用户名: 密码: 验证码:
幽门螺杆菌感染以及高盐和多酚的刺激对增殖相关蛋白CIP2A表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
幽门螺杆菌(Helicobacter pylori, H. pylori)是革兰氏阴性、螺杆状的微需氧菌,可定植于胃粘膜上皮细胞,是慢性胃炎、消化道溃疡、胃粘膜相关淋巴组织(MALT)淋巴瘤及胃癌发生的危险因素,1994年世界卫生组织国际癌症研究机构(IARC)已将其列为Ⅰ类致癌因子。幽门螺杆菌的某些菌株包含有一段由27-33个基因编码的35-40kb cag致病岛(PAI). cagA基因是cag致病岛的重要组成部分之一,它编码了幽门螺杆菌的重要毒力蛋白CagA (120-140kDa)。CagA蛋白含有一段能够发生酪氨酸磷酸化的EPIYA基序,幽门螺杆菌黏附到胃粘膜上皮细胞以后,可通过四型分泌系统将毒力因子CagA蛋白注入上皮细胞。在cagA-positive幽门螺杆菌菌株的感染中,细菌源性的致癌因子CagA蛋白广泛的参与到细菌感染导致的胃组织损伤以及致癌的过程之中,但涉及的分子机制尚未完全明了。
     肿瘤发生的标志之一是细胞进入无序增殖状态,伴有一些参与到调节细胞周期进程、细胞的增殖、分化以及凋亡、衰老的重要细胞因子的表达紊乱。新鉴定的重要原癌蛋白CIP2A能通过抑制PP2A的活性来稳定MYC蛋白的表达并且促进肿瘤的形成。并且,在胃癌组织中CIP2A的表达量高于相对应的正常胃组织,其功能与胃癌细胞的增殖能力密切相关。而作为Btk酪氨酸激酶家族成员之一的BMX/Etk激酶的功能也涉及到对细胞增殖能力的促进以及对环境刺激的适应性调控。因此,阐明幽门螺杆菌感染和CIP2A之间的效应关系可以帮助我们更深入的理解幽门螺杆菌感染的致癌机理以及CIP2A在胃癌发生发展中的重要作用。
     胃癌的发生发展除了受到幽门螺杆菌的菌株特点影响外,还受到宿主的遗传易感性和环境因素的影响,与胃癌高发风险相关的环境因素之一就是高盐饮食。在人群的流行病学研究和动物模型中高盐饮食和胃癌的发病率之间的关系已经被充分证实。但是高盐饮食是通过何种机制增强了人群中胃癌的发病率尚未完全明了。因此,探讨高盐对细菌诱导的CIP2A表达增强效应可以帮助我们更深入的理解高盐饮食和幽门螺杆菌感染在胃癌发生发展过程中发挥协同作用的分子机制。而表没食子儿茶素没食子酸酯(EGCG)作为从天然植物绿茶中提取出来的单体成分(多酚类),其抑制肿瘤细胞增殖的能力已经通过动物实验模型、流行病学调查、以及病例对照研究等得到充分的证实。但EGCG抑制肿瘤发生发展的分子机制尚未完全阐明。因此,研究EGCG对细胞中CIP2A表达水平的影响可以为理解EGCG抑制肿瘤细胞增殖能力的分子机制提供更多的帮助。
     胃癌是世界范围内最常见的恶性肿瘤之一,中国是胃癌的高发国家,其致死率位居全球肿瘤相关致死率第二位。由于缺乏可靠的早期诊断标志,胃癌的预后情况并不乐观。促进胃癌发生发展的因素涉及生物致癌因素(幽门螺杆菌)和化学致癌因素(高盐和亚硝酸盐)的刺激;抑制胃癌发生发展的因素涉及多酚类(绿茶)和维生素类的摄入。肿瘤的分子诊断与预测,已成为近年来肿瘤研究的热点领域。而与胃癌发生发展相关的保护性和致癌性的因素是否都存在一个相同的作用靶点分子,至今尚未完全阐明。本研究的内容主要涉及幽门螺杆菌的感染以及环境因素中的高盐和EGCG的刺激对肿瘤细胞的增殖相关蛋白CIP2A表达的影响,旨在阐明CIP2A分子作为与胃癌发生发展相关的保护性和致癌性因素存在的共同作用靶点的依据。该课题主要研究内容及实验结果如下:
     一、幽门螺杆菌的感染能够促进CIP2A的表达上调
     幽门螺杆菌感染胃粘膜上皮细胞后,能激活一系列的信号途径,包括MEK/ERK途径,β-catenin途径,Src kinase途径,NF-κB途径,以及p38 MAP kinase途径。并且能够影响细胞内许多致癌因子的表达变化,例如影响MYC蛋白的稳定,影响β-catenin的核转移,以及影响细胞周期相关蛋白Cyclin Dl的表达。但是迄今为止,幽门螺杆菌的感染对原癌蛋白CIP2A表达的影响尚未明了。本研究通过实施幽门螺杆菌感染细胞以及CagA的表达质粒转染细胞的实验,以及应用了激酶抑制剂来验证哪几条信号通路参与了CagA诱导的CIP2A表达上调效应,此外实施了针对CIP2A的RNA干扰实验,以及干扰后幽门螺杆菌再次感染细胞的实验。通过western blot检测首次在细胞系中阐明了幽门螺杆菌的感染以及细菌源性的癌蛋白CagA诱导细胞的癌蛋白CIP2A表达上调的效应机理。CagA蛋白进入细胞后,激活了Src和MEK/ERK信号途径,并最终导致CIP2A的表达上调。本研究结果为深入理解幽门螺杆菌感染诱发胃癌的分子机制提供了有力的佐证。
     二、高盐刺激能够增强幽门螺杆菌感染所诱导的CIP2A表达上调
     本论文中第一部分的实验已经阐明了幽门螺杆菌的感染以及细菌源性的癌蛋白CagA诱导CIP2A表达上调的效应机理,为深入的理解幽门螺杆菌感染导致胃癌发生发展的分子机制提供了线索;同时,环境中高盐因素的刺激也是胃癌高发的危险因素之一,并且高盐饮食可能作为幽门螺杆菌感染导致胃癌的协同刺激因素存在。为了阐明高盐因素刺激幽门螺杆菌后对细菌的包括CagA在内的毒力因子表达的影响,以及高盐刺激后的幽门螺杆菌感染细胞是否比普通幽门螺杆菌感染细胞具有更强的诱导CIP2A表达上调的能力,我们设计了培养基中不同盐浓度刺激幽门螺杆菌后检测相关毒力基因表达量的实验以及高盐刺激后的幽门螺杆菌和普通的幽门螺杆菌分别感染细胞后对CIP2A表达量影响的western blot检测。实验结果表明环境中高盐因素的刺激能够诱导幽门螺杆菌毒力相关基因(cagA、vacA、tlpB、tip-alpha)的表达水平上调,经高盐刺激后毒力增强的细菌感染真核细胞后,可以增强细菌感染细胞所诱导的癌蛋白CIP2A表达上调效应,进而促进胃癌的发生发展;此外,通过对CIP2A分子的检测分析有助于理解高盐饮食和幽门螺杆菌感染在胃癌发生发展过程中发挥协同作用的分子机制。三、EGCG能通过抑制BMX和CIP2A来抑制肿瘤细胞的增殖
     EGCG抑制肿瘤发生发展的分子机制涉及到众多因子,包括:抑制癌蛋白Myc的表达、抑制基质金属蛋白酶(MMPs)的表达以及对P53和BCL-2等凋亡相关蛋白的影响等。而BMX/Etk酪氨酸激酶和CIP2A属于一类与肿瘤细胞增殖能力相关的重要细胞因子。而迄今为止,具有抗肿瘤活性的绿茶提取物EGCG和BMX激酶以及癌蛋白CIP2A之间的关系尚未实施探讨。因此,研究EGCG与BMX激酶以及癌蛋白CIP2A之间的关系,以及BMX和CIP2A之间的相互调节关系可以帮助我们更深入的理解EGCG在抑制肿瘤细胞增殖过程中发挥作用所涉及的分子机制。基于以上目的,设计了相关实验来验证EGCG作用细胞后对BMX和CIP2A蛋白表达量的影响;应用了真核表达质粒以及siRNA干扰技术来观察BMX和CIP2A之间的相互调控关系;此外,还进行了克隆形成实验来观察CIP2A在EGCG诱导的抑制肿瘤细胞增殖中的作用。实验结果证实了EGCG作用于细胞后可以导致细胞中CIP2A和BMX的表达水平降低,发现了BMX可以正向调控CIP2A的表达,并验证了EGCG发挥抑制肿瘤细胞增殖能力所可能涉及的分子机制。这就为更充分的理解EGCG抑制肿瘤细胞增殖能力的分子机理提供了更详实的依据。
Helicobacter pylori (H. pylori) has been defined as a class I carcinogenic factor by WHO and its persistent colonization in stomach leads to an increased risk for peptic ulcers and gastric adenocarcinoma. Some H. pylori strains contain a 35-40 kb cag pathogenicity island (PAI) encoded by 27-33 genes. One constituent of the cag pathogenicity island (PAI) is called cagA which encodes a 120-140kDa CagA protein. CagA protein that has tyrosine phosphorylation (EPIYA) motifs is injected into the gastric epithelial cells by type IV secretory system (TFSS). cagA-positive H. pylori strains have a closer association with the progress of both peptic ulcers and gastric cancer than the cagA-negative strains according to epidemiological research. Within gastric epithelial cells, tyrosine phosphorylation occurs on the C-terminus of CagA by the Src family of tyrosine kinases. CagA interacts with many signal molecules and elicits a series of cellular events. Some changes related to cell morphology, cell scattering, cell proliferation and intercellular tight junctions have also been identified. According to these observations, bacterial oncoprotein CagA participates in gastric tissue injury caused by cagA-positive H. pylori infection.
