用户名: 密码: 验证码:
煤层气生成过程中的矿物/金属元素催化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于黔西-滇东地区上二叠统煤样,采用油气地球化学、煤岩学、矿物学、催化化学等的理论与方法,以原煤及原煤+黄铁矿和(或)过渡金属元素Mo的催化生气热模拟实验为主要手段,探讨了煤中矿物/金属元素催化生气的行为、过程和地球化学机理,取得如下创新性认识:
     第一,鉴识了黔西-滇东晚二叠世煤中具有潜在催化生气作用的矿物和金属元素的产出特征。煤中含有理论上具有催化作用的矿物和过渡金属元素,矿物以黄铁矿和高岭石最为常见,Ti、V、Cr、Mn、Co、Ni、Y、Z r等的算术平均含量高于中国煤平均值。其中,多数煤样中单一或多种过渡金属元素含量高于全国平均值3倍以上,Mn、Ni、Co的含量存在较大差异。
     第二,发现煤中矿物/过渡金属元素使原煤有机质具有更大的生烃潜力。黄铁矿对甲烷具有显著的正催化作用;同时加入黄铁矿和Mo时,煤层气含有更多数量的重烃气,并有利于烯烃的产出;Mo对C_(7~14)具有显著的催化作用,但同时有黄铁矿的参与则会使C7~C14产率降低;黄铁矿/Mo的加入,影响到芳烃的产率高峰;较高的过渡金属单质含量对煤中本身含有的硫元素转化为H_2S气体有抑制作用。在中~高温度范围内,催化剂对有机质生烃具有催化作用,升温条件能明显影响黄铁矿对芳烃、饱和烃和沥青质的催化作用,反映古地温场条件是催化生烃的一个重要影响因素。此外,随着模拟温度的增加,4个样品系列均表现出Pr/nC_(17)、Ph/nC_(18)和Pr/Ph比值降低的共同特征。
     第三,就催化生烃过程中碳同位素的演化规律取得某些新的认识。研究发现,催化气δ~(13)C_1变化范围与华南煤层气δ~(13)C_1分布范围一致,黄铁矿与Mo的加入明显使δ~(13)C_1偏重。模拟温度增加,甲烷同位素经历了先变轻再变重的过程。同一温阶产生的甲烷及其同系物,具有δ~(13)C_1<δ~(13)C_2<δ~(13)C_3的特征。
     第四,分析了煤中矿物/金属元素催化生烃的动力学过程,建立了催化成因煤层气判识模式。该模式由矿物/元素地球化学和油气地球化学指标构成。计算了催化生气过程中甲烷及总气态烃生成的动力学参数,发现原煤+矿物/金属元素可降低生气所需要的反应活化能,从而对甲烷生成起到催化作用。结合研究区上二叠统煤层埋藏-受热史,估算了不同地质时期煤的原始催化产气率。在此基础上,综合煤中矿物种类、过渡金属元素含量和煤的热演化程度,初步预测了区内煤层气富集区带分布。
The gas formation mechanism catalyzed by mineral/metal elements were discussed and studied based on the coal from late Permian in Eastern Yunnan and Western Guizhou, using gas geochemistry, coal petrology, mineralogy, catalytic chemistry etc., and combining with the thermal simulation experiment of coal alone and the coal in present of pyrite or Mo,. Innovative understanding is as followings:
     (1) The output characteristics of minerals and metal elements which have potential catalysis during gas generation in coal of late Permian from Eastern Yunnan and Western Guizhou were identified. The coals contain the minerals that are catalytic in theory. Pyrite and kaolinite are the main minerals. The content of Ti, Cr, Mn V, Co, Ni, Y, and Zr and elements are higher than the average level of China coal. Solo or manifold transition metal elements contents in most coal seams are over 3 times higher than national average. The occurrences of Mn, Ni and Co in coal are various.
