用户名: 密码: 验证码:
大气压纳秒脉冲介质阻挡放电光谱特性与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳秒脉冲介质阻挡放电因具有能量利用率高、均匀性好、等离子体电子温度高和气体温度接近室温等优点,成为近年来的研究热点。本文在大气压氮气和空气中利用具有20ns上升沿的双极性纳秒脉冲电源,在针-板、多针-板和板-板电极结构中产生了弥散介质阻挡放电等离子体,主要研究内容如下:
     1.针-板电极结构中,在大气压空气中利用双极性纳秒脉冲介质阻挡放电产生了气体温度接近室温的弥散等离子体。在强电磁干扰环境下测量了纳秒脉冲放电等离子体的发射光谱、N2(C3Πu→B3Πg,0-0)光电流波形和脉冲电压波形,利用N2+(B2Σu+→X2Σg+0-0)发射光谱拟合计算了纳秒脉冲放电等离子体气体温度,通过N2(C→B)光电流波形与脉冲电压波形讨论了双极性纳秒脉冲介质阻挡放电机理,并研究了脉冲峰值电压、脉冲重复频率、电极间隙和空气中O2对放电均匀性、等离子体气体温度和发射光谱特性的影响。结果表明,双极性纳秒脉冲放电中正脉冲放电只出现一次主要放电,N2(C→B)光电流波形中出现一个滞后电压脉冲峰约80ns、脉宽约50-60ns的光电流强度峰,N2(C→B)光电流峰与脉冲电压峰的滞后时间随电压增长保持不变;负脉冲放电中,N2(C→B)光电流峰出现在脉冲下降沿的拖尾上,当脉冲峰值电压为16kV时,N2(C→B)光电流峰与脉冲电压峰的滞后时间是正脉冲放电中的50倍,且滞后时间随着脉冲峰值电压的升高而迅速缩短。
     2.通过增加针电极数量,在大气压空气中实现了较大面积的弥散双极性纳秒脉冲介质阻挡放电等离子体,并研究了针-板电极间隙、脉冲峰值电压和脉冲重复频率对等离子体分布面积、等离子体气体温度等特性和N2(C→B)发射光谱强度在水平方向上空间分布的影响。研究表明双针-板电极结构纳秒脉冲介质阻挡放电的放电体积随脉冲峰值电压的升高而增大,但随脉冲重复频率的升高基本保持不变。值得一提的是,双针-板和多针-板板电极结构下弥散型放电可以在每个针与板之间间距不相等的情况下产生,放电在各个针-板间隙相对独立,可应用于不平整材料表面改性。
     3.板-板电极结构中,利用双极性纳秒脉冲电压来驱动产生大气压氮气和空气中稳定的双极性纳秒脉冲均匀介质阻挡放电等离子体。在强电磁干扰的情况下,测量了纳秒脉冲均匀放电图像及单脉冲放电图像、脉冲电压波形、电流波形、光电流波形和等离子体发射光谱,通过N2(C→B)发射光谱拟合计算了等离子体的气体温度,利用脉冲电压波形、电流波形和光电流波形分析了双极性纳秒脉冲介质阻挡放电的击穿机理,研究了脉冲峰值电压、脉冲重复频率和电极间隙对等离子体气体温度和NO (A2Σ→X2Π)、OH(A2Σ→X2Π)、N2(C3Π→B3Πg)发射光谱强度和的影响。结果表明,纳秒脉冲放电脉冲峰值电压、脉冲重复频率和电极间隙对等离子体气体温度存在较小的影响,气体温度随脉冲峰值电压、脉冲重复频率和电极间隙的升高或增加出现轻微升高,但始终保持在接近室温的范围内。NO(A→X)、OH(A→X)和N2(C→B)发射光谱强度均随脉冲峰值电压和脉冲重复频率的升高而增强;当电极间隙为2.5mm时,NO(A→X)、OH(A→X)和N(C→B)发射光谱强度出现极大值,当电极间隙大于2.5mm时,NO(A→X)、OH(A→X)和N2(C→B)发射光谱强度随电极间隙的增大而减小。论文还讨论了O2对大气压氮气均匀纳秒脉冲放电的影响,O2对介质阻挡放电的均匀性和放电强度存在明显的抑制作用,但是,少量O2(03%)的加入可以促进等离子体中NO、OH等活性成分的产生。
     4.利用板-板电极结构和针-管电极结构,成功的在大气压空气中产生了均匀的双极性纳秒脉冲介质阻挡放电,并分别应用于提高丙纶(PP)无纺布表面亲水性和真菌、放线菌的杀灭处理上。板-板电极结构中,大气压空气中均匀纳秒脉冲介质阻挡放电可以在3mm的电极间隙下产生,与传统的正弦交流介质阻挡放电相比,纳秒脉冲介质阻挡放电具有较好的均匀性和较高的能量利用率,处理丙纶无纺布使表面水接触角由150°降至110°,纳秒脉冲介质阻挡放电平均注入能量密度不足正弦交流介质阻挡放电的1/20,且对材料表面无任何损伤。通过利用特殊的电极结构,在石英瓶和培养皿内部产生了弥散的双极性纳秒脉冲放电,并实现对培养液和固体附着物的高效杀菌,该结构实验装置成功的应用于华北制药集团培养液和纱布中的真菌、放线菌灭杀上,具备杀菌效率高、需要时间短等优点。
     5.利用在大气压He中获得的较大电极间隙中的均匀介质阻挡放电等离子体,测量了大气压He均匀介质阻挡放电发射光谱及He(3s3S→2p3P)、N2(C→B)、N2÷(B→X)和OH(A→X)空间分辨光谱及归一化空间分布,研究了应用电压和驱动频率对He(3s3S→2p3P)发射光谱强度空间分布特性的影响,利用归一化空间分辨光谱讨论了OH、N2+等激发态离子的主要生成和淬灭机制,并从实验上验证了大气压He均匀介质阻挡放电中不对称模式的存在。结果表明He(3s3S→2p3P)、N2(C→B)、 N2+(B→X)和OH(A→X)光谱发射强度在距离上电极1mm和6mm处出现两个最大值,这两个位置的发射光谱强度是距离上电极3-4mm处发射光谱强度的2-3倍。杂质气体(N2)的加入可以导致大气压He均匀介质阻挡放电的模式发生变化,当N2浓度为百ppm量级时,尽管采用了对称的电极结构,正半周期的放电电流幅值要明显大于负半轴的幅值,与之对应的,He(3s3S→2p3P)、N2(C→B)、N2+(B→X)和OH(A→X)发射光谱强度空间分布也出现不对称结构。
Nanosecond pulsed discharge plasma has become a hot field in low temperature non-thermal equilibrium plasma area because of its unique advantages such as high energy effective, good discharge uniformity, high electron temperature and low gas temperature. In this paper, bipolar nanosecond high voltage pulse with20ns rising time is employed to generated uniform or diffuse dielectric barrier discharge using needle-plate, multiple needle-plate, and plate-plate electrode configurations in nitrogen and air at atmospheric pressure. The main research content is described as follow:
