用户名: 密码: 验证码:
量子通信中的精密时间测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息是量子物理与信息科学相结合的交叉学科,近年来获得迅速发展,其中量子通信是发展最为成熟的方向之一。与传统保密通信不同,量子通信的安全性由量子力学的基本原理保证,从而在本质上提升了通信安全。基于卫星平台的量子通信可实现全球化广域量子通信网络。
     量子通信的信息载体通常为单光子,需要准确的探测并记录下每个单光子信号的到达时间。通信双方往往相距遥远,分别拥有各自的时间基准,这就需要在通信双方之间实现高精度的时间同步。系统时间精度直接影响到量子通信实验性能指标甚至于实验的成败,如误码率、成码率、通信距离等,而时间测量精度是决定系统时间精度的关键因素之一。
     本论文针对量子通信领域对时间测量的需求,对多种时间测量技术进行了研究,并实际应用于量子密钥分配实验中,取得了良好的实验结果。
     本论文主要包括以下3项内容。
     首先,针对近地面的量子通信实验对时间测量技术的高要求,研究了基于FPGA的高精度TDC技术,并成功应用于远距离量子通信实验等。采用基于FPGA进位链的TDC技术,设计实现了时间分辨50ps(测量精度小于30ps)的时间测量模块,并结合实验需求,将多通道TDC与随机数产生控制、量子光电控制以及数据获取模块集成在一片FPGA内,实现系统高度集成化。配合单光子探测器和量子激光器,研制了一套完整量子通信电子学系统。该套系统已成功应用于基于运动转台的40公里、基于浮空平台的20公里以及定点96公里(链路损耗高达50dB)自由空间量子密钥分发实验,从多角度全面验证了星地量子通信的可行性。在本套系统中,以高精度时间测量电路为核心,结合同步脉冲光信号和GPS信号,发展了一套可广泛适用于远距离自由空间量子通信的高精度时间同步系统。
     其次,针对星地量子密钥分配实验中的空间载荷系统对时间测量技术的高可靠性要求,设计了一种宽量程高可靠的时间测量电路,可满足空间量子密钥分配实验需求。基于SRAM工艺的FPGA TDC容易受到单粒子效应等辐射损害。为此采用专用集成电路(ASIC)时间测量芯片TDC-GP1以提高可靠性。为了满足QKD实验对时间测量电路的宽量程和低死时间要求,采用“粗”“细”结合的时间内插方法,TDC-GP1芯片作为细时间测量,粗时间测量则由FPGA时钟计数器实现,这样既保持了TDC-GP1的高精度,又扩展了时间测量范围。实际电路测试表明,时间分辨率Bin Size (也简称为LSB)达到380ps,测量精度小于250ps,死时间为1.15us,测量范围为671ms,该技术已实际应用于某空间量子密钥分配载荷。
     再次,为满足未来星地远距离高损耗信道的纠缠分发等量子通信实验对高精度时间测量的要求,对基于FPGA延迟链的TDC电路进行了深入研究,提出了一种新型的多链多次平均TDC结构,具有高精度、死时间小、资源占用量少等优点,还可以灵活实现死时间和资源占用量的平衡转换。在同时使用8条链,每条链连续测量4次时,时间精度RMS高达7.4ps,时间分辨Bin Size可达lps,同时死时间仅为42ns。通过理论分析、模型仿真以及实际电路测试,对多链多次平均TDC的时间性能与链数目M和连续测量次数N的关系进行了深入探讨,对实际电路中优化性能给出了指导性意见。此外,本论文还实现了一种基于FPGA的改进型快速胖树形编码电路,可完成超宽非温度码到二进制码的快速转换。该编码电路可广泛应用于基于延迟链的FPGA TDC电路中。
     本论文主要创新之处在于:
     1.将基于FPGA的高精度TDC技术成功应用于量子通信实验中,提高了系统集成度和灵活性,降低了成本。基于该高精度时间测量电路,发展了一套基于光信号的高精度时间同步技术,采用同步光信号和GPS信号。该同步技术可广泛应用于自由空间量子通信中,实现遥远两地或多地之间的高精度时间同步
     2.基于TDC-GP1芯片和FPGA设计实现了一种高可靠性的时间测量电路,实际应用于某星地量子密钥分配空间载荷。
     3.提出了一种新型的多链多次平均结构的TDC技术,该技术可进一步提高TDC性能,可实现时间分辨Bin Size和时间精度RMS均小于10ps,还可以灵活实现死时间和资源占用量的平衡转换,该技术可广泛用于量子通信实验中。还实现了一种基于FPGA的改进的快速胖树形编码电路,可完成超宽非温度码到二进制码的快速转换,广泛应用于基于延迟链的FPGA TDC电路中。
Quantum information has been developing rapidly in recent years, which is a new interdisciplinary subject combining quantum physics and information science. Quantum communication is the most matured research direction. The fundamental laws of quantum mechanical guarantee the unconditional security of the communication, which will essentially enhance communication security. With the help of the stable low-loss transmission channel of free-space between satellites and ground, one can even realize a global quantum communication network.