     (2) Mineral/elements made the coal organic have greater potential during hydrocarbon generation. Pyrite mainly had a positive and significant catalytic role to the methane. Adding the pyrite and Mo at the same time made the coal samples generate heavier hydrocarbon gases, and pyrite and Mo were helpful to the olefins output. Transition metal Mo had remarkable catalytic effect on the C_(7~14) forming, but if there were also pyrite exist at same time, it would make C_(7~14) reduce. Pyrite and Mo influenced aromatics hydrocarbon and asphalt qualitative yield peak. High content of transition metal elementals can inhibit the H_2S forming from the sulfur of coal itself. Catalysts had catalysis of hydrocarbon generation in middle to high temperature range. Heating rate affected the pyrite catalysis for saturated hydrocarbons, aromatic hydrocarbon and asphalt, reflecting geological geothermal conditions was an important influence factors for mineral/elements catalysis in the generation of hydrocarbons. Pr/nC17,Ph/nC18 and Pr/Ph were decreased along with the increase of temperature.
     (3) Some new understanding on evolution law of carbon isotopes during the catalytic hydrocarbon-generating process was obtained. Results show that theδ~(13)C_1 changed in theδ~(13)C_1 change range of south China coal. Pyrite and Mo made theδ~(13)C_1 value heavier.δ~(13)C_1 had the same change way which was decreases at first, and then increases along with the increase of temperature. The gas carbon isotope have the same characteristics which isδ~(13)C_1<δ~(13)C_2<δ~(13)C_3.
     (4) The dynamic process of the hydrocarbon generation by minerals/metal elements catalysis was analyzed and identified mode of coal bed methane generation by minerals/ metal elements catalysis which was composed by minerals/metal elements geochemical characteristics and geochemical index of oil and gas was established. The dynamic parameters of methane and the total gaseous hydrocarbon generation were calculated. The results show that activation energy significantly reduced in presence of mineral/metals, which proved that minerals/metal elements have catalysis during methane formation. Combining with buried evaluation process of Permian coal in studied area, original gas yield from different historical periods were estimated. On this basis, combining with the minerals variety, transition metal elements contents and the evolution stages of coal, coal bed methane favorable exploration areas were forecasted primarily.
引文
[1] Andresen B, Barth T, Irwin H. Yields and carbon isotopic composition of pyrolysis products from artificial maturation processes [J]. Chemical Geology, 1993, 106: 103-119.
    [2] Attar A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: A Review [J]. Fuel, 1978, 57(4): 201-212.
    [3] Ayers W B, J r , Kaiser W R. Thermal maturity of fruit land coal and composition of fruitland formation and pictured cliffs sandstone gases. Coal bed Methane in the Upper Cretaceous Fruitland Formation , San J uan Basin , New Mexico and Colorado. 1994. 165-186.
    [4] Bouska V. Geochemistry of coal. Elsevier, Amsterdam and Academia, Praha. 1981:1-284.
    [5] Changchun Pan, Lanlan Jiang, Jinzhong Liu, Shuichang Zhang, Guangyou Zhu. The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experiments[J]. Original Research Article Organic Geochemistry, 2010, 41( 7) 2010, 611-626
    [6] Christina G. Vassileva, Stanislav V. Vassilev. Behaviors of inorganic matter during heating of Bulgarian coals[J]. Fuel Processing Technology, 2005, 86: 1297-1333.
    [7] Dembieki J H. Mineral matrix effete during analytical pyrolysis of source rocks[J]. Association Petroleum Geochemistry Exploration Bull, 1990, 6:78-105.
    [8] Dembieki J H. The effects of the mineral matrix on the determination of kinetic parameters using modified rock eval pyrolysis[J]. Organic Geochemistry, 1992, 18(4): 531-539.
    [9] Disnar JR, Sureau JF. Organic matter in ore genesis: progress and perspectives[J]. Organic Geochemistry, 1990, 16(1-3): 577-599.
    [10] D. Vamvuka, S. Troulinos, E. Kastanaki. The effect of mineral matter on the physical and chemical activationof low rank coal and biomass materials[J]. Fuel, 2006, 85: 1763-1771.