     1. In needle-needle electrode configuration, bipolar nanosecond pulse voltage is employed to generate diffuse dielectric barrier discharge plasma with low gas temperature. The diffuse dielectric barrier discharge can be obtained in large range of electrode gap distance, pulse peak voltage, and pulse repetition rate. The optical emission spectra, the time resolved spectra of N2(C3Πu→B3Πg,0-0,337.1nm) and the waveform of are recorded under severe electromagnetic interference. The gas temperature is calculated by fitting the first negative bands of N2+(B2Σu→X2Σg+,0-0). It is found that there are two different breakdown modes existing in positive and negative pulse discharges. In positive pulse discharge, the lagged time between the photocurrent pulse and the voltage pulse is about80ns and keep almost constant with the rising of pulse peak voltage. However, in negative pulse discharge the lagged time is much longer and decreases sharply with the rising of pulse peak voltage. In addition, the effect of oxygen in air on the diffuse discharge is studied; it is found the oxygen is not benefit to improve both the uniformity and the discharge intensity in nanosecond pulsed dielectric barrier discharge.
     2. Large area air diffuse nanosecond pulsed discharge can be obtained by using double needle-plate and multiple needle-plate electrode configurations at atmospheric pressure. Both double needles and multiple needles electrode configurations nanosecond pulsed dielectric barrier discharge are investigated. It is found that plasma volume increase with the rising of the pulse peak voltage but keep almost content as increasing of pulse repetition rate. In addition, both double needle-plate and multiple needle-plate electrode configurations with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma. It is found that the equivalent needle-plate electrode gap is unnecessary in nanosecond pulsed dielectric barrier discharge, which show the discharge can be used in the material modification of topographically non-uniform surface.
     3. In plate-plate electrode configuration, a homogenous dielectric barrier discharge plasma with very low gas temperature is obtained by using nanosecond bipolar pulse voltage with20ns rising time both in nitrogen and air at atmospheric pressure. The images of the discharge, the waveforms of pulse voltage and discharge current, and the optical emission spectra emitted from the discharge are recorded successfully under severe electromagnetic interference. The effects of the pulse peak voltage, the pulse repetition rate, and the gap distance between electrodes on the gas temperature and the emission intensities of NO (A2Σ→X2Π), OH (A2Σ→X2Π), and N2(C3Πu→B3Πg) are discussed. It is found that the emission intensities of NO (A2Σ→X2Π), OH (A2Σ→X2Π), and N2(C3Πu→B3Πg) rise with increasing both the pulse peak voltage and the pulse repetition rate but decrease with gap distance between the electrodes when it is larger than2.5mm. The effect of concentrations of O2on the emission intensities of NO (A2Σ→X2Π), OH (A2Σ→X2Π), and N2(C3Πu→B3Πg) are also investigated, and it is found both the emission intensities of NO (A2Σ→X2Π) and OH (A2Σ→X2Π) reach maximum values when O2concentration is0.3.