     The single photons are often used as information carriers in quantum communication, such as the quantum key distribution (QKD). It's necessary to detect the single photons and record their arrival time accurately. The communication parties often far away separated and have independent reference clocks. So it's essential to establish high resolution time synchronization among them. The system timing jitter can directly influence the quantum bit error rate (QBER) and the final key rate. A high precision time to digital converter (TDC) is necessary and can effectively reduce the system timing jitter, resulting in lower QBER and higher key rate.
     In this thesis, the requirement of TDC in quantum communication was analyzed. A variety of TDC techniques are researched and successfully applied in QKD and good experimental results are obtained.
     This thesis mainly includes the following3items.
     Firstly, A high resolution TDC based on the FPGA's carry chains used as tapped delay lines was implemented. Its high resolution (Bin size) of50ps with precision (RMS) less than50ps, low dead time (30ns) and large dynamic range (167ms) can well meet the requirement of the QKD experiment in the near ground. Taking full advantage of the FPGA's flexibility, the multi-channel TDC and some other necessary modules in the QKD system are integrated in a single FPGA, such as random data module, laser diode(LD) control module, system control logic, etc. This remarkably improves the system's integration. With single photon detectors (SPD) and quantum laser diodes, a complete electronic system for QKD was developed. Using this QKD system, three independent QKD experiments were carried out with the system operated on a turntable via a public free-space channel of length40km, a floating hot-air balloon at20km, and over a96km link with about50dB loss, respectively. The experiments provide direct and full scale verification towards ground-satellite QKD. In this system, a high resolution time synchronization system was also developed which can be widely used in QKD. The synchronization system is based on the high resolution FPGA-TDC, and the pulse per second (PPS) signals of the GPS and a synchronous laser light setup are employed.
     Secondly, to meet the special requirements of payload in satellite, such as high reliability, a wide range and high resolution TDC was designed, which is applied to a actual satellite-ground QKD experiment. As the FPGA-TDC, which is based on SRAM technique, has no experience in the space environment and can be easyly damaged by single event effects (SEE), we use an ASIC chip TDC-GP1, which is more reliably. But the chip cannot meet the experiment requirements as it's short measurement range and long process time. We combined an FPGA and the TDC-GP1chip together to implement a new TDC. The time interpolation method is used; The FPGA measures the course time and the TDC-GP1measures the fine time. This new TDC's Bin Size is380ps and RMS is less than250ps, with measurement range can be expanded to671ms. The dead time is1.15us. The TDC is being used in a payload for QKD.
     Thirdly, in the future satellite-ground quantum entanglement experiment with a long-distance high-loss channel, the TDC's resolution should be higher. So a in-depth research on tapped delay line TDC in FPGA was conducted. A novel multi-chain multi-measurement average TDC structure was proposed within FPGA. The new TDC is flexible to achieve a balance between the dead time and logic utilization, with higher resolution. With theoretical analysis, model simulation and bench-top tests, we researched the timing performance of the new TDC on the variety of the chain number (M) and the measurement times (N). When using8chains (M=8) and4times (N=4) measured on each chain, the RMS was tested to be7.4ps and the bin size could be as low as1ps, with the dead time is only42ns. Besides, a fast improved fat tree encoder was implemented in the new TDC, which can finish the ultra wide non-thermometer code to binary code encoding process within just one system clock cycle. An encoding time of8.33ns was achieved for a 276-bit non-thermometer code to a9-bit binary code conversion. The encoder could be widely used in delay chain based FPGA TDCs.
     The key innovation points are listed as follows,
     1. A high resolution FPGA-TDC was applied in quantum communication, which improved the system performance. Meanwhile, The system's integration was enhanced and the cost decreased. In the experiment, we also developed a high resolution time synchronization system which can be widely used in QKD.
     2. A reliable TDC based on TDC-GP1and FPGA was designed, which has wide range(671ms), high resolution(380ps) and small dead time(1.15us). The TDC is being used in a payload for satellite-ground QKD.
     3. A novel multi-chain multi-measurement average TDC structure was proposed, which can further improve the timing performance, resulting the bin size and RMS both less than10ps. Besides, it is flexible to achieve a balance between the dead time and logic utilization. This TDC can be widely used in QKD. A fast improved fat tree encoder was implemented in the new TDC, which can finish the ultra wide non-thermometer code to binary code encoding process within just one system clock cycle. This encoder could be widely applied in delay chain based FPGA TDCs.
引文
[1]A. Sergienko, Quantum communications and cryptography. CRC Press Taylor & Francis Group,2006.
    [2]温浩,“量子密钥分配网络的协议和机制,”中国科学技术大学,2008.
    [3]陈晖;祝世雄;朱甫臣,量子保密通信引论.北京理工大学出版社,2010.
    [4]毛明,大众密码学.高等教育出版社,2005.
    [5]陈巍,“光纤量子密钥分配的实验研究,”中国科学技术大学,2008.
    [6]C. E. Shannon, "Communication Theory of Secrecy Systems," Bell System Technical Journal, vol.28, no.4, pp.656-715,1949.
    [7]耿祥玉,“一种移动商务身份认证系统的研究与设计,”大连理工大学,2009.