     Unlimited cellular proliferation is a hallmark of tumors. Tumorigenesis is related to the disordered expression of some key factors which participate in the regulation of cell cycle progression, differentiation, apoptosis and senescence. Recent studies have reported that CIP2A or Cancerous Inhibitor of PP2A serves as an important oncoprotein. Protein phosphatase 2A (PP2A) can facilitate the proteolytic degradation of oncoprotein MYC and prevent malignant cell growth. More importantly, overexpression of CIP2A was observed in gastric cancer and its function was related to tumor cell proliferation. Btk family tyrosine kinase BMX was also involved in the promotion of tumor cell proliferation and regulation of cellular responses. Therefore, to elucidate the relationship between H. pylori infection and CIP2A expression could provide further evidence for understanding the mechanism of H. pylori carcinogenesis and CIP2A functions in gastric tumorigenesis.
     Gastric carcinogenesis is related to H. pylori infection, genetic susceptibility of hosts and environmental stimuli. High salt in food and drink is a very important risk factor which is involved in high incidence of gastric cancer. The close relationship between high salt in diet and gastric carcinogenic incidence has been proved through epidemic research and animal model. However, the mechanism of high salt intake-induced-gastric cancer high risk still remains unclear. For this reason, to investigate the enhancement effects of high salt on H. pylori infection-induced-CIP2A upregulation could help us to understand the molecular mechanism of synergistic effects between H. pylori infection and high salt stimuli in gastric carcinogenesis induction. As we all known, EGCG belongs to the most abundant polyphenol in green tea. The role of EGCG in the regulation of tumor cell proliferation has been verified in animal studies, human relevance and case-control reports. Up to now, the molecular mechanism of EGCG-inhibited-tumor cells proliferation still remains unclear. Therefore, to investigate the inhibitory effects of EGCG on CIP2A could provide further evidence for the understanding of the molecular mechanism of EGCG-induced-tumor inhibition.
     Gastric cancer is one of the most common tumors in worldwide and has a high incidence in China. The prognosis of gastric cancer is very poor because of the lack of credible early diagnosis and therapy. Biological carcinogen (H. pylori) and chemical carcinogen (salt and nitrite) are the factors involved in gastric carcinogenic induction. In contrast, polyphenols (green tea) and vitamins are the factors involved in gastric carcinogenic prevention. Molecular diagnostics and prediction for tumor occurrence has become a hot area of cancer research in recent years. It is still unknown whether both gastric carcinogenic induced factors and gastric carcinogenic inhibitory factors could act on the same target molecule. Our research mainly focused on the effects of H. pylori infection, high salt stimulus or EGCG treatment on tumor proliferation related protein CIP2A expression level. Our aim is to discover that CIP2A could act as the same target molecule of gastric carcinogenic induced factors and gastric carcinogenic inhibitory factors. The following is the main research data and experiment results.