     4. Nanosecond pulsed discharge is used for surface modification of polypropylene non-woven fabric and plasma mutagenesis of fungi and actinomycetes at atmospheric pressure. In the treatment of polypropylene non-woven fabric, compared with the DBD plasma excited by sine AC voltage, the nanosecond pulsed dielectric barrier discharge exhibits obvious advantages in improving the hydrophilic property of polypropylene non-woven fabric. The average energy cost is about20times lower than AC dielectric barrier discharge for improving the hydrophilic property of polypropylene to the same level. In particular, nanosecond pulsed dielectric barrier discharge plasma can treat the polypropylene non-woven fabric without any surface damage. In the plasma mutagenesis of microorganism, needle-cuvette and plate-plate electrode nanosecond pulsed dielectric barrier discharge plasma source are designed, and they are used to mutagenesis of fungi and actinomycetes in liquid state and solid state respectively for North China Pharmaceutical Co. Ltd..
     5. Homogenous dielectric barrier discharge is obtained in Helium at atmospheric pressure and the spatially resolved spectra of He (3s3S→2p3P), OH (A2Σ→X2Π), N2(C3Πu-> B3Πg), and N2+(B2Σu→X2Σ+) emitted from homogeneous dielectric barrier discharge are recorded. The effects of applied voltage and driving frequency on the spatially resolved spectra of I Ie (3s3S→2p3P) are investigated, the formation mechanism of OH and N2+by the impurity in helium are discussed. It is found that the spatial distributions of the emission intensities of He(3s3S→2p3P), OH(A2Σ→X2Π), N2(C3Πu→B3Πg), and N2+(B2Σu+→X2Σg+) exhibit two peaks at1and6mm from the upper electrode respectively in the7mm gas gap and the emission intensities at1and6mm are about2-3times higher than those at3-4mm, and most of the active particles are produced in the two regions. In addition, the impurity adding can lead to the change of discharge mode, when the concentration is in several hundred ppm, when the concentration is in several hundred ppm, the amplitude of the current pulse at the positive half-cycle is larger than that at the negative half-cycle, corresponsively, the asymmetric mode is presented by the spatial distributions of emission intensities of He(3s3S→2p3P), OH(A2E→X2Π), N2(C3Πu→B3Πg), and N2+(B2Σu+→X2Σg+).
引文
[1]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [2]Roth J R, Ku Y, Tsai P P, et al. A study of the sterilization of nonwoven webs using one atmosphere glow discharge plasma [C], Proceedings of the 1996 TAPPI Conference, N.C., March 11-13,1996, pp. 225-230.
    [3]Roth J R, Sherman D M, Gadri R B, et al. A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere [J]. IEEE Trans. Plasma Sci.,2000, 28(1):56-63.
    [4]Montie T C, Wintenberg K K, Roth J R. An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) for Sterilization of Surfaces and Materials [J]. IEEE Trans. Plasma Sci.,2000,28(1):41-50.
    [5]Wintenberg K K, Sherman D M, Roth J R, et al. Air Filter Sterilization Using a One Atmosphere Uniform Glow Discharge Plasma (the Volfilter) [J]. IEEE Trans. Plasma Sci.,2000,28(1):64-71.
    [6]Gadri R B, Roth J R, Montie T C. et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP) [J]. Surface and Coatings Technology,2000,131:528-524.
    [7]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,1994,27(9):1985-1987.
    [8]Sawada Y. Ogawa S, Kogoma M. Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge [J]. J. Phys. D:Appl. Phys.,1995,28(8):1661-1669.
    [9]Mori T, Tanaka K, Inomata T, et al. Development of silica coating methods for powdered pigments with atmospheric pressure glow plasma [J]. Thin Solid Films,1998,316:89-92.
    [10]Massines F. Gouda G. A comparison of polypropylen-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,1998, 31(24):3411-3420.
    [11]Massines F, Messaoudi R, Mayoux C. Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment [J]. Plasmas and Polymers,1998, 3(1):43-59.
    [12]Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges [J]. IEEE Trans. Plasma Sci., 2002,30(4):1400-1408.
    [13]Kogelschatz U, Eliasson B, Egli W. From ozone generators to flat screens:history and future potential of dielectric-barrier discharges [J]. Pure Appl. Chem.,1999,71 (10):1819-1828.
    [14]Yang D Z, Yang Y, Li S Z, et al. Homogeneous Dielectric Barrier Discharge Plasma Excited by Bipolar Nanosecond Pulse in Nitrogen and Air [J]. Plasma Sources Sci. Technol.,2012, online.
    [15]Yang D Z, Wang W C, Wang K L, et al. Spatially resolved spectra of excited particles in homogeneous dielectric barrier discharge in helium at atmospheric pressure [J]. Spectrochim. Acta, Part A.,2010.76:224-229.