    [11] Elie M, Cathelineau M, Ruck R, et al. Interactions between clay minerals and kerogen during confined pyrolysis: Mineralogical and chemical evidences[J]. 209th ACS National Meeting, Division of Geochemistry, Anaheim, CA, 1995:61.
    [12] Franklin H D, Peters W A, et al. Effect of calcium minerals on the rapid pyrolysis of bituminous coal[J]. Industrial Engineering Chemica Process Design & Development, 1981, 20 (4): 670-674.
    [13] Farcasiu M, Smith C, Pradhan V R. Iron Commpounds and Iron Catalysts: Activity in Reactiond Relevant to Direct Coal Liquefaction[J]. Fuel Processing Technology, 1991, 29: 199-208.
    [14] Ganguly B, Huggins E, Rao K R P et al. Mossbauer Studies of Febased Ultrafine Coal Liquefaction Catalysts[J]. American Chemical Society Division of Fuel Chemistry Prediction, 1993, 38: 190-193.
    [15] Huiping Hu, Qiyuan Chen, Zhoulan Yin, Pingmin Zhang. Thermal behaviors of mechanically activated pyrites by thermo-gravimetry (TG) [J]. Thermochimica Acta, 2003, 398: 233-240.
    [16] Hunt JM. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation[J]. AAPG Bull, 1991, 75: 795-807.
    [17] Ibarra J V, Bonet A J, Moliner Rafael. Release of the volatile sulfur compounds during low temperature pyrolysis of coal [J]. Fuel, 1994, 73(6): 933-939.
    [18] Ibrahim MM, Seehra M S. Characterization of An Iron-based Catalysts for Direct Coal Liquefaction[J]. Energy and Fuels, 1994, 8: 48-50.
    [19] Kortenski J, Sotirov A. Trace and major element content and distribution in Neogene lignite from the Sofia Basin, Bulgaria. International Journal of Coal Geology, 2002, 52(1-4):63-82.
    [20] Labiano F G, Hampartsoumian E, Willians A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal [J]. Fuel, 1995, 74(7): 1072-1079.
    [21] Lambert J M. Alternative interpretation of coal liquefaction catalysis by pyrite[J]. Fuel, 1982, 61: 777.
    [22] Lewan M D. Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: EngelMH, Macko S A. Organic Geochemistry: Principles and Applications. New York: Plenum Press, 1993: 419-442.
    [23] Mango FD. Transition metal catalysis in the generation of petroleum and natural gas[J]. Geochimica et Cosmochimica Acta, 1992a, 56(1): 553-555.
    [24] Mango FD. Transition metal catalysis in the generation of petroleum: A genetic anomaly in Ordovician oils[J]. Geochimica et Cosmochimica Acta, 1992b,56(10): 3851-3854.
    [25] Mango F D, Hightower J W, James A T. Role of transition-metal catalysis in the formation of natural gas[J]. Nature, 1994, 368: 536-538.
    [26] Mango FD. Transition metal catalysis in the generation of natural gas[J]. Organic Geochemistry, 1996, 24: 977-984.
    [27] Mango F D, Hightower J W. The catalytic decomposition of petroleum into natural gas[J]. Geochimica et Cosmochimica Acta, 1997, 61: 5347-5350.
    [28] Medina J C, Butala S J, Bartholomew C H, et al. Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation[J]. Geochimica et Cosmochimica Acta, 2000a, 64(4), 643-649.
    [29] Medina J C, Butala S J, Bartholomew C H, et al. Iron-catalyzed CO2 hydrogenation as a mechanism for coalbed gas formation[J]. Fuel, 2000b, 79: 89-93.
    [30] Parnell J. Metal enrichment in bitumens from Carboniferous-hosted ore[J]. Chemical Geology, 1992, 99(1-3): 115-124.
    [31] Price L C, Schoel M. Constrains on the origins of hydrocarbon gas from compositions of gases at their site of origin[J]. Nature, 1995, 378:368-371.
