用户名: 密码: 验证码:
某悬索桥塔侧支撑结构荷载与损伤识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大型桥梁结构中得到广泛应用的结构健康监测系统,为获得桥梁在施工与运营状态下的结构动态响应提供了强大的技术手段。基于动态响应监测数据实现结构的健康诊断是桥梁工程领域理论与应用研究的前沿,其中如何高效地评价桥梁工作状态和预测疲劳寿命是研究的热点,具有重要的学术意义和广阔的应用前景。结构的荷载识别与损伤识别是结构状态与寿命评价的基础。
     青岛海湾大桥是我国首次在北方冰冻与高盐度海域建设的一座现代化特大型桥梁。大桥设计实施了先进的结构监测巡检养护管理系统,实时监测环境激励和结构响应状态的信息,用以评价桥梁结构的工作性能和健康状态。本文以青岛海湾大桥的大沽河航道桥为背景,基于实际应变监测数据,结合有限元数值分析技术,首先对桥塔侧支撑结构在不同施工阶段的荷载进行了识别,然后,对基于应变监测的塔侧支撑结构的损伤识别进行了数值模拟研究。主要内容与成果如下:
     (1)针对独塔自锚式悬索桥——大沽河航道桥塔侧支撑结构建立了有限元模型,并通过实际应变监测数据,通过优化算法进行了模型修正;
     (2)考虑温度效应,基于实际监测应变对塔侧支撑结构的荷载(反力)进行了识别,获得了大桥主梁各个施工阶段的塔侧支撑结构的荷载(反力)变化曲线;
     (3)应用神经网络方法,对基于监测数据的结构损伤识别方法进行了数值模拟研究,同时,探讨了监测数据噪声对损伤识别的影响规律。
     研究结果表明:(1)基于实际监测数据修正的有限元模型具有较高精度,能够满足健康诊断研究的需要;(2)荷载识别结果较好的反映了各施工阶段的实际工况,为整个结构运营与健康状态的分析提供了依据;(3)基于监测应变的损伤识别,在低噪声情况下具有可行性,同时需要进一步研究具有高抗噪能力的数据处理与损伤识别方法。
The structural health monitoring system was widely used in monitoring structure of large bridge, and it made powerful technical means for getting dynamic response of construction and operation status of bridge structures. Structural health monitoring based on monitoring dynamic response data is the frontier of the theoretical and application study of bridge engineering field, which efficiently evaluate working state and predicated fatigue life is the focus of study, and it has important academic significance and wide application prospect. Structural load and structural damage identification is the base of structural state and life evaluation.
     Qingdao bay bridge is the first oversized modern bridge on freezing and high salinity waters in the north of China. The bridge designed and implemented a advanced Structural Health Monitoring System with Bridge Inspection and Management System, real-time monitoring the information of ambient excitation and structural response status, in order to evaluate working performance and health status of the bridge. This paper
     At the background of Daguhe Waterway Bridge of Qingdao Bay Bridge, based on practical monitoring strain data, combined with finite element digital analysis technology, this paper identify the load of different construction stage of the tower side support structure first, and then, make the numerical simulation of damage identification for tower side support structure which based on strain monitoring. Main contents and research achievements are as follows:
     (1) According to tower side support structure of a self-anchored suspension bridge with single-tower, the Daguhe Waterway Bridge, create the finite element model, and based on practical monitoring strain data, updating the model through optimization algorithm;
     (2) Considering temperature effect, based on practical monitoring strain, this paper identify the load(reaction) of tower side support structure, and get the variation curve of tower side support structure load(reaction) of each construction stage of bridge main beam;
     (3) Through neural net work method, this paper makes the study of numerical simulation, which based on practical monitoring data of structure damage identification.
     The result showed that:(1) Updating finite element model based on practical monitoring data with high accuracy, which meet the requirements of research of health monitoring;(2) The load identification results better reflect the actual conditions of each construction stage, and provides a basis for the operations and analysis of health status of the whole structures;(3) The damage identification based on practical monitoring strain data is feasible with low noise, and at the same time, study the damage identification method with high noise immunity is needed.
引文
[1]袁颖.桥梁结构损伤识别方法的相关问题研究[D].大连.大连理工大学.2005.
    [2]中华人民共和国交通运输部网.www.moc.gov.cn
    [3]张启伟.大型桥梁健康监测概念与检测系统设计[J].同济大学学报,2001,29(1):65-69.
    [4]Myroll F, Dibiagio E. Instrumentation for Monitoring the Skarnsunder Cable-stayed Bridge[J]. Proceedings of the Third Symposium on Strait Crossing. Rotterdam:Balkema,1994:207-215
    [5]Andersen E Y. Structural Monitoring of the Great Belt East Bridge[J]. Proceedings of the Third Symposium on Strait Crossing. Rotterdam:Balkema,1994:54-62.