    [16]Wang K L, Wang W C, Yang D Z, et al. Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma [J]. Applied Surface Science,2010, 256:6859-6864.
    [17]Zhang Y, Gu B, Wang W C, et al. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp [J]. Spectrochim. Acta, Part A.2009, 76:460-464.
    [18]Kim H H, Tsunoda K, Katsura, S et al. A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection [J]. IEEE Trans. Ind. Appl.,1997,35(6):1306-1310.
    [19]Mizuno A, Shimizu K, Chakrabarti, et al. NOx removal process using pulsed discharge plasma [J]. IEEE Trans. Ind. Appl.,1995,31(5):957-963.
    [20]史恒超,贾莉,王文春等.介质组当放电中OH对脱除甲醛的影响[J].物理化学学报,2011,27(8):1979-1984.
    [21]Yang D Z, Wang W C, Li S Z, et al. A diffusive air plasma in bi-directional nanosecond pulsed dielectric barrier discharge [J]. Journal of Physics D:Applied Physics,2010,43(45):455202.
    [22]Yang D Z. Wang W C, Jia L, et al. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air [J]. J. Appl. Phys.,2011, 109(17):073308.
    [23]Nie D X, Wang W C, Yang D Z, et al. Optical study of diffuse bi-directional nanosecond pulsed dielectric barrier discharge in nitrogen [J]. Spectrochim. Acta, Part A.,2011,79(5):1896-1903.
    [24]Kogelschatz U, Dielectric-barrier discharges:Their history, discharge physics, and industrial applications [J]. Plasma Chem. Plasma Process.,2003,23(1):1-46.
    [25]王文春,非热平衡等离子体中H3-/D3-离子的实验检测及OH自由基诊断研究[D].大连,大连理工大学化学学院,2007年.
    [26]Kogelschatz U, Eliasson B, Egli W,. et al. From ozone generators to flat screens:history and future potential of dielectric-barrier discharges [J]. Pure Appl. Chem.,1999,71(10):1819-1828.
    [27]Falkenstein Z, Coogan J J. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures [J]. J. Phys. D:Appl. Phys.,1997,30(5):817-825.
    [28]Georghiou G E, Morrow R, Metaxas A C, et al., The two-dimensional simulation of streamers using the FE-FCT method [J]. J. Phys. D:Appl. Phys.,2000,33(3):L27-32.
    [29]Kozlov K, Shepelyuk O S. Samoilovich V G, et al. Spatio-temporal evolution of dielectric barrier discharge channels in air at atmospheric pressure. Proc.11th Ind. Conf. Gas Discharges and Their Applications [C]. Tokyo, Japan,1995,2:142-145.
    [30]Radu I. Diagnostics of Dielectric Barrier Discharge in Noble Gases:Atmospheric Pressure Glow and Pseudo glow Discharges and Spatio-Temporal Patterns [J]. IEEE Trans Plasma Sci.,2003, 31(3):411-421.
    [31]Breazeal W, Flynn K M, Gwinn E G, et al. Static and dynamic two-dimensional patterns in self-extinguishing discharge avalanches [J]. Phys. Rev. E.1995,52(2):1503-1515.
    [32]董丽芳.气体放电等离子体动力学[M].保定:河北大学出版社,2004.
    [33]Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by a dielectric barrier [J]. J.Appl.Phys.1998,83(6):2950-2957.
    [34]Golubovskii Yu B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen [J]. J. Phys. D:Appl. Phys. 2002,35(8):751-761.
    [35]Trunec D, Brablec A, Buchta J. Atmospheric pressure glow discharge in neon [J]. J. Phys. D:Appl. Phys.2001,34(11):1697-1699.
    [36]Napartovich A P. Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasmal [J]. Plasmas and Polymers.2001,6(1):1-14.
    [37]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11.
    [38]Von Engle A, Seeliger R, Steenback M. On the glow discharge at high pressure [J]. Zeit. fur Physik., 1933,85:144-160.
    [39]Bartnikas R. Note on discharges in helium under AC conditions [J]. Brit. J. Appl. Phys.1968, 1(2):659-661.
    [40]Kekez M M, Barrault M R, Craggs J D, et al. Spark channel formation [J]. J.phys. D:Appl. Phys.1970, 3(12):1886-1896.
    [41]Donohoe K G. The Development and Characterization of an Atmospheric Pressure Nonequilibrium Plasma Chemical Reactor:Ph.D. dissertation [M]. Calif. Inst. Technol., Pasadena, CA,1976.
    [42]Donohoe K G, Wydeven T. Plasma polymerization of ethylene in an atmospheric pressure discharge [J]. J. Appl. Polymer Sci.1979,13(9):2591-2601.
    [43]Yagi S, Hishii M. Tabata N, et al. Silent discharge CO laser [J]. Laser Eng.1977,5(3):171-176.