    [8]E. Biham and A. Shamir, Differential cryptanalysis of the data encryption standard. Berlin: Springer Verlag,1993.
    [9]X. Wang, H. Yu, and Y. Yin, "Efficient collision search attacks on SHA-0," Advances in Cryptology-CRYPTO 2005, no.90304009,2005.
    [10]X. Wang, D. Feng, X. Lai, and H. Yu, "Collisions for hash functions MD4," MD5, HAVAL-128 and RIPEMD, rump session of…, vol.5, pp.5-8,2004.
    [11]张永德,量子力学.科学出版社,2005.
    [12]张永德,量子信息物理原理.科学出版社,2006.
    [13]尹浩;韩阳,量子通信原理与技术.电子工业出版社,2013.
    [14]C. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing,1984, pp.175—179.
    [15]C. H. Bennett, "Quantum cryptography using any two non-orthogonal states," Phys. Rev. Lett., vol.68, no.21, pp.3121-3124,1992.
    [16]A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett., vol.67, pp.661-663,1991.
    [17]B. Huttner, N. Imoto, N. Gisin, and T. Mor, "Quantum cryptography with coherent states," Physical Review A, vol.51, no.3, pp.1863-1869, Mar.1995.
    [18]A. Muller, J. Breguet, and N. Gisin, "Experimental Demonstration of Quantum Cryptography Using Polarized Photons in Optical Fibre over More than 1 km," Europhysics Letters (EPL), vol.23, no.6, pp.383-388, Aug.1993.
    [19]A. Muller, H. Zbinden, and N. Gisin, "Underwater quantum coding," Nature, vol.378, no.6556, pp.449-449, Nov.1995.
    [20]D. Stucki, N. Gisin,O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New Journal of Physics, vol. 4, pp.41-41, Jul.2002.
    [21]Z. L. Yuan C. Gobby, et al., "Quantum key distribution over distances as long as 101 km.," Quantum Electronics and Laser Science,2003. QELS. Postconference Digest.,2003.
    [22]G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, "Limitations on Practical Quantum Cryptography," Physical Review Letters, vol.85, no.6, p. 1330,2000.
    [23]W. Y. Hwang, "Quantum key distribution with high loss:Toward global secure communication," Physical Review Letters, vol.91, no.5,2003.
    [24]X. B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Physical Review Letters, vol.94, no.23,2005.
    [25]H. K. Lo, X. F. Ma, and K. Chen, "Decoy state quantum key distribution," Physical Review Letters, vol.94, no.23,2005.
    [26]C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, "Experimental long-distance decoy-state quantum key distribution based on polarization encoding," Phys Rev Lett, vol. 98,no.1, p.10505,2007.
    [27]D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-distance decoy-state quantum key distribution in optical fiber," Physical Review Letters, vol.98, no. 1,2007.
    [28]T. Schmitt-Manderbach H. Weier, et al., "Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km.," Phys. Rev. Lett., vol.98, no.1,2007.
    [29]D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, "High rate, long-distance quantum key distribution over 250km of ultra low loss fibres," New Journal of Physics, vol.11, no.7, p. 075003, Jul.2009.
    [30]Y. Liu, T. Y. Chen, et al., "Decoy-state quantum key distribution with polarized photons over 200 km," Optics Express, vol.18, no.8, pp.8587-8594,2010.
    [31]A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Continuous operation of high bit rate quantum key distribution," Applied Physics Letters, vol.96, no.16, p.161102,2010.
    [32]W. T. Buttler R. J. Hughes, et al., "Practical Free-Space Quantum Key Distribution over 1 km," Phys. Rev. Lett., vol.81, no.15, pp.3283-3286,1998.
    [33]R. J. Hughes J. E. Nordholt, et al., "Practical free-space quantum key distribution over 10 km in daylight and at night.," New Journal of Physics, vol. 4, p.43,2002.
    [34]C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution.," Nature, vol.419, no. 6906, p.450, Oct.2002.
    [35]M. Aspelmeyer, H. R. Bohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement," Science, vol.301, no.5633, pp.621-623,2003.
    [36]C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km:Towards satellite-based global quantum communication," Physical Review Letters, vol. 94, no.15,2005.
    [37]K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Bohm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Optics Express, vol.13, no.1, pp.202-209,2005.
    [38]H. Weier T. Schmitt-Manderbach, et al., "Free space quantum key distribution: Towards a real life application.," Fortschr. Phys., vol.54, pp.840-845,2006.
    [39]R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nature Physics, vol.3, no.7, pp.481-486,2007.
    [40]A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, "High-fidelity transmission of entanglement over a high-loss free-space channel," Nature Physics, vol.5, no. 6, pp.389-392,2009.
    [41]X. M. Jin, B. Yang, Zheng-Huan Yi, Fei Zhou, Shao-kai Wang, Dong Yang, T. Yang, Ji-Gang Ren, C.-Z. Peng, and J.-W. Pan, "Experimental Quantum teleportation on the Great Wall," Submitted to Nature.
    [42]J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, "Quantum teleportation and entanglement distribution over 100-kilometre free-space channels," Nature, vol. 488, no.7410, pp.185-188,2012.
