用户名: 密码: 验证码:
基于副载波技术的高速数字光纤通信的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光脉冲在光纤中传输特性的研究,具有重要的理论意义和广阔的应用前景。研究并理解决定光脉冲在单模光纤中传输的物理本质是设计光纤、设计与建设光纤通信网的最本质要素之一。在理解决定光脉冲在单模光纤中传输的物理本质的基础上,深入研究基于多波长副载波复用(SCM/WDM)技术的光纤通信系统。SCM/WDM光纤通信系统的最大优势是相应的射频技术比光技术成熟的多。射频振荡器的稳定性和射频领域中滤波器的选频性比相应的光学器件所对应的特性要好的多。射频振荡器的相位噪声低,使得相干检测在射频中比在光频中容易实现的多。
     为了有效抑制SCM/WDM光纤通信系统中的群速度色散和非线性效应,利用SCM/WDM光纤通信系统中基带信号经过两次调制的特点,提出了一种在SCM/WDM系统中容易实现且行之有效的抑制载波的光学单边带调制技术。单边带调制技术可以有效地减小群速度色散对信号的劣化、增加系统的光谱利用率。抑制载波则可以减小调制器的外加电场、增大调制深度,同时可以消除因调制器电压的升高而激发的一系列有害的非线性效应,减小光纤中的各种非线性效应。搭建了10Gbit/s SCM/WDM光纤通信系统的实验平台,并对系统的性能进行了测试和评估。主要内容包括:
     1.从经典电磁理论出发,深入研究单模光纤中群速度色散形成的机理与特性。论述了单信道光纤通信系统中比特率B、传输距离L、群速度色散之间的关系。从麦克斯韦方程组出发,引入非线性本构关系,得到了光脉冲在GVD、SPM和损耗影响下的演化方程——非线性薛定谔方程。利用非线性薛定谔方程详细讨论了光信号在非线性色散介质中的传输特性。
     2.使用时频域联合分析法描述光脉冲在光纤中的非线性传输特性。分析结果表明,时频域联合分析法能够较为全面地描述光脉冲的信息,进而较为全面地描述光纤通信系统的性能。
     3.详细讨论了SCM/WDM光纤通信系统的性能。在SCM/WDM光纤通信系统中由于各相邻射频信号的信道间隔非常窄,因而光纤的非线性效应对系统的影响较为严重,必须重点加以讨论。
     4.利用SCM/WDM光纤通信系统中基带信号经过两次调制的特点,提出了一种容易实现且行之有效的抑制载波的光学单边带调制技术。单边带调制技术有效地减小了群速度色散对信号的劣化、增加了系统的光谱利用率。抑制载波技术增大了调制深度,同时消除了因调制器电压的升高而激发的一系列有害的非线性效应,减小了光纤中的各种非线性效应。
     5.综合考虑GVD、PMD、XPM、FWM等效应对系统的影响,设置并优化了10Gbit/s SCM/WDM光纤通信系统的基本参数。依照设置的基本参数搭建了相应的实验平台并对系统的性能进行了测试和评估,测试结果与理论分析一致。
     6.初步研究了40Gbit/s SCM/WDM光纤通信系统。综合考虑GVD、PMD、XPM、FWM等效应对系统的影响,设计了40Gbit/s SCM/WDM光纤通信系统的基本参数。
The study of optical pulse propagation in optical fibers is interesting from both fundamental and applied perspectives. Understanding the physics behind the processes that determine the evolution of optical pulse in single-mode fibers is essential for the design and performance analysis of optical fiber communication systems. Based on the understanding, the performance of high-speed optical fiber transmission using sub-carrier multiplexing is investigated deeply. A significant advantage of SCM is that microwave devices are more mature than optical devices; the stability of a microwave oscillator and the frequency selectivity of a microwave filter are much better than their optical counterparts. In addition, the low phase noise of RF oscillators makes coherent detection in the RF domain easier than optical coherent detection.
     In order to reduce the impact of fiber chromatic dispersion and nonlinear interference on SCM/WDM systems, a kind of facile carrier-suppressed optical single-side-band(SSB) modulation is used. Optical SSB modulation at the transmitter is employed to significantly decrease dispersion penalty and increase the optical bandwidth efficiency. Optical carrier suppression(CS) is applied to increase the modulation efficiency which can suppress nonlinear effect in optical fiber and eliminate intermodulation distortion which comes from nonlinear modulation characteristic of optoelectronic modulators simultaneously. A 10Gbit/s SCM test bed has been set up and the performance is investigated.
