用户名: 密码: 验证码:
基于共视原理的卫星授时方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间与人们的生活密切相关,人们将利用无线电波播发标准时间信号的工作称为授时。从故至今人们在不断地探索获取时间的新方法,从最初以声音为媒介的晨钟暮鼓发展到使用光信号的落球报时,再发展到目前以无线电波为载体的各种授时方法。授时精度也随之不断地提高,目前精度最高的授时方法为基于卫星导航系统的单向授时方法,最高精度约为15ns。
     对于航天、导弹领域的纳秒级授时精度的需求用户只能使用如共视时间传递、卫星双向时间频率传递等高精度时间比对方法。这些高精度时间传递方法的成本高,且只能实现少数用户间的时间同步,因此,迫切需要研究高精度的授时方法。
     本文将共视时间传递方法进行扩展,将共视原理应用于卫星授时,提出了基于共视原理的卫星授时新方法,可以提供3~5ns的授时精度。本文围绕共视授时新方法,开展了以下几个方面的研究:
     (1)提出了一种基于共视原理的卫星授时新方法
     虽然基于GNSS的共视时间传递方法可以实现纳秒级的时间同步,但共视与授时有着本质区别。授时要求实时地为用户发播标准时间信号,服务的用户数量不限,而共视只实现了少数用户之间的时间比对,且具有滞后性。
     本文提出的基于共视原理的卫星授时新方法,在主站监测卫星广播的系统时间与标准时间UTC(NTSC)的时差,并将授时偏差广播给用户。用户接收使用后,相当于与主站共视相同可见星,获得标准时间UTC(NTSC),实现授时。
     (2)试验验证了共视授时新方法的原理
     为验证共视授时新方法的原理和可行性,本文搭建了原理验证系统。基于验证系统开展了零基线、短基线和长基线比对试验。零基线和短基线试验数据结果验证了共视授时方法的原理和可行性。通过与卫星双向时间比对的结果进行比较,扣除长春临潼两站钟差的影响,长基线比对结果验证了共视授时的原理。
     (3)提出虚拟共视基准站技术,应用在共视授时新方法中
     虚拟共视基准站技术利用了星历误差、电离层误差的空间相关性,综合利用多个基准站的观测数据,按用户与基准站的位置关系内插得到用户附近的虚拟基准站的观测数据,与用户观测量形成近零基线差分,解决用户远离基准站时,获得的授时精度下降的问题。
     论文针对提出的虚拟共视基准站技术,研究了不同基准站个数、不同的权值确定方法对用户授时精度的影响。制定了用户选择基准站的原则,确定了用户端虚拟改正量生成算法,分析了站间时间同步误差对共视授时精度的影响。
     (4)研究了授时偏差的变化特点及授时数据的广播方法
     为保证实时性和用户容量,需要研究授时偏差的变化规律,建立适当的模型,实现对用户的实时广播。本文研究了3种适用于授时偏差的广播方法①通信卫星,可实现实时广播;②互联网,事后发布授时偏差数据文件;③短信查询,实时响应用户查询,为用户返回指定时刻的数据。
     (5)制定共视授时系统的实施方案
     设计了共视授时系统的总体架构,制定了共视授时系统的实施方案。按功能将系统划分为单元,并对每个单元进行了初步的规划和设计。
Time is closely related to people’s daily life. The work of broadcasting standardtime signal is called time service. In ancient time, sound is used to provide timeservice, such as beating bell and drum, and then light is used. Today, most timingmethods are based on radio wave with improved accuracy. Currently, the accuracy ofone-way timing method can reach about15ns.
     For users of nanosecond requirement of accuracy can only turn to common viewtime transfer and Two Way Satellite Time and Frequency Transfer methods. However,these methods need high cost equipments and only can be applied to few users. Allthese limitations compel us to advance a new timing method.