    [43]S. Nauerth F. Moll, et al, "Air to Ground Quantum Key Distribution," http://www.qcrypt.net/docs/extended-abstracts/qcrypt2012_submission_12.pdf, 2012.
    [44]T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Physical Review Letters, vol.98, no.1,2007.
    [1]C. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing,1984, pp.175-179.
    [2]"Key-Sifting." [Online]. Available: http://swissquantum.idquantique.com/?Key-Sifting.
    [3]Z.-S. Yuan, X.-H. Bao, C.-Y. Lu, J. Zhang, C.-Z. Peng, and J.-W. Pan, "Entangled photons and quantum communication," Physics Reports, vol.497, no.1, pp.1-40, Dec.2010.
    [4]彭承志,“快瞬态电子学技术在量子通信和ICF实验中应用,”中国科学技术大学,2004.
    [5]G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, "Limitations on Practical Quantum Cryptography," Physical Review Letters, vol.85, no.6, p.1330,2000.
    [6]周飞,“自由空间远程量子通信,”清华大学,2012.
    [7]X. B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Physical Review Letters, vol.94, no.23,2005.
    [8]W. Y. Hwang, "Quantum key distribution with high loss:Toward global secure communication," Physical Review Letters, vol.91, no.5,2003.
    [9]任继刚,印娟,杨彬,周飞,易震环,彭承志,and王建宇,“星地量子密钥分发中的时间同步研究,”红外与毫米波学报,vol.30,no.4,pp.381-384,2011.
    [10]A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett., vol.67, pp. 661-663,1991.
    [11]A. Einstein, B. Podolsky, and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?," Physical Review, vol.47, no.10, pp.777-780, May 1935.
    [12]张永德,量子信息物理原理.科学出版社,2006.
    [13]J. Clauser, M. Home, A. Shimony, and R. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories," Physical Review Letters, vol.23, no.15, pp.880-884, Oct.1969.
    [14]曹原,“基于自由空间信道的量子信息实验研究,”中国科学技术大学,2012.
    [15]印娟,雍海林,吴裕平,and彭承志,“基于高损耗信道的纠缠分发实验模拟,”物理学报,vol.60,no.6,p.060307,2011.
    [16]G. B. Bennett. C. H. et al., "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett, vol.70, no.13, pp.1895-1899,1993.
    [17]D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature, vol.390, no.6660, pp.575-579,1997.
    [18]X. M. Jin, B. Yang, Zheng-Huan Yi, Fei Zhou, Shao-kai Wang, Dong Yang, T. Yang, Ji-Gang Ren, C.-Z. Peng, and J.-W. Pan, "Experimental Quantum teleportation on the Great Wall," Submitted to Nature.
    [19]金贤敏,“远程量子通信的实验研究,”中国科学技术大学,2008.
    [20]J. Yin J.-G. Ren, et al, "Quantum teleportation and entanglement distribution over 100-kilometre free-space channels," Nature, vol.488, p.185,2012.
    [21]M. Aspelmeyer, H. R. Bohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement.," Science (New York, N.Y.), vol.301, no.5633, pp.621-623, Aug.2003.
    [22]T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and a Zeilinger, "Quantum cryptography with entangled photons," Physical review letters, vol.84, no.20, pp.4729—4732, May 2000.
    [23]I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Applied Physics Letters, vol.89, no.10, p.101122,2006.
    [24]M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, "Daylight operation of a free space, entanglement-based quantum key distribution system," New Journal of Physics, vol. 11, no.4, p.045007, Apr.2009.
    [25]C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental Free-Space Distribution of Entangled Photon Pairs Over 13 km:Towards Satellite-Based Global Quantum Communication," Physical Review Letters, vol.94, no.15, pp.1—4, Apr.2005.
    [26]胡元峰,“自由空间量子通信实验中远程光符合的电子学系统研制,”中国科学技术大学,2007.
    [27]R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nature Physics, vol.3, no.7, pp.481—486,2007.
    [28]T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Physical Review Letters, vol.98, no.1,2007.
    [29]C. Ho, A. Lamas-Linares, and C. Kurtsiefer, "Clock synchronization by remote detection of correlated photon pairs," New Journal of Physics, vol.11, no.4, p.045011, Apr.2009.
    [30]J. Bienfang, A. Gross, A. Mink, B. Hershman, A. Nakassis, X. Tang, R. Lu, D. Su, C. Clark, C. Williams, E. Hagley, and J. Wen, "Quantum key distribution with 1.25 Gbps clock synchronization.," Optics express, vol.12, no.9, pp.2011-6, May 2004.
    [31]A. Mink, J. C. Bienfang, R. Carpenter, L. Ma, B. Hershman, A. Restelli, and X. Tang, "Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems," New Journal of Physics, vol.11, no.4, p.045016, Apr.2009.
    [32]A. Tomita, K. Yoshino, Y. Nambu, A. Tajima, A. Tanaka, S. Takahashi, W. Maeda, S. Miki, Z. Wang, M. Fujiwara, and M. Sasaki, "High speed quantum key distribution system," Optical Fiber Technology, vol.16, no.1, pp.55-62, Jan.2010.