    [44]Beaulieu A J. Transversely excited atmospheric pressure CO lasers [J]. Appl. Phys. Lett.1970, 16(12):504-505.
    [45]Nakamura K, Yukawa N, Mochizuki T. Optimization of the discharge characteristics of a laser device employing a plasma electrode [J]. Appl. Phys. Lett.1986,49(22):1493-1495.
    [46]Slade P D. Serafetinides A. Stable discharges in an HF laser with large electrode separation [J]. IEEE J. Quantum Electron.1978, QE-14(5):321-322.
    [47]Gibson A F, Hall T A, Hatch C B. Discharge stabilization in HF lasers using resistive electrodes [J]. IEEE J. Quantum Electron.1977, QE-13(10):801-803.
    [48]Cserfalvi T, Mezel P, Apai P. Emission studies on a glow discharge in atmospheric pressure air using water as a cathode [J]. J. Phys.D:Appl. Phys.1993.26(12):2184-2188.
    [49]Sugawara M, Murata K, Ohshima T, et al. A hollow cathode discharge as a cold uniform plasma source [J]. J. Phys. D:Appl. Phys.1981,14(9):]37-140.
    [50]Akishev Yu S. Deryugin A A, Kochetov I V, et al. DC glow discharge in air flow at atmospheric pressure in connection with waste gases treatment [J]. J. Phys. D:Appl. Phys.1993, 26(10):1630-1637.
    [51]Kunhardt E E. Generation of large-volume atmospheric-pressure non-equilibrium plasma [J]. IEEE Trans Plasma Sci.,2000.28(1):189-200.
    [52]Kunhardt E-E, Becker K, Amorer L. et al. Suppression of the glow-to-arc transition [C]. In Pro., Ⅻ Int. Conf. on Gas Discharge and Their Applications, Greifswald, Germany,1997:87.
    [53]Kunhardt E E, Luessen L. Electrical Breakdown and Discharge [C]. New York:Plenum,1981.
    [54]Kunhardt E E. Electrical Breakdown of geses:the pre-breakdown stage [J]. IEEE Trans Plasma Sci., 1980,PS-8:234.
    [55]Staack D, Farouk F, Gutsol A, et al. Characterization of a dc atmospheric pressure normal glow discharge [J]. Plasma Sources Sci. Technol.2005,14:700-711.
    [56]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.1994,27(9):1985-1987.
    [57]Sawada Y, Ogawa S, Kogoma M, et al. Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge [J]. J. Phys. D:Appl. Phys.,1995,28(8):1661-1669.
    [58]Mori T, Tanaka K, Inomata T, et al. Development of silica coating methods for powdered pigments with atmospheric pressure glow plasma [J]. Thin Solid Films,1998,316:89-92.
    [59]Yokoyama T, Kogoma M, Moriwaki T, et al. The mechanism of the stabilized glow plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.1990,23(8):1125-1128.
    [60]Okazaki S, Kogoma M, Uehara M, et al. Appearance of a stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source [J]. J. Phys. D:Appl. Phys.1993, 26(5):889-892.
    [61]Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.1988,21(5):838-840.
    [62]Trunec D, Brablec A, Stastny F, et al. Experimental study of atmospheric pressure glow discharge [J]. Contrib. Plasma Phys.1998,38(3):435-445.
    [63]Tepper J, Lindmayer M. Investigations on two different kinds of homogeneous barrier discharges at atmospheric pressure [C]. Proc.7th Int. Symp. High Pressure, Low Temperature Plasma Chemistry, Greifswald, Germany,2000,1:38-43.
    [64]Decomps Ph. Massines F and Mayoux C, Acta Physica Univ. Comenianae 35 (1994) 47
    [65]Massines F, Segur P. Gherardi N, et al. Physics and chemistry of a glow dielectric barrier discharge at atmospheric pressure:diagnostics and modeling [C]. Surf. Coat. Technol.2003,174-175:8-14.
    [66]Naude N, Cambronne J P, Gherardi N, et al. Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge [J]. J. Phys. D:Appl. Phys.2005, 38(4):530-538.
    [67]Gherardi N, Gouda G, Gat E, et al. Transition from glow silent discharge to micro-discharges in nitrogen gas [J]. Plasma Sources Sci. Technol.,2000,9(3):340-346.
    [68]Gherardi N, Massines F. Mechanisms Controlling the Transition from Glow Silent Discharge to Streamer Discharge in Nitrogen [J]. IEEE Trans on Plasma Science,2001,29(3):536-544.
    [68]Gadri R B. One Atmosphere Glow Discharge Structure Revealed by Computer Modeling [J]. IEEE Trans on Plasma Science,1999,27(1):36-37.
    [69]Roth J R. Industrial Plasma Engineering, Vol. I [M]. Philadelphia:Institute of Physics,1995.
    [70]Roth J R. Method and apparatus for covering [P]. US, patent 5,669,583.
    [71]Roth J R, Tsai P P, Liu C. Steady-state, glow discharge [P]. US, patent 5,387,842.