     Based on the analysis of both one-way timing method and common-view timetransfer, a new common-view based one-way timing method is proposed which canprovide accuracy of3~5ns. This paper focuses on this method and mainly discussesthe following aspects.
     (1)Proposal of the new timing method.
     Time service is different from common view in essence. As a timing method, itrequires disseminate timing signals in real time for mass users. While common viewcan only realize the time comparisons between fewer users after data exchange.
     The method overcomes these shortcomings by monitoring timing signal ofsatellites with receivers located at master station and then broadcasting to users. Thisequals to observe the same satellites with users. These data are used to correct the userreceiver’s measurements after received. Finally, the local time of users aresynchronized to the standard time UTC(NTSC).
     (2)Experiment verification of the new method.
     In order to testify the feasibility of the new method, a test platform is set up. Thezero-baseline experiment, short-baseline experiment and long-baseline experiment arecarried out based on it. The results of zero-baseline and short-baseline experimentsvalidate the feasibility of the new method. Influenced by the longer baseline and theunknown time difference between two Changchun and Lintong stations, the result oflong-baseline experiment is affected by the correction error of ionosphere delay andother space-related errors.
     (3)Proposition of the virtual common-view reference station technology.
     According to locations of users and reference stations, the relativity of ephemeriserrors and ionosphere delay errors are explored by Virtual Common-View ReferenceStation technique (VCVRS) for interpolating the observations of a non-existedreference station close to user. This method makes use of measurements of serveralreference stations and solves the problem of decreasing accuracy with the increasingdistance between user and reference stations.Some further researches about VCVRSare discussed. Firstly, the effects of different reference station number and differentmethods of weight determination on timing accuracy of the new method are studied.The fundamentals for users choosing reference stations are established and the impactof time synchronization errors is analyzed after that.
     (4)Research on the changing characteristic and broadcasting methods of timingdata
     To ensure the real time and user capacity, the modeling and broadcasting oftiming data must be considered. Three methods are provided for data dissemination.The first one is based on communication satellite which is used to broadcast timingmodel parameters for users in real time. Internet is the following one which releasetiming data files each day for user’s download. The last one is short message enquirewhich waits the query command of users and then response.
     (5)Scheme design of the new timing system.
     The whole system of common-view based timing method is planed and designed.The detailed design of each part is also layout.
引文
[1]童宝润,时间统一系统[M].北京:国防工业出版社,2003.9.
    [2]李孝辉,窦忠,时间的故事[M],人民邮电出版社,2012.10.
    [3] Kaplan E., Understanding GPS: Principles and Applications, Second Edition,Artech House, Inc.,2006.
    [4] J. Tolman, V. Ptacek, A. Soucek, and R. Stecher,“Microsecond ClockComparison by Means of TV Synchronizing Pulses,” IEEE Transactions onInstrumentation and Measurement, IM-16, No.3, pp.247-254, September1967.
    [5]漆贯荣,时间科学基础,中国科学院国家授时中心研究生教材。
    [6]吴守贤,漆贯荣,边玉敬,时间测量,科学出版社,1983.1。
    [7] Dennis D. McCarthy and P. Kenneth Seidelmann, TIME-From Earth Rotation toAtomic Physics. WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim.2009.
    [8] Al Gifford, Scott Pace and Jules McNeff. One-way GPS time transfer2000.32ndAnnual Precise Time and Time Interval Meeting. pp:137-145.
    [9] Michael A. Lombardi, Lisa M. Nelson. Time and frequency measurements usingthe Global Positioning System.2001, pp:26-33.
    [10] D. W. Allan and M. A. Weiss,“Accurate Time and Frequency Transfer DuringCommon-View of a GPS Satellite,” Proceedings of the1980Frequency ControlSymposium, pp:334-346, May1980.
    [11] Judah Levine. A review of time and frequency transfer methods. Metrologia45(2008), S162-S174.