    [33]L. Xiao and B. Journet, "Intensity noise measurement of strongly attenuated laser diode pulses in the time domain.," Quantum optics.
    [34]R. J. Collins, R. H. Hadfield, V. Fernandez, S. W. Nam, and G. S. Buller, "Low timing jitter detector for gigahertz quantum key distribution," Electronics Letters, vol.43, no.3, pp.11-12, 2007.
    [35]"SPC-130 low cost TCSPC Module," Becker&Hickl GmbH. [Online]. Available: http://www.becker-hickl.de/spc 130.htm.
    [1]宋健,“基于FPGA的精密时间-数字转换电路研究,”中国科学技术大学,2006.
    [2]J. Kalisz, "Review of methods for time interval measurements with picosecond resolution," Metrologia, vol.41, no.1, pp.17-32, Feb.2004.
    [3]安琪,“粒子物理实验中的精密时间间隔测量,”核技术,vol.29,no.6,pp.453-462,2006.
    [4]D. I. Porat, "Review of Sub-Nanosecond Time-Interval Measurements," IEEE Transactions on Nuclear Science, vol.20, no.5, pp.36—51,1973.
    [5]孙杰,潘继飞,“高精度时间间隔测量方法综述,”计算机测量与控制,vol.15,no.2,pp.145-148,2007.
    [6]S. Henzler, Time-to-Digital Converters. Springer,2010.
    [7]FAST ComTec GmbH, "MCS6A:5(6) Input 100ps Multi-stop TDC,Multiscaler,Time-Of-Flight User Manual," 2013.
    [8]R. Nutt, "Digital time intervalometer," Review of Scientific Instruments, vol.39, no.9, p.1342,1968.
    [9]H. Kichimi, H. Yamaguchi, G. Varner, S. Olsen, R. Summer, and G. Blanar, "Time expanding multihit TDC for BELLE TOF detector at KEK B factory," BELLE note #223.
    [10]A. E. Stevens, R. P. Van Berg, J. Van der Spiegel, and H. H. Williams, "A time-to-voltage converter and analog memory for colliding beam detectors," IEEE Journal of Solid-State Circuits, vol.24, no.6, pp.1748-1752,1989.
    [11]E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, "Time interval measurements using time-to-voltage conversion with built-in dual-slope A/D conversion," in 1991., IEEE International Sympoisum on Circuits and Systems, 1991, pp.2573-2576.
    [12]W. Becker, Advanced Time-Correlated Single Photon Counting Techniques. Springer,2005.
    [13]"SPC-830 high-end TCSPC module," Becker&Hickl GmbH. [Online]. Available:http://www.becker-hickl.de/spc830.htm.
    [14]W. Becker, A. Bergmann, and H. Wabnitz, "High count rate multichannel TCSPC for optical tomography," Proc. SPIE, no. June, pp.4-9,2001.
    [15]王进红,“基于开关电容矩阵的波形数字化技术研究,”中国科学技术大学,2012.
    [16]"DSAX91604A DSAX91604A Infiniium高性能示波器:16 GHz," Agilent. [Online]. Available: http://www.horne.agilent.com/agilent/product.jspx?nid=-33821.931870.00&lc= chi&cc=CN.
    [17]"Pierre Vernier." [Online]. Available: http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Vernier.html.
    [18]T. E. Rahkonen and T. Juha, "The Use of Stabilized CMOS Delay Lines for the Digitization of Short Time Intervals," vol.28, no.8,1993.
    [19]J. V Hatfield, P. Dudek, S. Member, and S. Szczepan, "A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line," vol.35, no. 2, pp.240-247,2000.
    [20]C. T. Gray, W. Liu, S. Member, W. A. M. Van Noije, T. A. Hughes, and R. K. Cavin, "A Sampling Technique and Its CMOS Implementation with 1 Gb/s Bandwidth and 25 ps Resolution," vol.29, no.3,1994.
    [21]M. S. Gorbics, J. Kelly, K. M. Roberts, and R. L. Sumner, "A high resolution multihit time to digital converter integrated circuit," in 1996 IEEE Nuclear Science Symposium. Conference Record,1996, vol.1, pp.421-425.
    [22]J. Wu, "Several key issues on implementing delay line based TDCs using FPGAs," Nuclear Science, IEEE Transactions on, vol.57, no.3, pp.1543— 1548,2010.
    [23]P. Bailly, J. Chauveau, J. F. Genat, J. F. Huppert, H. Lebbolo, L. Roos, and B. Zhang, "A 16-channel digital TDC chip," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.433, no.1-2, pp.432-437, Aug.1999.
    [24]T. Rahkonen and J. Kostamovaara, "The use of stabilized CMOS delay lines in the digitization of short time intervals," Proc. IEEE Symp. on Circuit and System, vol.4, pp.2252-3,1991.
    [25]M. Mota and J. Christiansen, "A high-resolution time interpolator based on a delay locked loop and an RC delay line," IEEE Journal of Solid-State Circuits, vol.34, no.10, pp.1360-1366,1999.