     The details are described as follows:
     1. Explore the formation mechanism and characteristic of group velocity dispersion(GVD) in single mode fiber from classical electromagnetism theory. The relations between GVD、bit rate and distance are presented. The optical pulse's evolution equation-Nonlinear Schrodinger Equation(NLSE) under the influence of GVD, SPM and loss is educed from Maxwell's equations with the introduction of non-linear constitutive relation. Then nonlinear pulse propagation in optical fibers is investigated through analyzing corresponding NLSE.
     2. Analyze nonlinear pulse propagation in optical fibers using joint time-frequency (TF) representation. The TF representation is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
     3. The performance of high-speed digital fiber-optic transmission using subcarrier multiplexing (SCM) is investigated. For SCM/WDM system, the nonlinear interference between subcarrier channels is severe because the channel spacing is very narrow, nonlinear crosstalk must be considered.
     4. In order to reduce the impact of fiber chromatic dispersion and nonlinear interference on SCM/WDM systems, a kind of facile carrier-suppressed optical single-side-band(SSB) modulation is used. Optical SSB modulation at the transmitter is employed to significantly decrease dispersion penalty and increase the optical bandwidth efficiency. Optical carrier suppression(CS) is applied to increase the modulation efficiency which can suppress nonlinear effect in optical fibers and eliminate intermodulation distortion which comes from nonlinear modulation characteristic of optoelectronic modulators.
     5. In order to optimize the system performance, tradeoffs have been made between data rate per subcarrier, levels of modulation, channel spacing between subcarriers, optical power, and modulation indexes. A 10 Gbit/s SCM test bed has been set up and the performance is investigated. The measured results agree well with the analytical prediction.
     6. Preview the system configurations of 40 Gbit/s digital optical transmission using SCM. The performance is investigated analytically. GVD、PMD、XPM、FWM on SCM/WDM systems are analyzed carefully and tradeoffs have been made between them.
引文
[1.1]刘增基,周洋溢.“光纤通信”,西安电子科技大出版社2002 pp162-163
    [1.2]Govind P.Agrawal Nonlinear Fiber Optics,Third Edition & Application of Nonlinear Fiber Optics pp263-266
    [1.3]Gerd Keiser,"Optical Fiber Communications Third Edition" Electronics Industry Gerd Keiser著,李玉权,崔敏,蒲涛等译“光纤通信,第三版”,电子工业出版社2002
    [1.4]N×40Gbit/s WDM系统的发展现状与展望http://tech.c114.net/165/a146608.html
    [1.5]40Gbit/s系统发展之行业看法:高速光通信时代已经来临http://www.bat.net.cn/cww Mag/html/2008/7/23/2008723170126132.htm
    [1.6]YMeghanFuller.是什么在阻碍40G传输系统的发展.LightwaveChina,2007-3-28.
    [1.7]张成良.浅析40G光传输系统的商用价值.通信产业报。2007.
    [1.8]LiZhiHong,LouCaiYun,GaoYiZhi,"40 Gb/s Dispersion Managed Transmission by Using Prechirped Return-to-Zero Format with Low Duty-Cycle",ACTA OPTICA S1NICA
    李智红,娄采云,高以智“40Gb/s窄脉冲预啁啾归零码色散管理传输”光学学报22卷8期(pp:937-941)
    [1.9]A.Sahara,T.Komukai,E.Yamada,and M.Nakazawa,"40 Gbit/s return-to-zero transmission over 500 km of standard fibre using chirped fibre Bragg gratings with small group delay ripples," Electron.Lett.,vol.37,pp.8-9,2001.
    [1.10]Y.H.C.Kwan,K.Nakkeeran,P.K.A.Wai and P.Tchofo Dinda,"Gaussian pulse propagation in dispersion-managed systems using chirped fiber gratings with group delay ripples",LPT.2005.845778
    [1.11]袁建国,叶文伟,毛幼菊.光通信系统中一种新颖的级联码型[J].光电工程,2007(4).
    [1.12]李俊杰支持40Gbit/s路由器的传输技术研究.电信科学,2007Vol.23No.1 P25-28.
    [1.13]ChenDZ,WellbrockG,Penticost S J,et al.World'S first 40 Gbps overlay on a field-deployed,10 Gbps,mixed-fiber,1200 km,ultra long-haul system.In:OFC2005,OTuH4,Anaheim,CA,March2006.
    [1.14]R.Hui,B.zhu,R.huang,C.Allen and K.Demarest,"High-speed optical transmission using subcarrier multiplexing," J.lightwave Technol.,vol.20,pp.417-427,Mar.2002.