    [12] David W. Allan and Marc A.Weiss. Accurate time and frequency transfer duringcommon-view of a GPS satellite. Proc.34th Annual. Freq.Control Symposium.pp:334-346.
    [13]张鑫,韩小余,应洪伟. GPS共视技术中不确定度分析,宇航计测技术,2008.10,28(5), pp:31-33.
    [14]王正明. GPS共视资料的处理和分析,天文学报,2001.5,42(2), pp:184-191.
    [15]孙宏伟,李岚,苏哲斌,卫星位置误差对GPS共视时间比对的影响,武汉大学学报(信息科学版),2009.8,34(8),pp:968-970.
    [16]高小珣,高源,张越,宁大愚,王伟波. GPS共视法远距离时间频率传递技术研究[J],计量学报,2008,29(1), pp:80-83.
    [17] Marc A. Weiss. Progress on a new GPS common view receiver.32th AnnualPrecise Time and Time Interval Meeting. pp:111-115.
    [18] LEWANDOWSKI W, FOKS A, JIANG Z, et al. Recent Progress in GLONASSTime Transfer[C]//36th Annual Precise Time and Time Interval Meeting.Canada:Vancouver,2005, pp:728-734.
    [19]高玉平,漆溢,王正明.用于JATC远程时间比对的双频GPS接收机[J].时间频率学报,2006,29(1), pp:6-12.
    [20] V. S. Zhang, T. E. Parker, M. A. Weiss, and F. M. Vannicola,“Multi-ChannelGPS/GLONASS Common-View Between NIST and USNO,” Proceedings of the2000IEEE Frequency Control Symposium, June2000, pp:598-606.
    [21] M. A. Weiss. Limits on GPS carrier-phase time transfer.41st Annual PreciseTime and Time Interval Meeting, pp:101-110.
    [22] K.–Y. Tu, F.-R. Chang, C.-S. Liao, and L.-S. Wang,“Frequency SynchronizationUsing GPS Carrier Phase Measurements,” IEEE Transactions on Instrumentationand Measurement, June2001,50(3), pp:833-838.
    [23] G Petit and Z Jiang, GPS All in View time transfer for TAI computation.Metrologia45(2008), pp:35-45.
    [24]李志刚,李焕信,张虹,卫星双向法时间比对的归算,天文学报,2002.11,43(4),422-431.
    [25] MICHITO IMAE. Review of Two-way Satellite time and Frequency Transfer.MAPAN-Journal of Metrology Society of India, Vol21, No.4,2006; pp:243-248.
    [26] D. Kirchner, H. Ressler, P. Grudler. Comparison of GPS common-view andtwo-way satellite time transfer over a baseline of800km. Metrologia,1993,30,pp:183-192.
    [27] J. A. Davis, W. Lewandowski. Preliminary comparison of two-way satellite timeand frequency transfer and GPS common-view time transfer during the intelsatfield trial. pp:347-358.
    [28] Judah Levine. Time and frequency distribution using satellites. Rep. Prog. Phys.65(2002), pp:1119-1164.
    [29] W. Lewandowski, J. Azoubib, and W. Klepczynski,“GPS: Primary Tool forTime Transfer,” Proceedings of the IEEE,87(1), January1999, pp:163-172.
    [30]刘晓刚,吴晓平,张传定.卫星双向共视法时间比对计算模型及其精度评估,测绘学报,2009.10,38(5), pp:415-421.
    [31] Thomas E. Parker, Demetrios Matsakis. Time and frequency disseminationadvances in GPS transfer techniques. GPS World,2004,11. pp:32-38.
    [32] Michael A. Lombardi and Andrew N. Novick. Comparison of the One-way andCommon-view GPS Measurement Techniques Using a Known Frequency Offset.34th Annual Precise Time and Time Interval Meeting. pp:39-51.
    [33] J. Furthner, A. Moudrak, A. Konovaltsev, J. Hammesfahr, and H. Denks,“TimeDissemination and Common View Time Transfer with Galileo: How Accuratewill it be?,” Proceedings of the2003Precise Time and Time Interval (PTTI)Meeting, December2003, pp:185-198.