    [26]J. Kalisz, R. Szplet, J. Pasierbinski, and a. Poniecki, "Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution," IEEE Transactions on Instrumentation and Measurement, vol.46, no.1, pp.51-55,1997.
    [27]R. Szplet, J. Kalisz, and R. Szymanowski, "Interpolating time counter with 100 ps resolution on a single FPGA device," IEEE Transactions on Instrumentation and Measurement, vol.49, no.4, pp.879-883,2000.
    [28]J. Wu, Z. Shi, and I. Wang, "Firmware-only implementation of time-to-digital converter (TDC) in field-programmable gate array (FPGA)," Nuclear Science Symposium…, vol.1, pp.177-181,2003.
    [29]X. Kang, S. Wang, Y. Liu, X. Sun, R. Zhou, T. Ma, Z. Wu, and Y. Jin, "A simple smart time-to-digital convertor based on vernier method for a high resolution LYSO MicroPET," 2007 IEEE Nuclear Science Symposium Conference Record, pp.2892-2896,2007.
    [30]J. Song, Q. An, and S. Liu, "A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays," IEEE Transactions on Nuclear Science, vol.53, no.1, pp.236-241, Feb.2006.
    [31]"A monolithic vernier-based time-to-digital converter with dual PLLs for self-calibration," in Proceedings of the IEEE 2005 Custom Integrated Circuits Conference,2005., pp.314-317.
    [32]J. Christiansen, "An integrated high resolution CMOS timing generator based on an array of delay locked loops," IEEE Journal of Solid-State Circuits, vol. 31, no.7, pp.952-957, Jul.1996.
    [33]"TDC-GP1." [Online]. Available: http://www.acam.de/products/time-to-digital-converter/tdc-gp1/.
    [34]"TDC-GP2." [Online]. Available: http://www.acam.de/products/time-to-digital-converter/tdc-gp2/.
    [35]"TDC-GPX." [Online]. Available: http://www.acam.de/products/time-to-digital-converter/tdc-gpx/.
    [36]PicoQuant GmbH, "Multichannel Picosecond Event Timer & TCSPC Module: HydraHarp 400." [Online]. Available: http://www.picoquant.com/products/hydraharp400/hydraharp400.htm.
    [37]J. Christiansen, "HPTDC user manual (ver.2.2)," 2004.
    [38]S. Al-Ahdab, A. Mantyniemi, and J. Kostamovaara, "Cyclic time domain successive approximation time-to-digital converter (TDC) with sub-ps-level resolution," in 2011 IEEE International Instrumentation and Measurement Technology Conference,2011, pp.1-4.
    [39]C. Kai and L. Shubin, "A high precision time-to-digital converter based on multi-phase clock implemented within Field-Programmable-Gate-Array," Nuclear Science and Techniques, vol.21, no.10405023, pp.123-128,2010.
    [40]J. Wang, S. Liu, Q. Shen, H. Li, and Q. An, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays," IEEE Transactions on Nuclear Science, vol.57, no.2, pp.446-450, Apr.2010.
    [41]J. Wang, S. Liu, L. Zhao, X. Hu, and Q. An, "The 10-ps Multitime Measurements Averaging TDC Implemented in an FPGA," IEEE Transactions on Nuclear Science, vol.58, no.4, pp.2011-2018, Aug.2011.
    [42]Z. Yin, S. Liu, X. Hao, S. Gao, and Q. An, "A high-resolution time-to-digital converter based on multi-phase clock implement in field-programmable-gate-array," in 201218th IEEE-NPSS Real Time Conference, RT 2012,2012.
    [43]L. Zhao, X. Hu, S. Liu, J. Wang, and Q. An, "A 16-channel 15 ps TDC implemented in a 65 nm FPGA," in 2012 18th IEEE-NPSS Real Time Conference,2012, pp.1-5.
    [44]M. Fries and J. Williams, "High-precision TDC in an FPGA using a 192 MHz quadrature clock," in 2002 IEEE Nuclear Science Symposium Conference Record,2002, vol.1, pp.580-584.
    [45]a. Aloisio, P. Branchini, R. Giordano, V. Izzo, and S. Loffredo, "High-precision time-to-digital converter in a FPGA device," in 2009 16th IEEE-NPSS Real Time Conference,2009, pp.283-286.
    [46]J. Kalisz, R. Szplet, R. Pelka, and a. Poniecki, "Single-chip interpolating time counter with 200-ps resolution and 43-s range," IEEE Transactions on Instrumentation and Measurement, vol.46, no.4, pp.851-856,1997.
    [47]M.-C. Lin, G.-R. Tsai, C.-Y. Liu, and S.-S. Chu, "FPGA-Based High Area Efficient Time-To-Digital IP Design," TENCON 2006-2006 IEEE Region 10 Conference, pp.1-4,2006.
    [48]D. K. Xie, Q. C. Zhang, G. S. Qi, and D. Y. Xu, "Cascading delay line time-to-digital converter with 75 ps resolution and a reduced number of delay cells," Review of Scientific Instruments, vol.76, no.1, p.014701,2005.
    [49]R. Szymanowski and J. Kalisz, "Field programmable gate array time counter with two-stage interpolation," Review of Scientific Instruments, vol.76, no.4, p. 045104,2005.
