thickness, EOS Trans. AGU,78, F483,1997.
    Lysmer J, Drake L A. A finite element method for seismology [M], In Alder B, Fernbaeh S, Bolt B A, Eds., Methods in computational physics I, Seismology. Academic Press, 1972.181-216
    Moore J C, Saffer D. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan:An effect of diagenetic to low-grade metamorphic processes and increasing effective stress[J]. Geology,2001,29 (2):183-186.
    Olsen K B. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion[J]. Bulletin of the Seismological Society of America,2000,90 (6B) S77-S94.
    Oglesby D D, Archuleta R J, Nielsen S B. The three-dimensional dynamics of dipping faults[J]. Bulletin of the Seismological Society of America,2000,90 (3):616-628.
    Patera A T. A spectral element method for fluid dynamics:laminar flow in a channel expansion[J]. J. Comput. Phys.,1984,54 (3):468-488
    Pedersen H, Le Brun B, Hatzfeld D, et al. Ground-motion amplitude across ridges[J]. Bulletin of the Seismological Society of America,1994,84 (6):1786-1800.
    Pitarka, A.& Irikura, K.,1996. Modeling 3D surface topography by finite-difference method:Kobe-JMA station site, Japan, case study, Geophys. Res. Lett.,23,2729-2732.
    Pitarka A, Somerville P, Fukushima Y, et al. Simulation of near-fault strong-ground motion using hybrid Green's functions [J]. Bulletin of the Seismological Society of America,2000,90 (3): 566-586.
    Rau, R.-J., and F. T. Wu (1995), Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett.,133,517-532.
    Reuter H.I, A. Nelson, A. Jarvis,2007, An evaluation of void filling interpolation methods for SRTM data, International Journal of Geographic Information Science,21:9,983-1008.
    Roecker, S. W., Y. H. Yeh, and Y. B. Tsai (1987), Three-dimensional P and S wave velocity structures beneath Taiwan; deep structure beneath an arccontinent collision, J. Geophys. Res., 92,10,547-10,570.
    Rogers A M, Borcherdt R D, Covington P A, et al. A comparative ground response study near Los Angeles using recordings of Nevada nuclear tests and the 1971 San Fernando earthquake[J]. Bulletin of the Seismological Society of America,1984,74 (5):1925-1949.
    Sanchez-Sesma F J. Site effects on strong ground motion[J]. Soil Dynamics and Earthquake Engineering,1987,6 (2):124-132.
    Shen Z K, Sun J, Zhang P, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience,2009,2 (10):718-724.
    Shin, T. C., and Y. L. Chen (1988), Study on the earthquake location of 3-D velocity structure in the Taiwan area, Meteorol. Bull.,42,135-169.
    Somerville P G, Wald D J, Smith N F. Prediction of the near-source ground accelerations of the Loma Prieta earthquake using a heterogeneous slip model[J]. Unpublished manuscript,1993.
    Somerville P, Saikia C, Wald D, et al. Implications of the Northridge earthquake for strong ground motions from thrust faults[J]. Bulletin of the Seismological Society of America,1996,86 (1B):S115-S125.
    Somerville P G, Smith N F, Graves R W, et al. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters,1997,68 (1):199-222.
    Somerville P, Irikura K, Graves R, et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismological Research Letters,1999,70 (1):59-80.
    Wang, Y.B., Takenaka, H.& Furumura, T.,2001. Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method, Geophys.
    Wu Y M, Chang C H, Zhao L, et al. Seismic tomography of Taiwan:Improved constraints from a dense network of strong motion stations[J]. Journal of Geophysical Research:Solid Earth (1978-2012),2007,112 (B8)
    Yu Y, Gao M. Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi), Taiwan Province, earthquake[J]. Acta Seismologica Sinica,2001,14 (6): 654-659
    Zhang H. and X. Chen,2006a. Dynamic rupture on a planar fault in three-dimensional half space-I. Theory. Geophy. J. Int.,164:633-652.
    Zhang H. and X. Chen,2006b. Dynamic rupture on a planar fault in three-dimensional half space-II. Validations and numerical experiments. Geophy. J. Int.,167:917-932.
    Zhang W. and X.F. Chen,2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophy. J. Int.,167:337-353.
    Zhang, W., Shen, Y.,& Chen, X.F., (2008). Numerical simulation of strong ground motion for the ms 8.0 wenchuan earthquake of 12 may 2008, Science in China Series D:Earth Science, 51 (12),1673-1982.
    Zhang, W., Zhang, Z.G.& Chen, X.F., (2012b). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophys. J. Int.,190 (1),358-378.
    Zhang Y, Feng W P, Xu L S, et al. Temporal-spatial rupture process of Ms8.0 Wenchuan earthquake of 2008. Sci China Ser D-Earth Sci,2008, doi:10.1007/s
    11430-008-0148-7
    Zhang Z, Zhang W, Li H, et al. Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling[J]. Geophysical Journal International,2013,192(3): 1179-1188.
    Zhou, H.& Chen, X.F.,2006. A new approach to simulate scattering of SH waves by an irregular topography, Geophys. J. Int.,164,449-459

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700