    [32] Ramaswamy G.. A field evidence for mineral-catalyzed formation of gas during coal maturation[J]. Oil and Gas Journal, 2002, 100 (38): 32-36.
    [33] Rao V U S. An Evaluation of Particle Size Measurement Techniques for Dispersed Iron Catalystss[J]. American Chemical Society Division of Fuel Chemistry Prediction, 1993, 38: 184-185.
    [34] Rightmire C. T., Eddy G. E., Kirr J. N. Coalbed methane resources of the United States[R]. AAPG Studied in Geology Series 17,Ⅶ-Ⅷ, 1-14.AAPG,Tulsa,Oklahoma,USA.1984.
    [35] Scott A R, Kaiser W R , Ayers W B , et al.. Thermogenic and secondary biogenic gases, San Juan Basin. AAPG Bulletin ,1994 , 78 (8): 1186-1209.
    [36] Stach E,Mackowsky M-Th, Teichmuller M et al. Stach’s Textbook of Coal Petrology.Berlin Stuttgart: Gebruder Borntraeger. 1982:12-89.
    [37] Jerry Sweeney, Suhas Talukdar, Alan Burnham, Carlos Vallejos. Pyrolysis kinetics applied to prediction of oil generation in the Maracaibo Basin, Venezuela Organic Geochemistry, 1990, 16(1-3): 189-196.
    [38] Suzuki T, Yamada H, Wantanebe Y. XRD Study of Iron Exchanged into Victorian Brown Coal[J]. Energy and Fuels, 1989, 3: 707-710.
    [39]包建平.甲基菲比值与有机质热演化的关系[J].江汉石油学院学报, 1992, 14(4): 8-13.
    [40]白鲁刚,颜涌捷,李庭深等.煤与生物质共液化的催化反应[J].化工冶金, 2000, 21(2): 198-203.
    [41]柴永明,安高军,柳云骐等.过渡金属硫化物催化剂催化加氢作用机理[J].化学进展, 2007, 19(2/3): 234-242.
    [42]曹慧缇,张义纲,徐翔等.碳酸盐岩生烃机制的新认识[J].石油实验地质, 1991, 13(3): 223-237.
    [43]陈广坡,徐国盛,王天奇等.论油气成藏与金属成矿的关系及综合勘探[J].地学前缘, 2008, 15(2): 200-206.
    [44]戴金星等.煤成气地质研究[M].石油工业出版社,1987,156-170.
    [45]戴金星,裴锡古,戚厚发.中国天然气地质学(卷一),北京:石油工业出版社, 1992.
    [46]代世峰,任德贻,邵龙义,赵明君.黔西晚二叠世煤地球化学性质变异及特殊组构的火山灰成因[J].地球化学, 2003, 32(3): 239-247.
    [47]代世峰,任德贻,李丹, Chen-Lin CHOU,雒昆利.贵州大方煤田主采煤层的矿物学异常及其对元素地球化学的影响[J].地质学报, 2006, 80(4): 589-595.
    [48]杜乐天.天然气地球科学研究成果介绍与分析——以索科洛夫的著作为主线[J].天然气地球科学, 2007, 18(1): 1-18.
    [49]傅家谟.煤成烃地球化学[M].北京:科学出版社,1990, 12, 48.
    [50]付少英,彭平安,张文正等.鄂尔多斯盆地上古生界煤的生烃动力学研究[J].中国科学(D辑). 2002, 32(10):812-818.
    [51]关德师等.煤和煤系泥岩热模拟实验.北京石油勘探开发科学研究院,内部资料, 1985
    [52]干晓锐.滇东黔西上二迭统峨嵋山玄武岩中的煤系及其地层意义[J].北京工业职业技术学院学报. 2007, 6(3): 64-67.
    [53]桂宝林,王朝栋.黔西地区煤层气构造特征[J].云南地质, 2000, 19(4): 321-351.