    [34]余明,郭际明,郭静珺. GPS电离层延迟Klobuchar模型与双频数据解算值的比较和分析,测绘通报,2004,6, pp:5-8.
    [35]袁运斌,欧吉坤,利用IGS的GPS资料确定全球电离层TEC的初步结果与分析.2003.8,13(8), pp:885-888.
    [36]袁运斌,基于GPS的电离层监测及延迟改正理论与方法的研究,博士学位论文,2002.5,中国科学院测量与地球物理研究所.
    [37]屈俐俐, GPS定时接收机的校准,时间频率学报,2005,28(2), pp:131-135.
    [38] Marc Weiss, Victor Zhang, Lisa Nelson. Delay variations in some GPS timingreceivers.1997IEEE International Frequency Control Symposium. pp:304-312.
    [39] M.A. Weiss and D. Davis,”A Calibration of GPS Equipment in Japan”,inProc.20th PTTI meeting,1988, pp:101-106.
    [40] S.Tholert,U.Grunert,H.Denks, and J.Further,“Absolute Calibration of TimeReceivers With DLR’S GPS/GALILEO HW Simulator”, in Proceedings of the39rd Annual Precise Time and Time Interval (PTTI) Systems and ApplicationsMeeting, pp:323-330.
    [41] W.Lewandowski, M.A.Weiss and D.Davis.”A Calibration of GPS Equipment atTime and Frequency Standards Laboratories in the USA and Europe”,in Proc.18th PTTI meeting,1986, pp:265-279.
    [42] W. Lewandowski, P.Moussay. Determination of the differential TimeCorrections for GPS Time Equipment Located at the OP, NTSC, CRL, NMIJ,TL, and NML[R]. Rapport BIPM-2003/05,2003.pp:4-5.
    [43] J. Plumb, J.White, E. Powers, K. Larson, and R. Beard,2002,“Simultaneousbsolute Cal-ibration of Three Geodetic-Quality Timing Receivers,” inProceedings of the33rd Annual Precise Time and Time Interval (PTTI) Systemsand Applications Meeting,27-29November2001, Long Beach, California, USA(U.S. Naval Observatory, Washington, D.C.), pp:349-357.
    [44] Thorsten Feldmann, Relative calibration of the GPS time link between CERNand LNGS.2011.9.
    [45] John Plumb,K.Larson,J.White,E.Powers,R.Beard,2003,“Stability and ErrorAnalysis for Absolutely Calibrated Geodetic GPS Receivers”, in Proceedings ofthe34rd Annual Precise Time and Time Interval (PTTI) Systems andApplications Meeting, pp:309-323.
    [46]蔡成林,广域差分系统中星钟和星历分离计算方法研究,中国科学院研究生院博士学位论文,2009.11.
    [47]廖伟迅. GPS信号电离层时延误差的研究,首都师范大学学报(自然科学版).2010,31(1), pp:95-98.
    [48]隋立芬,宋力杰,柴洪州.误差理论与测量平差基础,测绘出版社,2010.1.
    [49]高玉平,漆溢,王正明.多通道单频GPS时间传递接收机NTSCGPS-1的性能分析,时间频率学报,2003,26(2), pp:136-143.
    [50]戚素娟. GPS/GLONASS组合共视技术研究,2008年5月,中国科学院国家授时中心硕士学位论文.
    [51] GAO Yuping, QI Sujuan, Performance Test of GPS/GLONASS Time TransferReceiver NTSCGNSS-2, Journal of Time and Frequency.2008,31(1), pp:27-35.
    [52]高玉平,戚素娟. NTSCGNSS-2型GPS/GLONASS时间传递接收机的性能测试,时间频率学报,2008,31(1), pp:27-35.