    [1.15]廖同庆、吴先良、惠荣庆,“SCM/WDM系统中非线性的特性分析”,中国科学技术大学自然科学版2005年第5期
    [2.1]R.S.Tucker,K.Hinton and G.Raskutti,"Energy consumption limits in high-speed optical and electronic signal processing",ELECTRONICS LETTERS 16th August 2007 Vol.43 No. 17
    [2.2]S.Longhi,M.Marano and P.Laporta,"Propagation,manipulation,and control of picosecond optical pulses at 1.5μm in fiber Bragg gratings",J.Opt.Soc.Am.B 19,2742-2757(2002).
    [2.3]Y.Liu,"Challenging the limits of chromatic dispersion",Lightwave,May 2001.
    [2.4]Gerd Keiser,"Optical Fiber Communications Third Edition" Electronics Industry Gerd Keiser著,李玉权,崔敏,蒲涛等译“光纤通信,第三版”,电子工业出版社2002
    [2.5]刘增基,周洋溢.光纤通信.西安电子科技大出版社2002 pp162-163
    [2.6]Pochi Yeh,"Optical Waves in Layered Media ",John Wiley & Sons,1988
    [2.7]AGRAWAL G P.Nonlinear fiber opticsl'M].San Diego,CA:Academic Press,1995.
    [2.8]I.P.Kaminow,T.Li,and San Diego,CA:Academic,2002,pp.232-304.
    [2.9]G.P.Agarwal," Nonlinear optics",Third edition 2001
    [2.10]G.P.Agrawal and M.J.Potasek,Opt.Lett.11,318(1986)
    [2.11]D.Anderson and M.Lisak,Opt.Lett.11,569(1986)
    [2.12]Govind P.Agrawal Nonlinear Fiber Optics,Third Edition & Application of Nonlinear Fiber Optics pp263-266
    [2.13]Gerd Keiser,"Optical Fiber Communications Third Edition" Electronics Industry Gerd Keiser著,李玉权,崔敏,蒲涛等译“光纤通信,第三版”,电子工业出版社2002
    [2.14]YMeghanFuller.是什么在阻碍40G传输系统的发展.LightwaveChina,2007-3-28.
    [2.15]廖同庆、吴先良、惠荣庆,“高速光纤通信系统中PMD的特性分析”,合肥工业大学学报自然科学版2004年第11期
    [2.16]Govind P.Agrawal,"Nonlinear Fiber Optics " Second Edition,Academic Press,1995
    [2.17]Y.R.Shen,"The Principles of Nonlinear Optics ",John Wiley & Sons,1991
    [2.18]B.E.A.Saleh,M.C.Teich,"Fundamentals of Photonics",John Wiley & Sons,1991
    [2.19]J.R.Olivieria,M.A.Moura," Analytical solution for the Modified NLSE describing optical shock formation",Phys Rev E,Vol 57,4751-55,1998.
    [2.20]A.Hasegawa and F.Tappert,Appl.Phys.Leas.,1973,23(3):142-144
    [2.21]L.F.Mollenauer,Phys.Rev.Letts.,1980,45(13):1095-1098.
    [2.22]Govind P.Agrawal,"Nonlinear Fiber Optics,Third Edition and Applications of Nonlinear Fiber Optics",House of Electronics Industry,2002.
    [2.23]Y.Kodama and A.Hasegawa,Progress in Optics,Vol.30,E.Wolf,Ed.(North Holland,Amsterdan,1992),Chap.4
    [2.24]T.Miwa,Mathematics of Solitons,Cambridge University Press,New York,1999.
    [2.25]V.E.Zakharow and A.B.Shabat,Sov.Phys.JETP 34,62(1972)
    [2.26]R.M.Mu,C.R.Menyuk,G.M.Carter,and J.M.Jacob,IEEE J.Sel.Topics Quantum Electron.6,248(2000).
    [2.27]V.Mikhailov,P.Bayvel,R.Wyatt,and I.Lealman,Electron.Lett.37,909(2001).
    [3.1]G.P.Agrawal,Fiber-Optic Communication Systems,3rd Edition,John Wiley & SonsInc., New York,NY,USA(2002).
    [3.2]L.Cohen,"Time-frequency distributions-a review",Proc.IEEE,77,941-981(1989).
    [3.3]N×40Gbit/s WDM系统的发展现状与展望http://tech.c114.net/165/a146608.html
    [3.4]G.P.Agrawal and M.J.Potasek,Opt.Lett.11,318(1986)
    [3.5]D.Anderson and M.Lisak,Opt.Lett.11,569(1986)
    [3.6]G.P.Agrawal,Nonlinear Fiber Optics,Academic Press,San Diego,Calif,USA,3rd edition,2001.