     1. The upregulation effects of H. pylori infection on CIP2A expression
     H. pylori virulence factor CagA interacts with many signal molecules and elicits a series of cellular events. These events include the Ras/mitogen-activated protein (MAP) kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway activation,β-catenin activation, Src kinase activation, NF-κB pathway activation, and p38 MAP kinase pathway activation. H. pylori infection could affect the expression level of gastric carcinogenic factors, such as MYC,β-catenin and Cyclin D1. But up to now, the relationship between H. pylori infection and CIP2A expression has never been studied. In order to elucidate the relationship between these two factors, we designed H. pylori infection and CagA transfection in gastric cells and tried to investigate whether main virulence factor CagA of H. pylori could increase the expression of oncoprotein CIP2A in cell lines. Furthermore, we used signal inhibitors to examine which pathway was involved in the CagA-mediated regulation of CIP2A expression. Overall, it is the first time the mechanism by which H. pylori infection and bacterial oncoprotein CagA upregulated CIP2A expression in gastric cell lines has been elucidated. CagA protein activated the Src and MEK/ERK signal pathways resulting in the elevation of expression of CIP2A protein in AGS cells. This work has contributed to understanding the mechanism of gastric tumors caused by H. pylori infection in humans.
     2. H. pylori infection-induced-CIP2A upregulation is enhanced by high salt
     It has been elucidated in chapter 1 that H. pylori infection and bacterial oncoprotein CagA could upregulate CIP2A expression in gastric cell lines. These results provide further evidence for the understanding of the molecular mechanism of H. pylori infection-induced-gastric carcinogenesis. As mentioned above, high salt intake is one of the risk factors involved in gastric carcinogenesis. Besides that, high salt stimuli and H. pylori infection could act as synergistic factors for gastric carcinogenesis. In order to elucidate the effects of high salt stimuli on H. pylori virulence factors, and observe the enhancement effects of high salt stimuli on H. pylori infection-induced-CIP2A upregulation, we designed some analysis, including the analysis of H. pylori virulence factors after treatment by different concentrations of salt in cultures and the analysis of CIP2A expression level in cells after infection by H. pylori strains which has been treated by different concentrations of salt in cultures. The results showed that high salt stimuli could increase the expression level of H. pylori virulence genes (cagA, vacA, tlpB, tip-alpha). More important is that H. pylori infection-induced-CIP2A upregulation is enhanced by high salt. The data about CIP2A analysis make further evidence for the understanding of synergistic effects of high salt stimuli and H. pylori infection in gastric carcinogenesis.
     3. EGCG inhibits tumor cell proliferation through its inhibitory effects on CIP2A
     It has been reported that the molecular mechanism of EGCG-induced-tumor inhibition is related to many key proteins, such as beta-catenin, Myc, Cyclin Dl, matrix metalloproteinases (MMPs), P53, etc. As we all known, both BMX/Etk tyrosine kinases and newly identified oncoprotein CIP2A belong to the key factors which could regulate tumor cell proliferation. Up to now, the relationship between tumor inhibitor EGCG, tumor promoter BMX kinases, and oncoprotein CIP2A has never been discovered. Therefore, the studies about the effects of EGCG on BMX and CIP2A, or interaction between BMX and CIP2A could help us to understand the molecular mechanism of EGCG-induced-tumor cell proliferation inhibition. Based on this purpose, western blot analysis was used to verify the effects of EGCG on BMX and CIP2A; Eukaryotic expression plasmid and siRNA were employed to observe the interaction between BMX and CIP2A; Clonogenicity analysis was performed to investigate the role of CIP2A in the EGCG-induced-tumor cell proliferation inhibition. In view of our results, it is the first time that we proved the inhibitory effects of EGCG on CIP2A and BMX. And we also verified that over-expression of BMX could increase the expression of CIP2A. Moreover we investigated the key factors which could be involved in the molecular mechanism of EGCG-inhibited-tumor cells proliferation. The studies provide further evidence for the understanding of the molecular mechanism of EGCG-induced-tumor inhibition, and also provide strong basis for the guidance of EGCG usage in clinical therapy.
引文
1. Houghton, J.& Wang, T. C. (2005). Helicobacter pylori and gastric cancer:a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128, 1567-1578.
    2. Peek, R. M. J.& Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2,28-37.
    3. Akopyants, N. S., Clifton, S. W., Kersulyte, D., Crabtree, J. E.,Youree, B. E., Reece, C. A., Bukanov, N. O., Drazek, E. S., Roe, B. A.& Berg, D. E. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28, 37-53.
    4. Azuma, T., Yamazaki, S., Yamakawa, A., Ohtani, M., Muramatsu, A., Suto, H., Ito, Y., Dojo, M., Yamazaki, Y, Kuriyama, M., Keida, Y, Higashi, H.& Hatakeyama, M. (2004). Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J Infect Dis 189,820-827.
    5. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer,W.& Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV Secretion. Science 287,1497-1500.
    6. Stein, M., Rappuoli, R.& Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cog-driven host cell translocation. Proc Natl AcadSci USA 97,1263-1268.
    7. Hatakeyama, M. (2003). Helicobacter pylori CagA-a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect 5,143-150.
    8. Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., Misselwitz, R., Berger, J., Sewald, N., Konig, W.& Backert, S. (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449,862-866.
    9. Stein, M., Bagnoli, F, Halenbeck, R., Rappuoli, R., Fantl, W. J.& Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43,971-980.
    10. Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4,688-694.
    11. Nguyen, L. T., Uchida, T., Murakami, K., Fujioka, T.& Moriyama, M. (2008). Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J Med Microbiol 57,1445-1453.
    12. Backert, S.& Selbach, M. (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10,1573-1581.
    13. Backert, S.& Meyer, T. F. (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9,207-217.
    14. Handa, O., Naito, Y.& Yoshikawa, T. (2007). CagA protein of Helicobacter pylori:a hijacker of gastric epithelial cell signaling. Biochem Pharmacol 73, 1697-1702.
    15. Hanahan, D.& Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    16. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Alaaho, R., Nielsen, C., Ivaska, J., Taya, Y., Lu, S. L., Lin, S., Chan, E. K., Wang, X. J., Grenman, R., Kast, J., Kallunki,T.,Sears,R., Kahari, V. M.& Westermarck, J. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130,51-62.
    17. Yeh, E., Cunningham, M., Arnold, H., Chasse, D.,Monteith, T., Ivaldi, G, Hahn, W., C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R.& Sears, R. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6,308-318.
    18. Li, W., Ge, Z., Liu, C., Liu, Z., Bjorkholm, M., Jia, J.& Xu, D. (2008). CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res 14,3722-3728.