    [72]Roth J R, Tsai P P, Laroussi M. Spence P D. One atmosphere, uniform glow discharge plasma [P]. US, patent 5.414,324.
    [73]Roth J R, Tsai P P, Liu C, et al. Method and apparatus for glow discharge plasma treatment of polymer materials at atmosphere pressure [P]. US, patent 5,456,972.
    [74]Roth J R, Tsai P P, Wadsworth L C, et al. Spence P D. Method and apparatus for glow discharge plasma treatment for polymer materials at atmospheric pressure [P]. US, patent 5,403,453.
    [75]Golubovskii Yu B, Maiorov V A, Behnke J, et al. Influence of elementary processes over an homogeneous barrier discharge in helium [C]. Proc.of VIII Int. Symp. on High Pressure Low Temperature Plasma Chemistry. Puhajarve, Estonia,21-25 July 2002,1:48-52.
    [76]Golubovskii Yu B, Maiorov V A, Behnke J, et al. Some aspects of modeling of an uniform barrier discharge in nitrogen [C]. Proc. Of 16th ESCAMPIG. Grenoble, France,14-18 July 2002,1:233-234.
    [77]Golubovskii Yu B, Maiorov V A, Behnke J, et al. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure [J]. J. Phys. D:Appl. Phys.2003,36(1):39-49.
    [78]Golubovskii Yu B, Maiorov V A, Behnke J, et al. On the stability of a homogeneous barrier discharge in nitroger relative to radial perturbations [J]. J. Phys. D:Appl. Phys.2003,36(8):975-981.
    [79]Radu I, Bartnikas R, Wertheimer M R. Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry:experiments and model [J]. J. Phys. D:Appl. Phys.2004,37:449-462.
    [80]Radu I. Bartnikas R, Wertheimer M R. Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry [J]. J. Phys. D:Appl. Phys.2003,36:1284-1291.
    [81]Wang X X. Li C R, Lu M Z. et al. Study on an atmospheric pressure glow discharge. Plasma Sources Sci T.2003,12(3):358-361
    [82]Wang X, Wang X X, Liang C, et al. Distraction osteogenesis in correction of micrognathia accompanying obstructive sleep apnea syndrome. Plast Reconstr Surg.2003,112(16):1549-1557
    [83]王新新,芦明泽,蒲以康,et al.空气中大气压下均匀辉光放电的可能性.物理学报.2002,51(]2):2778-2785.
    [84]张远涛,王德真,王艳辉et al.大气压介质阻挡丝状放电时空演化数值模拟.物理学报.2005,54(10):4808-4815
    [85]Qian M Y, Wang D Z, Ren C S. et al. Atmospheric pressure cold argon/oxygen plasma jet assisted by preionization of syringe needle electrode. Plasma Science and Technology.2010,12(5):561-565
    [86]Zhang Y, Gu B, Wang W C, et al. Experimental research on multiple current peaks and mode conversion of atmospheric glow dielectric barrier discharge in helium[J]. Thin solid films. 2008,516(21):7547-7554
    [87]Zhang Y, Gu B, Wang W C. et al. Dynamic behavior of homogeneous dielectric barrier discharge at atmospheric pressure. Journal of Applied Physics.2009,106(2):023307
    [88]张燕,顾彪,王文春,et al.常压He气和N2均匀介质阻挡放电的伏安特性.物理学报.2009,58(8):5532-5538
    [89]Fleteher R C. Impulse Breakdown in the10-9-sec. Range of Air at Atmospheric Pressure [J]. Phys. Rev.,1949,76(10):1501-1511.
    [90]Felsenthat P, Proud J M. Nanoseeond-pulse breakdown in gas [J]. PhyS. Rev.,1965,139(6): 1796-1804.
    [91]Mesyats G A, Byehkov Y L, Kremnev V V. Pulsed nanoseeond electric discharges in gases [J]. Sov. Phys. Usp.,1972,15(3):182-296.
    [92]Vasilyak L M, Kostuchenko S V, Kudryavtsev N N, et al. Fast ionization waves under electrical breakdown conditions [J]. Soviet Phys. Usp.,1994,37 (3):247-268.
    [93]Lagarkov A N, Rutkevich I M. Ionization waves in electrical breakdown of gases [M]. Springer-Verlag, USA,1994.
    [94]Anikin N B, Zavialova N A, Starikovskaia S M, et al. Nanosecond-discharge development in long tubes [J]. IEEE Transactions on plasma science.2008,36(4):902-903.
    [95]Starikovskaia S M, Starikovskii A Y, Zatsepin D V. The. development of a spatially uniform fast ionization wave in a large discharge volume [J]. J. Phys. D:Appl. Phys.1998,31:1118-1125.
    [96]Babich L P, Loiko T V, Tsukerman V A. High-voltage nanosecond discharge in a dense gas at a high voltage with runaway electrons [J]. Soviet Phys. Usp.,1990,33 (7):521-540.