    [50]A. M. Amiri, M. Boukadoum, and A. Khouas, "A Multihit Time-to-Digital Converter Architecture on FPGA," IEEE Transactions on Instrumentation and Measurement, vol.58, no.3, pp.530-540, Mar.2009.
    [51]M. S. Andaloussi, M. Boukadoum, and E. M. Aboulhamid, "A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution," in The 14th International Conference on Microelectronics,,2002, pp.123-126.
    [52]M. Zielinski, D. Chaberski, M. Kowalski, R. Frankowski, and S. Grzelak, "High-resolution time-interval measuring system implemented in single {FPGA} device," Measurement, vol.35, no.3, pp.311-317,2004.
    [53]J. Wu and Z. Shi, "The 10-ps wave union TDC:Improving FPGA TDC resolution beyond its cell delay," in 2008 IEEE Nuclear Science Symposium Conference Record,2008, pp.3440-3446.
    [54]E. Bayer and M. Traxler, "A high-resolution (<10 ps RMS) 32-Channel Time-to-Digital Converter (TDC) implemented in a Field Programmable Gate Array (FPGA)," in 2010 17th IEEE-NPSS Real Time Conference,2010, pp.1-5.
    [55]E. Bayer and M. Traxler, "A High-Resolution (<10 ps RMS) 48-Channel Time-to-Digital Converter (TDC) Implemented in a Field Programmable Gate Array (FPGA)," IEEE Transactions on Nuclear Science, vol.58, no.4, pp. 1547-1552, Aug.2011.
    [56]E. Bayer, P. Zipf, and M. Traxler, "A multichannel high-resolution (<5 ps RMS between two channels) Time-to-Digital Converter (TDC) implemented in a field programmable gate array (FPGA)," in 2011 IEEE Nuclear Science Symposium Conference Record,2011, no.1, pp.876-879.
    [57]M. Traxler, E. Bayer, M. Kajetanowicz, G. Korcyl, L. Maier, J. Michel, M. Palka, and C. Ugur, "A compact system for high precision time measurements (< 14 ps RMS) and integrated data acquisition for a large number of channels," Journal of Instrumentation, vol.6, no.12, pp. C12004-C12004, Dec.2011.
    [58]M.-A. Daigneault and J,P. David, "A novel 10 ps resolution TDC architecture implemented in a 130nm process FPGA," Proceedings of the 8th IEEE International NEWCAS Conference 2010, pp.281-284, Jun.2010.
    [59]L. Arpin, S. Member, M. Bergeron, M. Tetrault, R. Lecomte, R. Fontaine, and S. Member, "A Sub-Nanosecond Time Interval Detection System Using FPGA Embedded I/O Resources," vol.57, no.2, pp.519-524,2010.
    [60]M. Daigneault and J. David, "A High-Resolution Time-to-Digital Converter on FPGA Using Dynamic Reconfiguration," Instrumentation and Measurement,…, vol.60, no.6, pp.2070-2079,2011.
    [61]M. W. Fishburn, L. H. Menninga, C. Favi, and E. Charbon, "A 19.6 ps, FPGA-Based TDC With Multiple Channels for Open Source Applications," IEEE Transactions on Nuclear Science, pp.1-1,2013.
    [1]J. Song, Q. An, and S. Liu, "A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays," IEEE Transactions on Nuclear Science, vol.53, no.1, pp. 236-241, Feb.2006.
    [2]J. Wang, S. Liu, Q. Shen, H. Li, and Q. An, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays," IEEE Transactions on Nuclear Science, vol.57, no.2, pp. 446-450, Apr.2010.
    [3]Xilinx Inc., "Virtex-4 FPGA User Guide UG070 (V2.5)," 2008.
    [4]Xilinx Inc., "Virtex-4 Libraries Guide for HDL Designs(8.1i)," 2005.
    [5]Xilinx Inc., "Constraints Guide(9.1i)," 2007.
    [6]J. Doernberg, H.-S. Lee, and D. A. Hodges, "Full-speed testing of A/D converters," IEEE Journal ofSolid-State Circuits, vol.19, no.6, pp.820-827, Dec.1984.
    [7]M. Mota, "Design and characterization of CMOS high-resolution time-to-digital converters," Technical University of Lisbon,2000.
    [8]J. Wu and Z. Shi, "The 10-ps wave union TDC:Improving FPGA TDC resolution beyond its cell delay," in 2008 IEEE Nuclear Science Symposium Conference Record,2008, pp.3440-3446.
    [9]X. B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Physical Review Letters, vol.94, no.23,2005.
    [10]W. Y. Hwang, "Quantum key distribution with high loss:Toward global secure communication," Physical Review Letters, vol.91, no.5,2003.
    [11]J. Wang, B. Yang, S. Liao, L. Zhang, Q. Shen, X. Hu, and J. Wu, "Direct and full-scale experimental verifications towards ground-satellite quantum key distribution," Nature Photonics (Accepted), pp.1-17,2013.
    [12]廖胜凯,“空地量子通信实验捕获跟踪系统研究,”中国科学院上海技术物理研究所,2010.