    19. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS,KubagawaH,Mohandas T, Quan S, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell (1993) 72, 279-290.
    20. Vetri D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature (1993) 361,226-233.
    21. Sato K,Mano H, Ariyama T, Inazawa J, Yazaki Y and Hirai H. Molecular cloning and analysis of the human Tec protein-tyrosine kinase. Leukemia (1994) 8, 1663-1672.
    22. Siliciano JD, Morrow TA and Desiderio SV. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc.Natl. Acad. Sci USA (1992) 89,11194-11198.
    23. Qiu Y, Robinson D, Pretlow TG and Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain,is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc. Natl. Acad. Sci. USA (1998) 95,3644-3649.
    24. Tamagnone L, Lahtinen I, Mustonen T, Virtaneva K, Francis F, Muscatelli F, Alitalo R, Smith CI, Larsson C and Alitalo K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene (1994)9,3683-3688.
    25. EkmanN, Lymboussaki A, Vastrik I, Sarvas K,Kaipainen A and Alitalo K. Bmx Tyrosine Kinase Is Specifically Expressed in the Endocardium and the Endothelium of Large Arteries. Circulation (1997) 96,1729-1732.
    26. Tsai YT, Su YH, Fang SS, Huang TN, Qiu Y, Jou YS, Shih HM, Kung HJ and Chen RH. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell. Biol (2000) 20,2043-2054.
    27. Qiu Y, Kung HJ. Signaling network of the Btk family kinases. Oncogene (2000) 19,5651-61.
    28. Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya K, Terasaki T, Shih HM, Ann DK. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene (2002) 21,8817-29.
    29. Bagheri-Yarmand R, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ and Kumar R. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J. Biol.Chem (2001) 276,29403-29409.
    30. Tsugane S. Salt, salted food intake, and risk of gastric cancer:epidemiologic evidence. Cancer Sci (2005) 96,1-6.
    31. Fuchs CS and Mayer RJ. Gastric carcinoma. N Engl J Med (1995) 333,32-41.
    32. Correa P. Human gastric carcinogenesis:a multistep and multifactorial processirst American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res (1992) 52,6735-40.
    33. Tatematsu M, Nozaki K, Tsukamoto T. Helicobacter pylori infection and gastric carcinogenesis in animal models. Gastric Cancer (2003) 6,1-7.
    34. Nozaki K, Shimizu N, Inada K, et al. Synergistic promoting effects of Helicobacter pylori infection and high-salt diet on gastric carcinogenesis in Mongolian gerbils. Jpn J Cancer Res (2002) 93,1083-9.
    35. Nag S, Das S, Chaudhuri K. In vivo induced clpB1gene of Vibrio cholerae is involved in different stress responses and affects in vivo cholera toxin production. Biochem Biophys Res Commun (2005) 331,1365-73.
    36. Sleator RD and Hill C. A novel role for the LisRK two-component regulatory system in listerial osmotolerance. Clin Microbiol Infect (2005) 11,599-601.
    37. Loh JT, Torres VJ, Cover TL. Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res (2007) 67,4709-15.
    38. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea:animal studies, molecular mechanisms and human relevance. Nat Rev Cancer (2009) 9,429-39.
    39. Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer (2009) 61,587-97.
    40. Shimizu M, Shirakami Y, Moriwaki H. Targeting Receptor Tyrosine Kinases for Chemoprevention by Green Tea Catechin, EGCG. IntJMol Sci (2008) 9,1034-49.
    41. Myung SK, Bae WK, Oh SM, Kim Y, Ju W, Sung J, Lee YJ, Ko JA, Song JI, Choi HJ. Green tea consumption and risk of stomach cancer:a meta-analysis of epidemiologic studies. Int J Cancer (2009) 124,670-7.
    42. Kuriyama S. The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr (2008) 138,1548S-1553S.
    43. Yang CS, Ju J, Lu G, Xiao H, Hao X, Sang S, Lambert JD. Cancer prevention by tea and tea polyphenols. Asia Pac J Clin Nutr (2008) 17,245-8.
    44. Sliva D. Suppression of cancer invasiveness by dietary compounds. Mini Rev Med Chem (2008) 8,677-88.
    45. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci (2007) 81, 519-33.
    46. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer:review of epidemiological evidence. Gastric Cancer (2007) 10,75-83.
    47. Michels KB, Mohllajee AP, Roset-Bahmanyar E, Beehler GP, Moysich KB. Diet and breast cancer:a review of the prospective observational studies. Cancer (2007) 109,2712-49.
    48. Yang CS, Lambert JD, Ju J, Lu G, Sang S. Tea and cancer prevention:molecular mechanisms and human relevance. Toxicol Appl Pharmacol (2007) 224,265-73.
    49. Beltz LA, Bayer DK, Moss AL, Simet IM. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem (2006) 6,389-406.
    50. Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG):chemical and biomedical perspectives. Phytochemistry (2006) 67,1849-55.
    1. Houghton, J.& Wang, T. C. (2005). Helicobacter pylori and gastric cancer:a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128, 1567-1578.
    2. Peek, R. M. J.& Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2,28-37.
    3. Akopyants, N. S., Clifton, S. W., Kersulyte, D., Crabtree, J. E.,Youree, B. E., Reece, C. A., Bukanov, N. O., Drazek, E. S., Roe, B. A.& Berg, D. E. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28, 37-53.
    4. Azuma, T., Yamazaki, S., Yamakawa, A., Ohtani, M., Muramatsu, A., Suto, H., Ito, Y, Dojo, M., Yamazaki, Y, Kuriyama, M., Keida, Y, Higashi, H.& Hatakeyama, M. (2004). Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J Infect Dis 189,820-827.
    5. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer,W.& Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV Secretion. Science 287,1497-1500.
    6. Stein, M., Rappuoli, R.& Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 97,1263-1268.
    7. Hatakeyama, M. (2003). Helicobacter pylori CagA-a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect 5,143-150.
    8. Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., Misselwitz, R., Berger, J., Sewald, N., Konig, W.& Backert, S. (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449,862-866.
    9. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W. J.& Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43,971-980.
    10. Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4,688-694.
    11. Nguyen, L. T., Uchida, T., Murakami, K., Fujioka, T.& Moriyama, M. (2008). Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J Med Microbiol 57,1445-1453.
    12. Backert, S.& Selbach, M. (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10,1573-1581.
    13. Backert, S.& Meyer, T. F. (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9,207-217.
    14. Handa, O., Naito, Y.& Yoshikawa, T. (2007). CagA protein of Helicobacter pylori:a hijacker of gastric epithelial cell signaling. Biochem Pharmacol 73, 1697-1702.