    [54]桂宝林等.黔西滇东煤层气地质与勘探[M].云南科技出版社, 2001: 58.
    [55]郭占谦,杨兴科.中国含油气盆地的多种生烃机制[J].石油与天然气地质, 2000, 21( 1): 50-64.
    [56]郭占谦,杨海博.中国陆壳是富烃陆壳[J].新疆石油地质, 2005, 26(3): 326-330.
    [57]高先志,张万选,张厚福.矿物质对热解影响的研究[J].石油实验地质, 1990, 12(2):201-205.
    [58]韩德馨.中国煤岩学.徐州:中国矿业大学出版社,1996: 599.
    [59]金之钧,杨雷,曾溅辉等.东营凹陷深部流体活动及其生烃效应初探[J].石油勘探与开发, 2002, 29(2): 42-44
    [60]姜兰兰,潘长春,刘金钟.矿物对原油裂解影响的实验研究[J].地球化学, 2009, 38(2): 165-173.
    [61]靳永斌,肖贤明,唐永春,田辉,张同伟.正构二十四烷裂解成气碳同位素动力学模拟及其地质意义[J].沉积学报, 27(3): 537-545.
    [62]李大华,陈坤,邓涛等.中国西南地区煤中砷的分布及富集因素探讨[J].中国矿业大学学报, 2002, 31(4): 419-422.
    [63]李大华,唐跃刚,陈坤,邓涛,程方平,刘东.贵州晴隆区K6煤层的元素地球化学特征[J].地球学报, 2006, 27(2): 135-140.
    [64]李晶莹,陶明信.国际煤层气组成和成因研究[J].地球科学进展, 1998, 12(5): 487-473.
    [65]李荣生,甄开吉,王国甲.催化作用基础[M].北京:科学出版社, 1990: 219.
    [66]李忠.试论油气生成过程中粘土矿物的催化作用[J].石油实验地质, 1992, 14(1): 59-63.
    [67]李术元,林世静,郭绍辉等.无机盐类对干酪根生烃过程的影响[J].地球化学, 2002a, 31(1):15-19.
    [68]李术元,林世静,郭绍辉等.矿物质对干酪根热解生烃过程的影响[J].石油大学学报(自然科学版), 2002b, 26 (1) : 69-71.
    [69]李贤庆,肖贤明,田辉.碳同位素动力学模拟及其在天然气评价中的应用[J].地学前缘, 2005, 12(4):543-550.
    [70]廖代伟.催化科学导论[M].北京:化学工业出版社, 2006, 1: 5, 31-34.
    [71]刘宝泉等.上元古界下马岭页岩干酪根的油气生成模拟实验[J].石油实验地质, 1990, 12(2): 147-160.
    [72]刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报, 1998, 43(11):1187-1191
    [73]刘洛夫,毛东风,妥进才等.源岩生烃模拟实验的研究现状[J].矿物岩石地球化学通报, 1997, 16(1): 55-57.
    [74]刘洛夫,李术元.烃源岩催化生烃机制研究进展[J].地质评论, 2000, 46(5): 491-498.
    [75]刘文汇.油气形成的力化学作用:油气地质理论思考之一[J].地球科学进展, 1999, 14(4): 340-344.
    [76]刘文汇,王万春.烃类的有机(生物)与无机(非生物)来源—油气成因理论思考之二[J].矿物岩石地球化学通报, 2000, 19(3): 179-186.
    [77]刘文汇,宋岩,刘全有,秦胜飞,王晓锋.煤岩及其主显微组份热解气碳同位素组成的演化[J].沉积学报, 2003, 21(1): 183-190.
    [78]刘英俊.元素地球化学[M]. 1984,科学出版社.
    [79]卢红选,孟自芳,李斌等.微量元素Mo对褐煤有机质热解成烃的影响[J].天然气地球科学, 2007, 18(1):104-106.
    [80]宁占武,王卫华,温美娟.过渡金属对有机质热解生烃过程的影响[J].天然气地球科学, 2004, 15(3) : 317-319.