    [1]封常青,“空间暗物质探测卫星量能器读出电子学方法研究,”中国科学技术大学,2011.
    [2]D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, "High rate, long-distance quantum key distribution over 250km of ultra low loss fibres," New Journal of Physics, vol.11, no.7, p. 075003, Jul.2009.
    [3]T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Physical Review Letters, vol.98, no.1,2007.
    [4]ACAM mess electronic, "TDC-GP1 Data Sheet," 2001.
    [5]刘国福,张玘,刘波,"TDC-GP1高精度时间间隔测量芯片及其应用,”新器件新技术,no.11,pp.38-40,2004.
    [1]印娟,雍海林,吴裕平,彭承志,“基于高损耗信道的纠缠分发实验模拟,”物理学报,vo1.60,no.6,p.060307,2011.
    [2]"ORTEC935 Datasheet: Quad 200-MHz Constant-Fraction Discriminator.'
    [3]J. Wu, "Several key issues on implementing delay line based TDCs using FPGAs," Nuclear Science, IEEE Transactions on, vol.57, no.3, pp.1543-1548,2010.
    [4]J. Wang, S. Liu, L. Zhao, X. Hu, and Q. An, "The 10-ps Multitime Measurements Averaging TDC Implemented in an FPGA," IEEE Transactions on Nuclear Science, vol.58, no.4, pp. 2011-2018, Aug.2011.
    [5]J. Wang, S. Liu, Q. Shen, H. Li, and Q. An, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays," IEEE Transactions on Nuclear Science, vol.57, no.2, pp. 446-450, Apr.2010.
    [6]P. Keranen, K. Maatta, J. Kostamovaara, and A. A. Tdc, "Wide-Range Time-to-Digital Converter With 1-ps Single-Shot Precision," IEEE Transactions on Instrumentation and Measurement, vol.60, no.9, pp.3162-3172,2011.
    [7]M.-A. Daigneault and J. P. David, "A novel 10 ps resolution TDC architecture implemented in a 130nm process FPGA," Proceedings of the 8th IEEE International NEWCAS Conference 2010, pp.281-284, Jun.2010.
    [8]A. M. Amiri, M. Boukadoum, and A. Khouas, "A Multihit Time-to-Digital Converter Architecture on FPGA," IEEE Transactions on Instrumentation and Measurement, vol.58, no. 3, pp.530-540, Mar.2009.
    [9]a. Aloisio, P. Branchini, R. Giordano, V. Izzo, and S. Loffredo, "High-precision time-to-digital converter in a FPGA device," in 2009 16th IEEE-NPSS Real Time Conference,2009, pp.283-286.
    [10]J. Wu and Z. Shi, "The 10-ps wave union TDC:Improving FPGA TDC resolution beyond its cell delay," in 2008 IEEE Nuclear Science Symposium Conference Record,2008, pp.3440-3446.
    [11]Xilinx Inc., "Virtex-5 FPGA User Guide (UG190 V5.4)," 2012.
    [12]L. Zhao, X. Hu, S. Liu, J. Wang, and Q. An, "A 16-channel 15 ps TDC implemented in a 65 nm FPGA," in 2012 18th IEEE-NPSS Real Time Conference,2012, pp.1-5.
    [13]C. Wallace, "A suggestion for a fast multiplier," IEEE Transactions on Electronic Computers, pp.14-17,1964.
    [14]F. Kaess and R. Kanan, "New encoding scheme for high-speed flash ADC's," in Proceedings of 1997 IEEE International Symposium on Circuits and Systems,1997, vol.1, no.1, pp.5-8.
    [15]S. Padoan and A. Boni, "A novel coding scheme for the ROM of parallel ADCs, featuring reduced conversion noise in the case of single bubbles in the thermometer code," 1998 IEEE International Conference on Electronics, Circuits and Systems, pp.271-274,1998.
    [16]D. Lee, J. Yoo, K. Choi, and G. Jahan, "Fat tree encoder design for ultra-high speed flash A/D converters," in 2002 45th Midwest Symposium on Circuits and Systems,2002.,2002, vol.2, pp. Ⅱ-87-Ⅱ-90.
    [17]E. Sail and M. Vesterbacka, "A multiplexer based decoder for flash analog-to-digital converters," in 2004 IEEE Region 10 Conference TENCON 2004.,2004, vol. D, pp.250-253.
    [18]Y.-J. Chuang, H.-H. Ou, and B.-D. Liu, "A novel bubble tolerant thermometer-to-binary encoder for flash A/D converter," in 2005 IEEE VLSI-TSA International Symposium on VLSI Design, Automation and Test,2005, pp.315-318.
    [19]E. Sall and M. Vesterbacka, "Thermometer-to-binary decoders for flash analog-to-digital converters," in 2007 18th European Conference on Circuit Theory and Design,2007, pp.240-243.
    [20]A. V. Kale, P. Palsodkar, and P. K. Dakhole, "Comparative Analysis of 6 Bit Thermometer-to-Binary Decoders for Flash Analog-to-Digital Converter," in 2012 International Conference on Communication Systems and Network Technologies,2012, pp. 543-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700