    15. Hanahan, D.& Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    16. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Alaaho, R., Nielsen, C., Ivaska, J., Taya, Y, Lu, S. L., Lin, S., Chan, E. K., Wang, X. J., Grenman, R., Kast, J., Kallunki, T.,Sears, R., Kahari, V. M.& Westermarck, J. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130, 51-62.
    17. Yeh, E., Cunningham, M., Arnold, H., Chasse, D.,Monteith, T., Ivaldi, G, Hahn, W., C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R.& Sears, R. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6,308-318.
    18. Li, W., Ge, Z., Liu, C., Liu, Z., Bjorkholm, M., Jia, J.& Xu, D. (2008). CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res 14,3722-3728.
    19. Zhu, Y, Shu, X., Chen, J., Xie, Y, Xu, P., Huang, D. Q.& Lu, N. H. (2008). Effect of Helicobacter pylori eradication on oncogenes and cell proliferation. Eur J Clin Invest 38,628-633.
    20. Franco, A. T., Israel, D. A., Washington, M. K., Krishna, U., Fox, J. G,Rogers, A. B., Neish, A. S., Collier-Hyams, L., Perez-Perez, G. I., Hatakeyama, M., Whitehead, R., Gaus, K., O'Brien, D. P., Romero-Gallo, J.& Peek, R. M J. (2005). Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A 102,10646-10651.
    21. Chang, Y. J., Wu, M. S., Lin, J. T., Pestell, R. G, Blaser, M. J.& Chen, C. C. (2006). Mechanisms for H. pylori CagA-induced cyclin Dl expression that affect cell cycle. Cell Microbil 8,1740-1752.
    22. Higashi, H., Yokoyama, K., Fujii, Y., Ren, S., Yuasa, H., Saadat, I., Murata-Kamiya, N., Azuma, T.& Hatakeyama, M. (2005). EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. JBiol Chem 280,23130-23137.
    23. Zhu, Y. L., Zheng, S., Qian, K. D.& Fang, P. C. (2004). Biological activity of the virulence factor cagA of Helicobacter pylori. Chin Med J (Engl) 117,1330-1333.
    24. Zhu, Y. L., Zheng, S., Du, Q., Qian, K. D.& Fang, P. C. (2005). Characterization of CagA variable region of Helicobacter pylori isolates from Chinese patients. World J Gastroenterol 11,880-884.
    25. Khanna, A., Bockelman, C., Hemmes, A., Junttila, M. R., Wiksten, J. P., Lundin, M., Junnila, S., Murphy, D. J., Evan, G. I., Haglund, C., Westermarck, J.& Ristimaki, A. (2009). MYC-dependent regulation and prognostic role of CIP2A in gastric cancer. J Natl Cancer Inst 101,793-805.
    26. Yokoyama, K., Higashi, H., Ishikawa, S., Fujii, Y, Kondo, S., Kato, H., Azuma, T., Wada, A., Hirayama, T., Aburatani, H.& Hatakeyama, M. (2005). Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci USA 102,9661-9666.
    27. Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T.& Saltiel, A. R. (1995). PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in Vitro and in Vivo. JBiol Chem 270,27489-27494.
    28. Young, P. R., McLaughlin, M. M., Kumar, S., Kassis, S., Doyle, M. L., McNulty, D., Gallagher, T. F., Fisher, S., McDonnell, P. C., Carr, S. A., Huddleston, M. J., Seibel, G, Porter, T. G, Livi, G P., Adams, J. L.& Lee, J. C. (1997). Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272,12116-12121.
    29. Pierce, J. W., Schoenleber, R., Jesmok, G, Best, J., Moore,S. A., Collins, T.& Gerritsen, M. E. (1997). Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in Vivo. JBiol Chem 272,21096-21103.
    30. Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S.,Brissette, W. H., Weringer, E. J., Pollok, B. A.& Connelly, P. A. (1996). Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck-and FynT-dependent T cell activation. J Biol Chem 271,695-701.
    31. Loh, J. T., Torres, V. J.& Cover, T. L. (2007). Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res 67,4709-4715.
    32. Yang, Y, Deng, C. S., Peng, J. Z., Wong, B. C., Lam, S. K.& Xia, H. H. (2003). Effect of Helicobacter pylori on apoptosis and apoptosis related genes in gastric cancer cells. Mol Pathol 56,19-24.
    33. Kim, S. Y, Lee, Y C., Kim, H. K.& Blaser, M. J. (2006). Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell Microbiol 8, 97-106.
    34. Tomimori, K., Uema, E., Teruya, H., Ishikawa, C., Okudaira, T., Senba, M., Yamamoto, K., Matsuyama, T., Kinjo, F., Fujita, J.& Mori, N. (2007). Helicobacterpylori induces CCL20 expression. Infect Immun 75,5223-5232.
    35. Nakajima, N., Ito, Y., Yokoyama, K., Uno, A., Kinukawa, N., Nemoto, N.& Moriyama, M. (2009). The Expression of Murine Double Minute 2 (MDM2) on Helicobacter pylori-Infected Intestinal Metaplasia and Gastric Cancer. J Clin Biochem Nutr 44,196-202.
    36. Seo, J. H., Kim, K. H.& Kim, H. (2007). Role of proteinase-activated receptor-2 on cyclooxygenase-2 expression in H. pylori-infected gastric epithelial cells. Ann N YAcad Sci 1096,29-36.
    37. Li, Q., Liu, N., Shen, B., Zhou, L., Wang, Y, Wang, Y, Sun, J., Fan, Z.& Liu, R. H. (2009). Helicobacter pylori enhances cyclooxygenase 2 expression via p38MAPK/ATF-2 signaling pathway in MKN45 cells. Cancer Lett 278,97-103.
    38. Zhu, Y, Wang, C., Huang, J., Ge, Z., Dong, Q., Zhong, X., Su, Y& Zheng, S. (2007). The Helicobacter pylori virulence factor CagA promotes Erk1/2-mediated Bad phosphorylation in lymphocytes:a mechanism of CagA-inhibited lymphocyte apoptosis. Cell Microbiol 9,952-961.
    1. McGee DJ and Mobley HL. Pathogenesis of Helicobacter pylori infection. Curr. Opin. Gastroen. (2000) 16,24-31.
    2. Suerbaum S and Michetti P. Helicobacter pylori infection. N Engl J Med (2002) 347,1175-86.
    3. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev (2006) 19,449-90.