    [97]Babich L P, Kutsyk I M. Numerical simulation of a nanosecond discharge in Helium at atmospheric pressure, developing in the regime of runaway of electrons [J]. High Temp.1995,33(2):191-197.
    [98]Babich L P, Donskoy E N, Kutsyk I M, et al. Comparison of relativistic runaway electronava lanche rates obtained from Monte Carlo simulations and kinetic equation solution [J]. IEEE Trans, on Plasma Science.2001, 29(3):430-437.
    [99]Babich L P, Donskoy E N, Kutsyk I M, et al. Characteristics of a relativistic electron avalanche in air [J]. Doklady Physics.2004,394(3):320-323.
    [100]Clemens J S. Combined removal of S02/NOx and fly ash from simulated flue gas using pulsed streamer ceorona [J]. IEEE. Trans. Appl.,1989,25(l):62-69.
    [101]Aleksandrov N, Kindysheva S, Nudnova M, et al. Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields [J]. J Phys D,2010, 43:255201.
    [102]Pai D Z, Lacoste D A, Laux C O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime [J]. Plasma Sources Sci. Technol.2010,19:065015.
    [103]Pai D, Lacoste D, Laux C. Transitions between corona, glow and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure [J]. J Appl Phys,2010,107:093303.
    [104]Pai D, Stancu G, Lacoste D, et al. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the glow regime [J]. Plasma Sources Sci Technol,2009,18:045030.
    [105]Walsh J, Shi J, Kong M. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets [J]. Appl Phys Lett,2006,88:171501.
    [106]Walsh J, Kong M.10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces [J]. AppI Phys Lett,2007,91:251504.
    [107]Walsh J, Kong M. Room-termperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses [J]. Appl Phys Lett,2007,91:221502.
    [108]Walsh J, Shi J, Kong M. Submicrosecond pulsed atmospheric glow discharges sustained without dielectric barriers at kilohertz frequencies [J]. Appl Phys Lett,2006,89:161505.
    [109]Panousis E. Merbahi N, Clement F, et al. Analysis of Dielectric Barrier Discharges under unipolar and Bipolar Pulsed Excitation [J]. IEEE Trans. Dielectr. Electr. Insul.2009,16:734-741.
    [110]Panouusis E, Merbahi N, Clement F, et al. Atmospheric pressure dielectric barrier discharges under unipolar and bipolar HV excitation in view of chemical reactivity in after glow conditions [J]. IEEE Trans. Plasma Sci.2009,37:1004-1015.
    [111]Iza F, Walsh J, Kong M. From submicrosecond to nanosecond-pulsed atmospheric-pressure plasmas [J]. IEEE Trans Plasma Sci,2009,37:1289-1296.
    [112]Chiper A, Cazan R, Popa G. On the secondary discharge of an atmospheric pressure pulsed DBD in He with impurities [J]. IEEE Trans Plasma Sci,2008,36:2824-2830.
    [113]Chiper A, Nastuta A, Rusu G, et al. On surface elementary processes and polymer surface modifications induced by double pulsed dielectric barrier discharge [J]. Nucl Instruments Methods Phys Res B,2009,367:313-316.
    [114]Ayan H, Fridman G, Gutsol A F, et al. Nanosecond-Pulsed uniform dielectric barrier discharge [J]. IEEE Trans. Plasma Sci.2008,36:504-508.
    [115]Ayan H, Staack D, Fridman G, et al. Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces [J]. J. Phys. D:Appl. Phys.2009, 42:125202.
    [116]Shao T, Yu Y, Zhang C, et al. Surface treatment of polyethylene terephthalate films using DBD excited by repetitive unipolar nanosecond pulses in Air at Atmospheric Pressure [J]. IEEE Trans. Dielectr. Electr. Insul.2010,17:1517-1526.
    [117]Shao T, Long K, Zhang C, et al. Experimental study on repetitive unipolar nanosecond pulse dielectric barrier discharge in air at atmospheric pressure [J]. J. Phys. D:Appl. Phys.2008,41:215203.
    [118]Shao T, Yan P, Long K, Zhang S, et al. Dielectric-Barrier Discharge Excitated by Repetitive Nanosecond Pulses in Air at Atmospheric Pressure [J]. IEEE Trans. Plasma Sci.2008,36:1358-1359.
    [119]Shao T, Zhang C, Long K, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air [J]. Appl. Surf Sci,2010,256(12):3888-3894.
    (120] Shao T, Long K, Zhang C, et al. Electrical characterization of dielectric barrier discharge driven by repetitive nanosecond pulses in atmospheric air [J]. J Electrostat,2009,67(2-3):215-221.
    [121]Shao T, Yu Y, Zhang C, et al. Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator [J]. IEEE Trans Dielectr Electr Insul,2010, 17(6):1830-1837.
    [122]Lu X, Laroussi M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses [J]. J Appl Phys,2006,100:063302.