    [81]聂爱国,谢宏.峨眉山玄武岩浆与贵州高砷煤成因研究[J].煤田地质与勘探, 2004, 32(1): 8-10.
    [82]潘长春,耿安松,钟宁宁,刘金钟.矿物和水对干酪根热解生烃作用的影响——Ⅲ.甾、藿烷(烯)的形成与热演化[J].地质学报, 2006, 80(3): 446-453.
    [83]秦艳,彭平安,于赤灵,刘金钟.硫在干酪根裂解生烃中的作用[J].科学通报, 2004, 49(1): 9-16.
    [84]秦勇,唐修义,叶建平等.中国煤层甲烷稳定碳同位素分布与成因探讨[J].中国矿业大学学报, 2000, 29(2): 113-119.
    [85]秦勇.国外煤层气成因与储层物性研究进展与分析[J].地学前缘, 2005, 12(3): 289-298.
    [86]秦勇,王文峰,李壮福,夏筱红,吴艳艳.海侵作用影响下的高分辨煤相序列及其古泥炭沼泽发育模式——以山西北部安太堡上石炭统太原组11号煤层为例[J].地质学报, 2008, 82(2): 234-246.
    [87]任德贻等著.煤的微量元素地球化学[M].科学出版社, 2006:59.
    [88]沈平等.气态烃同位素组成特征及煤型气判识[J].中国科学B辑, 1987, 6: 647-656.
    [89]石卫.烃源岩在水介质下热压模拟的初步研究.第五届全国有机地球化学会议论文,1992.
    [90]孙林兵,倪中海,张丽芳等.煤直接液化铁基催化剂的研究进展[J].煤炭技术, 2002, 21(11): 65-67.
    [91]孙镇城,杨藩,张枝焕等.中国新生代成化湖泊沉积环境与油气生成[M].北京:石油工业出版社, 1997. 133-137.
    [92]唐修义,黄文辉.中国煤中微量元素.北京:商务印书馆, 2004.
    [93]陶明信.煤层气地球化学研究现状与发展趋势[J].自然科学进展, 2005, 15 (6): 618-622.
    [94]陶伟,邹艳荣,刘金钟,张馨,张长春.压力对粘土矿物催化生烃的影响[J].天然气地球化学, 2008, 19(4): 548-570.
    [95]田辉,王招明,肖中尧,李贤庆,肖贤明.原油裂解成气动力学模拟及其意义[J].科学通报, 2006, 51(15): 1821-1827.
    [96]同济大学海洋地质系编.海陆相地层辨认标志[M].北京:科学出版杜, 1980.
    [97]王小川.黔西滇东毕节煤矿区晚二叠世煤层稀土元素的物质来源[J].贵州地质, 2006, 4:534-546.
    [98]王强,杨瑞东,鲍淼,魏怀瑞,王伟.毕节煤矿区晚二叠世煤层稀土元素的物质来源[J].贵州地质, 2006, 4:534-546
    [99]王文祥.煤中伴生元素的地球化学指相研究[J].煤炭学报, 1996, 21(1): 12-17.
    [100]王志忠,刘旭光,凌大琦.我国煤直接液化技术的研究与开发[J].煤炭加工与综合利用, 1993, (1) : 48-49.
    [101]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社.1994:64-71.
    [102]吴艳艳,秦勇,易同生,夏筱红.凯里高硫煤中某些微量元素的富集及成因分析[J].地球化学, 2008, 37(6): 615-622.
    [103]吴艳艳,秦勇.矿物催化煤层气生成机理研究进展[J].地球科学进展, 2009, 24(8): 882-890.
    [104]翁斯灏,吴幼青,高晋生等.煤加氢液化铁催化剂的穆斯保尔谱研究Ⅰ铁硫化物在加氢反应中的转化及活性机理[J].燃料化学学报, 1990a, 18(2): 97-100.