    4. IARC. Schistosomes, liver flukes, and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, France,7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum (1994) 61,1-241.
    5. Blaser MJ and Berg DE. Helicobacter pylori genetic diversity and risk of human disease. J Clin Invest (2001) 107,767-73.
    6. Blaser MJ. The biology of cag in the Helicobacter pylori-human interaction. Gastroenterology (2005) 128,1512-5.
    7. Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer (2004) 4,688-94.
    8. Peek RM, Jr., Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol (2006) 208,233-48.
    9. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science (2000)287,1497-1500.
    10. Bourzac KM, Guillemin K. Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol (2005) 7,911-9.
    11. Hatakeyama M. Helicobacter pylori CagA-a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect (2003) 5,143-50.
    12. Hanahan, D. and Weinberg, R. A. The hallmarks of cancer. Cell (2000) 100, 57-70.
    13. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Alaaho, R., Nielsen, C., Ivaska, J., Taya, Y., Lu, S. L., Lin, S., Chan, E. K., Wang, X. J., Grenman, R., Kast, J., Kallunki, T.,Sears, R., Kahari, V. M. Westermarck, J. CIP2A inhibits PP2A in human malignancies. Cell (2007) 130,51-62.
    14. Li, W., Ge, Z., Liu, C., Liu, Z., Bjorkholm, M., Jia, J. Xu, D. CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res (2008) 14,3722-3728.
    15. Tsugane S. Salt, salted food intake, and risk of gastric cancer:epidemiologic evidence. Cancer Sci (2005) 96,1-6.
    16. Fuchs CS and Mayer RJ. Gastric carcinoma. N Engl J Med (1995) 333,32-41.
    17. Correa P. Human gastric carcinogenesis:a multistep and multifactorial process-First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res (1992) 52,6735-40.
    18. Tatematsu M, Nozaki K, Tsukamoto T. Helicobacter pylori infection and gastric carcinogenesis in animal models. Gastric Cancer (2003) 6,1-7.
    19. Nozaki K, Shimizu N, Inada K, et al. Synergistic promoting effects of Helicobacter pylori infection and high-salt diet on gastric carcinogenesis in Mongolian gerbils. Jpn J Cancer Res (2002) 93,1083-9.
    20. Nag S, Das S, Chaudhuri K. In vivo induced clpB1gene of Vibrio cholerae is involved in different stress responses and affects in vivo cholera toxin production. Biochem Biophys Res Commun (2005) 331,1365-73.
    21. Sleator RD and Hill C. A novel role for the LisRK two-component regulatory system in listerial osmotolerance. Clin Microbiol Infect (2005) 11,599-601.
    22. Loh JT, Torres VJ, Cover TL. Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res (2007) 67,4709-15.
    23. Jiang X and Doyle MP. Effect of environmental and substrate factors on survival and growth of Helicobacter pylori. J Food Prot (1998) 61,929-33.
    24. Cover TL and Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. (2005) 3,320-32.
    25. Wada A, Yamasaki E, Hirayama T. Helicobacter pylori vacuolating cytotoxin, VacA, is responsible for gastric ulceration. J Biochem. (2004) 136,741-6.
    26. Gancz H, Jones KR, Merrell DS. Sodium chloride affects Helicobacter pylori growth and gene expression. J Bacteriol. (2008) 190,4100-5.
    27. McGee DJ, Langford ML, Watson EL, Carter JE, Chen YT, Ottemann KM. Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect Immun. (2005) 73,1820-7.
    28. Croxen MA, Sisson G, Melano R, Hoffman PS. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol. (2006) 188,2656-65.
    29. Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM. Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun. (2007) 75,3747-57.
    30. Godlewska R, Pawlowski M, Dzwonek A, Mikula M, Ostrowski J, Drela N, Jagusztyn-Krynicka EK. Tip-alpha (hp0596 gene product) is a highly immunogenic Helicobacter pylori protein involved in colonization of mouse gastric mucosa. Curr Microbiol. (2008) 56,279-86.
    31. Suganuma M, Yamaguchi K, Ono Y, Matsumoto H, Hayashi T, Ogawa T, Imai K, Kuzuhara T, Nishizono A, Fujiki H. TNF-alpha-inducing protein, a carcinogenic factor secreted from H. pylori, enters gastric cancer cells. Int J Cancer. (2008) 123, 117-22.
    32. Cheng P, Shi RH, Zhang HJ, Yu LZ, Zhang GX, Hao B. Effects of tumor necrosis factor-alpha inducing protein-alpha secreted by Helicobacter pylori on human gastric epithelial cells. Zhonghua Yi Xue Za Zhi. (2008) 88,1528-32.
    33. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states:involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobac-ter pylori. Proc Natl Acad Sci USA (1999) 96,14559-64.
    34. Kim MK, Sasaki S, Sasazuki S, Tsugane S. Prospective study of three major dietary patterns and risk of gastric cancer in Japan. Int J Cancer (2004) 110,435-42.
    35. Lee SA, Kang D, Shim KN, Choe JW, Hong WS, Choi H. Effect of diet and Helicobacter pylori infection to the risk of early gastric cancer. J Epidemiol (2003) 13, 162-8.
    36. Joossens JV, Hill MJ, Elliott P, et al. Dietary salt, nitrate, and stomach cancer mortality in 24 countries. European Cancer Prevention (ECP) and the INTERSALT Cooperative Research Group. Int J Epidemiol (1996) 25,494-504.
    37. De Koster E, Buset M, Fernandes E, Deltenre M. Helicobacter pylori:the link with gastric cancer. Eur J Cancer Prev (1994) 3,247-57.
    38. Furihata C, Ohta H, Katsuyama T. Cause and effect between concentration-dependent tissue damage and temporary cell proliferation in rat stomach mucosa by NaCl, a stomach tumor promoter. Carcinogenesis (1996) 17, 401-6.
    39. Shikata K, Kiyohara Y, Kubo M, et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population:the Hisayama study. Int J Cancer (2006) 119,196-201.
    40. Kato S, Tsukamoto T, Mizoshita T, et al. High salt diets dose-dependently promote gastric chemical carcinogenesis in Helicobacter pylori-infected Mongolian gerbils associated with a shift in mucin production from glandular to surface mucous cells. Int J Cancer (2006) 119,1558-66.
    41. Howson CP, Hiyama T, Wynder EL. The decline in gastric cancer:epidemiology of an unplanned triumph. Epidemiol Rev (1986) 8,1-27.