    [3.7]J.Azana and M.A.Muriel,"Study of optical pulses-fiber gratings interaction by means of joint time-frequency signal representations",J.Lightwave Technol.,21,2931-2941(2003).
    [3.8]Leslie E Ballentine.Quantum mechanics[M].Singapapore:World Scientific Publishing Co Pie Ltd,1998.
    [3.9]L.Helczynski,D.Anderson,R.Fedele,B.Hall,and M.Lisak,"Propagation of partially incoherent light in nonlinear media via the Wigner transform method",IEEE J.Select.Toics.Quantum Electron.,8,408-412(2002).
    [4.1]王加莹.长途超大容量DWDM光通信技术及发展.光通信技术,2003,2(1):4-8
    [4.2]刘俭辉,丁永奎,贾东方等。Tbit/s超大容量光纤通信系统的研究进展.光学技术,2003,29(4):408-410
    [4.3]N×40Gbit/s WDM系统的发展现状与展望http://tech.c114.net/165/a146608.html
    [4.4]G.P.Agrawal,Fiber-Optic Communication Systems,3rd Edition,John Wiley & Sonslnc.,New York,NY,USA(2002).
    [4.5]R.Hui,B.zhu,R.huang,C.Allen and K.Demarest,"High-speed optical transmission using subcarrier multiplexing," J.lightwave Technol.,vol,20,pp.417-427,Mar.2002.
    [4.6]A.R.Chraplyvy,"Limitation of lightwave communications imposed by optical fiber nonlinearities," J.light Technol.,vol.8,pp.1548-1557,Oct.1990
    [4.7]廖同庆、吴先良、惠荣庆,“SCM/WDM系统中非线性的特性分析”,中国科学技术大学自然科学版2005年第5期
    [4.8]Govind P.Agrawal Nonlinear Fiber Optics,Third Edition & Application of Nonlinear Fiber Optics pp263-266
    [4.9]D.Marcus,A.R.Chraplyvy,and R.W.Tkach,"Dependence of cross-phase modulation on channel number in fiber WDM systems," J.Lightwave Technol.,vol.12,pp.885-890,May 1994.
    [4.10]P.M.Hill and R.Olshansky,"A 20-channel optical communication using subcarrier multiplexing for the transmission of digital video signals," J.Lightwave Technol.,vol.8,pp.554-560,Apr.1990.
    [4.11]K.Inoue,K.Nakanishi,K.Oda,and H.Toba,"Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions," J.Lightwave Technol.,vol.12,pp.423-1439,Aug.1994.
    [4.12]Optical Fiber Communications Third Edition Publishing House of Electronics Industry pp.392-394
    [4.13]Nonlinear Fiber Optics,Third Edition & Applications of Nonlinear Fiber Optics Publish House of Electronics Industry PP189-199
    [4.14]R.Hui,B.Zhu,R.Huang,C.Allen,K.Demarest and D.Richards,"10-Gb/s SCM Fiber System Using Optical SSB Modulation" IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.13,NO.8,AUGUST 2001.
    [5.1]YD/T 5092-2000《长途光缆波分复用(WDM)传输系统工程设计暂行规定》
    [5.2]YD/T 1274-2003《光波分复用系统(WDM)技术要求-160×10Gbit/s,80×10Gbit/s部分》
    [5.3]R.S.Tucker,K.Hinton and G.Raskutti,"Energy consumption limits in high-speed optical and electronic signal processing",ELECTRONICS LETTERS 16th August 2007 Vol.43 No.17
    [5.4]YMeghanFuller.是什么在阻碍40G传输系统的发展.LightwaveChina,2007-3-28.
    [5.5]T.Tanaka,T.Torii,M.Yuki,H.Nakamoto,T.Naito,and I.Yokota,"200-nm Banwidth WDM transmission around 1.55mm using distributed Raman amplifier," ECOC2002,Post-deadline paper,PD4.6,(2002).
    [5.6]T.Miyamoto,M.Tanaka,J.Kobayashi,T.Tsuzaki,T.Okuno,M.Kakui,and M.Shigematsu,"Transmission characteristics of highly-nonlinear-fiber-based Raman amplifier for CWDM systems," OAA2003,Tech.Dig.,TuA5,(2003).
    [5.7]T.Okuno,T.Tsuzaki,M.Hirano,Y.Miyamoto,M.Kakui,M.Onishi,Y.Nakai,and M.Nishimura,"Nonlinear-fiber-based discrete Raman amplifier with sufficiently suppressed degradation of WDM signal quality," OAA2001,Tech.Dig.,OtuB5,(2001).
    [5.8]王晶、刘秀敏等,偏振模色散对40Gbit/s脉冲传输的影响光电子.激光,2001年12卷5期。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700