    [123]Lu X, Laroussi M. Temporal and spatial emission behavior of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses [J]. J Phys D,2006,39:1127-1131.
    [124]Lu X, Laroussi M. Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer [J]. Appl Phys Lett,2008,92:051501.
    [125]Lu X, Ye T, Cao Y, et al. The roles of the various plasma agents in the inactivation of bacteria [J]. J Appl Phys,2008,104(5):053309.
    [126]卢新培,严萍,任春生等.大气压脉冲放电等离子体的研究现状与展望[J].中国科学杂志社.2011,41(7):801-815.
    [127]Nasser E 1971 Fundamentals of Gaseous Ionization and Plasma Electronics (New York: Wiley-Interscience) chapter 11.
    [128]Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) chapter 12.
    [129]Eliasson B, Kogelschatz U. Electron impact dissociation in oxygen [J]. J. Phys. B:At. Mol. Phys. 1986,19(8):1241-1247.
    [130]Luo S C, Denning M and Scharer J E. Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas [J]. J. Appl. Phys.,2008,104:013301
    [131]Jorge Luque, Database and Spectral simulation for diatomic molecules, http://www.sri.com /psd/lifbase/
    [132]Brandenburg R. Kozlov K V, Morozov A M, et al. Proceedings of 26th Int [C]. Conf. on Phenomena in Ionized Gases (ICPIG-26)(Greifswald, Germany), 2003,4:43.
    [133]Kossyi I A, Kostinsky A Yu, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures [J]. Plasma Sources Sci. Technol.1992, 1(3):207-220.
    [134]Golubovskii Yu B, Telezhko V M, Stoyanov D G. Excitation of the radiating states C3Πu and C3Πu of the nitrogen molecule during binary collisions of N2(N2 (A3Σ) metastables [J]. Sov. Opt. Spectrosc. 1990,69(2):322-327.
    [135]Uddi M, Jiang N, Adamovich Ⅰ Ⅴ. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence [J]. J. Phys. D:Appl. Phys.2009,42(7):075205.
    [136]Eichwald O, Yousfi M, Hennad A, et al. Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases [J]. J. Appl. Phys.1997, 82(10):4781-4794.
    [137]Tang S K, Wang W C, Liu J H, et al. Diagnosis of positive ions from the near-cathode region in a high-voltage pulsed corona discharge N2 plasma [J]. J. Vac. Sci. Technol. A 2000,18(5):2213-2216.
    [138]Penetrante B M, Bardsley J N. Hsiao M C, et al. Kinetic analysis of non-thermal plasmas used for pollution control [J]. Jpn. J. Appl. Phys.1997,36:5007-5017.
    [139]Uddi M, Jiang N, Adamovich 1 V and Lempert W R 2009 J. Phys. D:Appl. Phys.42 075205
    [140]Laux C O, Spence T G, Kruger C H and Zare R N 2003 Plasma Sources Sci. Technol.12 125
    [141]Yu L, Pierrot L, Laux C O and Kruger C H 2001 Plasma Chem. Plasma Process.21 483
    [142]Carman R J, Mildren R P. Electron energy distribution functions for modeling the plasma kineties in dielectric barrier diseharge [J]. J. Phys. D:Appl. Phys.,2000,33:99-100.
    [143]Chen J R, Wang X Y, Wakida T. Wettability of poly (ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA [J]. Journal of Applied Polymer Science,1999,72:1327-133.
    [144]王坤磊,大气压介质阻挡放电对丙纶无纺布的表面改性[D].大连:大连理工大学物理与光电工程学院,2010.
    [145]陈杰瑢.低温等离子体化学及其应用[M].北京科学出版社,2001.
    [146]Shon J W, Kushner M J. Excitation mechanisms and gain modeling of the high-pressure atoic Ar laser in He/Ar mixtures[J]. J. Appl. Phys.75 (1994) 1883-1890.
    [147]Sommerer T J, Kushner J. Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model [J]. J. Appl. Phys.71 (4) (1992) 1654-1673.
    [148]Collins C B, Lee F W. Measurement of the rate coefficients for the bimolecular and termolecular de-excitation reactions of He(23S) with selected atomic and molecular species [J]. J. Chem. Phys.70 (1979) 1275-1285.
    [149]Koymen M, Tang F C, Zhao X, et al. Chem. Phys. Lett.168 (1990) 405-409.
    [150]Ricard A, Decomps Ph, Massines F. Kinetics of radiative species in helium pulsed discharge at atmospheric pressure [J]. Surf. Coat. Technol.112 (1999)1-4.
    [151]Binns W R, Ahl J L. Excitation and quenching reactions in E-beam excited He/H2O and He/CH3CN systems [J]. J. Chem. Phys.68(1978) 538-546.
    [152]Rowe B R, Vallee F, Queffelec J L, et al. Measurement of the rate coefficients for the bimolecular and termolecular de-excitation reactions of He(2□3S) with selected atomic and molecular species [J]. J. Chem. Phys.88 (1988) 845-850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700