    42. You WC, Blot WJ, Chang YS, et al. Diet and high risk of stomach cancer in Shandong, China. Cancer Res (1988) 48,3518-23.
    43. Goetze O, Steingoetter A, Menne D, et al. The effect of macronutrients on gastric volume responses and gastric emptying in humans-a magnetic resonance imaging study. Am JPhysiol Gastrointest Liver Physiol (2006) 292, G11-7.
    1. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea:animal studies, molecular mechanisms and human relevance. Nat Rev Cancer (2009) 9,429-39.
    2. Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer (2009) 61,587-97.
    3. Shimizu M, Shirakami Y, Moriwaki H. Targeting Receptor Tyrosine Kinases for Chemoprevention by Green Tea Catechin, EGCG. Int J Mol Sci (2008) 9,1034-49.
    4. Myung SK, Bae WK, Oh SM, Kim Y, Ju W, Sung J, Lee YJ, Ko JA, Song JI, Choi HJ. Green tea consumption and risk of stomach cancer:a meta-analysis of epidemiologic studies. Int J Cancer (2009) 124,670-7.
    5. Kuriyama S. The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr (2008) 138,1548S-1553S.
    6. Yang CS, Ju J, Lu G, Xiao H, Hao X, Sang S, Lambert JD. Cancer prevention by tea and tea polyphenols. Asia Pac J Clin Nutr (2008) 17,245-8.
    7. Sliva D. Suppression of cancer invasiveness by dietary compounds. Mini Rev Med Chem (2008) 8,677-88.
    8. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci (2007) 81, 519-33.
    9. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer:review of epidemiological evidence. Gastric Cancer (2007) 10,75-83.
    10. Michels KB, Mohllajee AP, Roset-Bahmanyar E, Beehler GP, Moysich KB. Diet and breast cancer:a review of the prospective observational studies. Cancer (2007) 109,2712-49.
    11. Yang CS, Lambert JD, Ju J, Lu G, Sang S. Tea and cancer prevention:molecular mechanisms and human relevance. Toxicol Appl Pharmacol (2007) 224,265-73.
    12. Beltz LA, Bayer DK, Moss AL, Simet IM. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem (2006) 6,389-406.
    13. Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG):chemical and biomedical perspectives. Phytochemistry (2006) 67,1849-55.
    14. Qiu Y, Kung HJ. Signaling network of the Btk family kinases. Oncogene (2000) 19,5651-61.
    15. Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya K, Terasaki T, Shih HM, Ann DK. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene (2002) 21,8817-29.
    16. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS,KubagawaH,Mohandas T, Quan S, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell (1993) 72, 279-290.
    17. Vetri D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature (1993) 361,226-233.
    18. Sato K,Mano H, Ariyama T, Inazawa J, Yazaki Y and Hirai H. Molecular cloning and analysis of the human Tec protein-tyrosine kinase. Leukemia (1994) 8, 1663-1672.
    19. Siliciano JD, Morrow TA and Desiderio SV. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc.Natl. Acad. Sci USA (1992) 89,11194-11198.
    20. Qiu Y, Robinson D, Pretlow TG and Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain,is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc. Natl. Acad. Sci. USA (1998) 95,3644-3649.
    21. Tamagnone L, Lahtinen I, Mustonen T, Virtaneva K, Francis F, Muscatelli F, Alitalo R, Smith CI, Larsson C and Alitalo K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene (1994) 9,3683-3688.
    22. EkmanN, Lymboussaki A, Vastrik I, Sarvas K,Kaipainen A and Alitalo K. Bmx Tyrosine Kinase Is Specifically Expressed in the Endocardium and the Endothelium of Large Arteries. Circulation (1997) 96,1729-1732.
    23. Tsai YT, Su YH, Fang SS, Huang TN, Qiu Y, Jou YS, Shih HM, Kung HJ and Chen RH. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell. Biol (2000) 20,2043-2054.
    24. Xue LY, Qiu Y, He J, Kung HJ and Oleinick NL. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene (1999) 18,3391-3398.
    25. Ekman N, Arighi E, Rajantie I, Saharinen P, Ristimaki A, Silvennoinen O and Alitalo K. The Bmx tyrosine kinase is activated by IL-3 and G-CSF in a PI3K dependent manner. Oncogene (2000) 19,4151-4158.
    26. Wu YM, Huang CL, Kung HJ and Huang CY. Proteolytic activation of ETK/Bmx tyrosine kinase by caspases. J. Biol. Chem (2001) 276,17672-17678.
    27. Bagheri-Yarmand R, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ and Kumar R. Etk/Bmx tyrosine kinase activates Pakl and regulates tumorigenicity of breast cancer cells. J. Biol.Chem (2001) 276,29403-29409.
    28. Hamm-Alvarez SF, Chang A, Wang Y, Jerdeva G, Lin HH, Kim KJ and Ann DK. Etk/Bmx activation modulates barrier function in epithelial cells. Am. J. Physiol. Cell. Physio (2001) 280, C1657-C1668.
    29. Hanahan, D.& Weinberg, R. A. The hallmarks of cancer. Cell (2000) 100, 57-70.
    30. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Alaaho, R., Nielsen, C., Ivaska, J., Taya, Y, Lu, S. L., Lin, S., Chan, E. K., Wang, X. J., Grenman, R., Kast, J., Kallunki, T.,Sears, R., Kahari, V. M.& Westermarck, J. CIP2A inhibits PP2A in human malignancies. Cell (2007)130, 51-62.
    31. Yeh, E., Cunningham, M., Arnold, H., Chasse, D.,Monteith, T., Ivaldi, G., Hahn, W., C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R.& Sears, R. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol (2004) 6,308-318.
    32. Li, W., Ge, Z., Liu, C., Liu, Z., Bjorkholm, M., Jia, J.& Xu, D. CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res (2008) 14,3722-3728.
    33. Khanna, A., Bockelman, C., Hemmes, A., Junttila, M. R., Wiksten, J. P., Lundin, M., Junnila, S., Murphy, D. J., Evan, G. I., Haglund, C, Westermarck, J.& Ristimaki, A. MYC-dependent regulation and prognostic role of CIP2A in gastric cancer. JNatl Cancer Inst (2009) 101,793-805.
    34. Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, Yee AS. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J Biol Chem (2006) 281,10865-75.
    35. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res (2006) 66,2500-5.
    36. Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya K, Terasaki T, Shih HM, Ann DK. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene (2002) 21,8817-29.