    [105]翁斯灏,高晋生,吴幼青等.煤加氢液化铁催化剂的穆斯保尔谱研究Ⅱ氧化铁在不同反应条件下的转化及催化活性[J].燃料化学学报, 1990b, 18(2): 103-108.
    [106]肖芝华,胡国艺,钟宁宁等.矿物中的微量元素对有机质产气的影响[J].中国石油大学学报(自然科学版), 2008, 32(1): 33-36.
    [107]熊永强,耿安松,王云鹤.干酪根二次生烃动力学模拟实验研究[J].中国科学(D辑), 2001, 31(4): 315-320.
    [108]熊永强,耿安松,刘金钟等.生烃动力学模拟实验结合GC―IRMS测定在有效气源岩判识中的应用[J].地球化学. 2002, 31(1): 21-25.
    [109]熊永强,耿安松,张海祖等.油型气的形成机理及其源岩生烃机理恢复[J].天然气工业, 2004, 24(2):11-13.
    [110]解启来,周中毅,陆明勇.碳酸盐矿物结合有机质—一种重要的成烃物[J].矿物学报, 2000, 20(1): 59-62.
    [111]徐彬彬,何明德主编.贵州煤田地质.徐州:中国矿业大学出版社, 2003:216.
    [112]徐永昌等著.天然气成因理论及应用[M].北京:科学出版社, 1994:24-25.
    [113]杨建业.贵州普安矿区晚二叠世煤中微量元素的质量分数和赋存状态[J].燃料化学学报, 2006, 32(2):126 -135.
    [114]杨建业.贵州普安矿区晚二叠世煤中贵金属元素的赋存状态和地质成因[J].地球学报, 2007a, 28(3):277-282.
    [115]杨建业,李璐.低熟煤中常量、微量元素与煤生烃潜力参数的相关性研究[J].燃料化学学报. 2007b, 35(1): 10-15.
    [116]易平贵,俞庆森,宗汉兴.黄铁矿化学脱硫的热力学分析[J].煤炭转化, 1999, 22(1): 49-52.
    [117]中国煤田地质总局著.中国煤岩学图鉴.中国矿业大学出版社. 1996:51
    [118]张立安,朱继升,徐龙等.分形学在煤直接液化催化剂表征中的应用[J].煤炭转化, 2000, 23(3): 48-52.
    [119]张敏,林壬子.试论轻烃形成过程中过渡金属的催化作用[J].地质科技情报, 1994, 13 (3) : 75-80.
    [120]张国防,吴德云,马金钰.盐湖相石油的早期生成[J].石油勘探与开发, 1993, 20 (5): 42-52.
    [121]张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展, 1996, 11(3): 282-286.
    [122]张士亚,郜建军,蒋泰然.利用甲、乙烷碳同位素判别天然气类型的一种新方法[A].石油天然气地质文集.第一集《中国煤成气研究》地矿部石油地质所编[C].北京:地质出版社, 1988.
    [123]张水昌,帅燕华,朱光有. TSR促进原油裂解成气:模拟实验证据[J].中国科学D辑:地球科学, 2008, 38(3): 307-311.
    [124]张海祖.热成因天然气生成动力学模拟及其地质应用[D].中国科学院研究生院(广州地球化学研究所), 2005.
    [125]赵桂瑜,李术元,刘洛夫.碳酸盐岩干酪根催化降解生烃过程及动力学研究[J].地质科学, 2005, 40(1): 47-54.
    [126]赵师庆,王飞宇等.变质煤中镜质组有机地球化学研究[J].石油实验地质, 1988, 10(2): 160-168.
    [127]朱炳泉.关于峨眉山溢流玄武岩省资源勘查的几个问题[J].中国地质, 30(4): 406-412.
    [128]朱廷钰,刘丽鹏,王洋等.氧化钙催化煤温和气化研究[J].燃料化学学报, 2000, 28(1): 36-39.
    [129]祖小京,妥进才,张明峰,马万云.矿物在油气形成过程中的作用[J].沉积学报, 2007, 25(2): 298-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700