    [53]刘利,相对论时间比对理论与高精度时间同步技术,中国人民解放军信息工程大学:大地测量学与测量工程学位论文,2004.
    [54]杨力.大气对GPS测量影响的理论与研究.中国人民解放军信息工程大学测绘学院,博士学位论文,2001.4.
    [55]章红平,平劲松,朱文耀等.电离层延迟改正模型综述,天文学进展,2006,24(1), pp:16-26.
    [56]寇艳红译, GPS原理与应用,电子工业出版社,2007.7.
    [57]中国地震局地壳形变台网中心, http://www.dccdnc.ac.cn/dataservice/gps_tec.jsp
    [58] Stefan Schaer, Werner Gurner. IONEX: The IONosphere Map Exchange FormatVersion1.1998.2.25Proceedings of the IGS AC Workshop, Darmstadt, Germany,19982.9-11.
    [59] G.Fptopoulos, M. E. Cannon, An Overview of Multi-Reference Station Methodsfor Cm-Level Positioning, GPS Solutions, Vol.4, No3, pp1-10,2001.
    [60] Xu Longxia, Li Xiaohui, Xue Yanrong. A new timing method based oncommon-view,2012IEEE International Frequency Control Symposium,2012.5.21-24, Baltimore, MD, United States.2012IFCS Proceedings,pp181-184.
    [61]张晓明.基于VRS的差分GPS算法研究,现代测绘,2011.1,34(1), pp:3-5.
    [62]冯炜,陈向东,吴星,叶修松.空间纬度对于差分系统电离层格网性能的影响.大地测量与地球动力学,第31卷,第4期,2011.8, pp:135-138.
    [63]谭述森.导航卫星双向伪距时间同步,中国工程科学,2006.12,8(12),70-74.
    [64]刘利,韩春好,唐波.地球同步卫星双向共视时间比对及试验分析,计量学报,2008年4月,29(2),178-181.
    [65]刘利,韩春好,卫星双向时间比对及其误差分析,天文学进展,2004.9,22(3),pp:219-226.
    [66]李保东,刘利,居向明等.卫星双向定时精度分析,时间频率学报,2010.12,33(2), pp:129-133.
    [67] Ken Senior, Paul Koppang, Member, IEEE, and Jim Ray. Developing an IGSTtime Scale. IEEE transactions on ultrasonics, ferroelectrics, and frequencycontrol,2003,50(2), pp:585-593.
    [68]丁月蓉.天文数据处理方法,南京大学出版社,1998.8.
    [69]董绪荣,唐斌,蒋德著.卫星导航软件接收机原理与设计.
    [70]陈军,潘高峰,李飞等译. GPS软件接收机基础,电子工业出版社,2008.7.
    [71]李成钢,网络GPS/VRS系统高精度差分改正信息生成与发布研究,西南交通大学,博士学位论文,2007.3.
    [72] Hiromune N., Akio Y., and Koji S.(2000) RTK-GPS positioning by TVaudio-MPX-data broadcast in Japan, Earth Planets Space,52:847-850.
    [73] Liu Z., and Gao Y.(2001) Research toward wireless Internet-based DGPS,Proceedings of KIS2001, Banff, Canada, June5-8,461-469.
    [74] Volker WEGENER, Lambert WANNINGER, Communication Options forNetwork RTK/SAPOS Realization. Proceedings of the2nd workshop onpositioning, navigation and communication(WPNC’05)&1st Ultra-widebandexpert talk(UET’05),115-118
    [75] Ko S J., J. H. Won, J. S. Lee (2001) A practical real-time precise CDGPSpositioning using mobile phones, Internet and low cost C/A-code GPS receivers,Proceedings of National Technical Meeting2001, Institute of Navigation,22-24January2001, Long Breach, CA, pp:288-295.
    [76]赵金明,曹晓卫,张明哲,姚冬苹. GPRS数据传输时延测试,移动通信,2004,6, pp:36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700