    37. Wen X, Lin HH, Shih HM, Kung HJ, Ann DK. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem (1999)274,38204-10.
    38. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U s A(2001)98,7319-24.
    1. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea:animal studies, molecular mechanisms and human relevance. Nat Rev Cancer (2009) 9,429-39.
    2. Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer (2009) 61,587-97.
    3. Shimizu M, Shirakami Y, Moriwaki H. Targeting Receptor Tyrosine Kinases for Chemoprevention by Green Tea Catechin, EGCG IntJMol Sci (2008) 9,1034-49.
    4. Myung SK, Bae WK, Oh SM, Kim Y, Ju W, Sung J, Lee YJ, Ko JA, Song JI, Choi HJ. Green tea consumption and risk of stomach cancer:a meta-analysis of epidemiologic studies. Int J Cancer (2009) 124,670-7.
    5. Kuriyama S. The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr (2008) 138,1548S-1553S.
    6. Yang CS, Ju J, Lu G, Xiao H, Hao X, Sang S, Lambert JD. Cancer prevention by tea and tea polyphenols. Asia Pac J Clin Nutr (2008) 17,245-8.
    7. Sliva D. Suppression of cancer invasiveness by dietary compounds. Mini Rev Med Chem (2008) 8,677-88.
    8. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci (2007) 81, 519-33.
    9. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer:review of epidemiological evidence. Gastric Cancer (2007) 10,75-83.
    10. Michels KB, Mohllajee AP, Roset-Bahmanyar E, Beehler GP, Moysich KB. Diet and breast cancer:a review of the prospective observational studies. Cancer (2007) 109,2712-49. 11. Yang CS, Lambert JD, Ju J, Lu G, Sang S. Tea and cancer prevention:molecular mechanisms and human relevance. Toxicol Appl Pharmacol (2007) 224,265-73.
    12. Beltz LA, Bayer DK, Moss AL, Simet IM. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem (2006) 6,389-406.
    13. Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG):chemical and biomedical perspectives. Phytochemistry (2006) 67,1849-55.
    14. Qiu Y, Kung HJ. Signaling network of the Btk family kinases. Oncogene (2000) 19,5651-61.
    15. Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya K, Terasaki T, Shih HM, Ann DK. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell
    survival and proliferation. Oncogene (2002) 21,8817-29.
    16. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS,KubagawaH,Mohandas T, Quan S, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell (1993) 72, 279-290.
    17. Vetri D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature (1993) 361,226-233.
    18. Sato K,Mano H, Ariyama T, Inazawa J, Yazaki Y and Hirai H. Molecular cloning and analysis of the human Tec protein-tyrosine kinase. Leukemia (1994) 8, 1663-1672.
    19. Siliciano JD, Morrow TA and Desiderio SV. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc.Natl. Acad. Sci USA (1992) 89,11194-11198.
    20. Qiu Y, Robinson D, Pretlow TG and Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain,is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc. Natl. Acad. Sci. USA (1998) 95,3644-3649.
    21. Tamagnone L, Lahtinen I, Mustonen T, Virtaneva K, Francis F, Muscatelli F, Alitalo R, Smith CI, Larsson C and Alitalo K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene (1994) 9,3683-3688.
    22. EkmanN, Lymboussaki A, Vastrik I, Sarvas K,Kaipainen A and Alitalo K. Bmx Tyrosine Kinase Is Specifically Expressed in the Endocardium and the Endothelium of Large Arteries. Circulation (1997) 96,1729-1732.
    23. Tsai YT, Su YH, Fang SS, Huang TN, Qiu Y, Jou YS, Shih HM, Kung HJ and Chen RH. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell. Biol (2000) 20,2043-2054.
    24. Xue LY, Qiu Y, He J, Kung HJ and Oleinick NL. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene (1999) 18,3391-3398.
    25. Ekman N, Arighi E, Rajantie I, Saharinen P, Ristimaki A, Silvennoinen O and Alitalo K. The Bmx tyrosine kinase is activated by IL-3 and G-CSF in a PI3K dependent manner. Oncogene (2000) 19,4151-4158.
    26. Wu YM, Huang CL, Kung HJ and Huang CY. Proteolytic activation of ETK/Bmx tyrosine kinase by caspases. J. Biol. Chem (2001) 276,17672-17678.
    27. Bagheri-Yarmand R, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ and Kumar R. Etk/Bmx tyrosine kinase activates Pakl and regulates tumorigenicity of breast cancer cells. J. Biol.Chem (2001) 276,29403-29409.
    28. Hamm-Alvarez SF, Chang A, Wang Y, Jerdeva G, Lin HH, Kim KJ and Ann DK. Etk/Bmx activation modulates barrier function in epithelial cells. Am. J. Physiol. Cell. Physio (2001) 280, C1657-C1668.
    29. Hanahan, D.& Weinberg, R. A. The hallmarks of cancer. Cell (2000) 100, 57-70.
    30. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Alaaho, R., Nielsen, C., Ivaska, J., Taya, Y, Lu, S. L., Lin, S., Chan, E. K., Wang, X. J., Grenman, R., Kast, J., Kallunki, T.,Sears, R., Kahari, V. M.& Westermarck, J. CIP2A inhibits PP2A in human malignancies. Cell (2007)130, 51-62.
    31. Yeh, E., Cunningham, M., Arnold, H., Chasse, D.,Monteith, T., Ivaldi, G., Hahn, W., C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R.& Sears, R. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol (2004) 6,308-318.
    32. Li, W., Ge, Z., Liu, C., Liu, Z., Bjorkholm, M., Jia, J.& Xu, D. CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res (2008) 14,3722-3728.
    33. Khanna, A., Bockelman, C., Hemmes, A., Junttila, M. R., Wiksten, J. P., Lundin, M., Junnila, S., Murphy, D. J., Evan, G. I., Haglund, C., Westermarck, J.& Ristimaki, A. MYC-dependent regulation and prognostic role of CIP2A in gastric cancer. J Natl Cancer Inst (2009) 101,793-805.
    34. Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, Yee AS. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J Biol Chem (2006) 281,10865-75.
    35. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res (2006) 66,2500-5.
    36. Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya K, Terasaki T, Shih HM, Ann DK. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene (2002) 21,8817-29.
    37. Wen X, Lin HH, Shih HM, Kung HJ, Ann DK. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem (1999)274,38204-10.
    38. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R. Stat3-mediated Myc expression is
    required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U SA (2001) 98,7319-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700