    [6]Chueng M S, Tadros G S, Brown T G, et al. Field Monitoring and Research on Performance of the Confedetarion Bridge[J]. Canadian Journal of Civil Engineering,1997,24(6):951-962.
    [7]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].长沙.中南大学土建学院.2004.
    [8]朱劲松.基于可靠度的大型桥梁智能评估系统核心问题研究[D].上海.同济大学.2006.
    [9]彭晓洪,丁锡洪,周建功.用模态参数识别结果对实际结构有限元动力模型的修正[J].振动与冲击,1984,3:8-15.
    [10]张希农,吕刚.计算模型修正的频率响应函数方法[J].振动工程学报,1992,5(4):378-383.
    [11]夏益霖.结构有限元模型修正的频响函数方法[J].振动工程学报,1993,6(4):376-379.
    [12]成万植,李书.有限元模型修正技术[J].飞机设计,1994,(4):1-3.
    [13]王元清,姚南,张天申,石永久.基于最优化理论的多阶段模型修正及其在桥梁安全评估中的应用[J].2010,27(1):91-97.
    [14]姜东,丁继峰,费庆国,韩晓林.一种有限元模型修正中的参数选择方法[J].固体力学学报,2011,32(S):88-92.
    [15]方圣恩.基于有限元模型修正的结构损伤识别方法研究[D].长沙.中南大学.2010.
    [16]邓苗毅,任伟新,王复明.基于静力响应面的结构有限元模型修正方法[J].实验力学,2008,23(2):103-109.
    [17]邓苗毅,崔聚印,任伟新.桥梁结构静力模型修正响应面方法试验设计研究[J].河南科学,2007,25(4):604-608.
    [18]侯秀慧,邓子辰,黄立新.桥梁结构移动荷载识别的辛精细积分算法[J].动力学与控制学报,2008,6(1):66-71.
    [19]范存新,陈家瑾,张毅,唐和生.杆系结构多荷载识别的三角级数分析法[J].力学季刊,2008,29(3):487-491.
    [20]尤琼,史治宇,罗绍湘.基于小波有限元的移动荷载识别[J].振动工程学报,2010,23(2): 188-192.
    [21]尤琼,史治宇.基于区间B样条小波有限元的移动荷载识别[J].工程力学,2011,28(5):35-40.
    [22]李忠献,陈锋.基于时间元模型的复杂桥梁结构移动荷载识别[J].天津大学学报,2006,39(9):1043-1047.
    [23]周晚林,王鑫伟,胡自力.压电智能结构荷载识别方法的研究[J].力学学报,2004,36(4):491-495.
    [24]吴大宏,赵人达.基于神经网络的混凝土桥梁荷载识别方法研究[J].中国铁道科学,2002,23(1):25-28.
    [25]金虎.基于人工神经网络的结构荷载识别与损伤识别研究[D].杭州.浙江大学.2005.
    [26]冯新.土木工程中结构识别方法的研究[D].大连.大连理工大学.2002.
    [27]A.Rytter. Vibration based inspection of civil engineering structures[D]. Aalborg University. Denmark. 1993.
    [28]P.Cawley, R.D.Adams. The location of degects in structures from measurements of natural frequencies[J]. Journal of Strain Analysis.1979,14(2):49-57.
    [29]Spyrakos C.C. Assessment of SSi on the longitudinal seismic response of short span bridge.1990(01).
    [30]崔飞,王清远,陈宜言,石宵爽.改善桥梁结构损伤识别系统的分析与思考[J].铁道建筑,2010,(9):41-42.
    [31]付鹏涛.基于ANSYS的大型桥梁有限元分析及损伤识别研究[D].西安.长安大学.2011.
    [32]朱劲松,肖汝诚.桥梁损伤识别的实用模型修正方法研究[J].工业建筑,2006,36(z1):219-224.
    [33]A.K. Pandey, M. Biswas. Damage detection in structures using changes in flexibility[J]. Journal of Sound and Vibration.1994,169(1):3-17.
    [34]J. M. Ndambi, J. Vantomme, K. Harri. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives[J]. Engineering Structures.2002,24(4):501-515.
    [35]夏烨,淡丹辉,孙利民.基于模态参数的损伤指标比较研究[J].振动与冲击,2006,25(S):903-905.
    [36]崔飞,杨党旗,高岩.用参数识别技术进行桥梁结构损伤识别[J].中国铁道科学,2003,24(3):36-39.
    [37]向天宇,赵人达.结构损伤识别的双重网格算法[J].中国公路学报,2006,19(4):94-97.
    [38]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法[J].同济大学学报,2000,28(1):5-8.
    [39]刘春城,徐健,黄金花,杨杰.基于模态曲率改变率与神经网络的桥梁损伤识别[J].东北林业大学学报,2009,37(10):116-119.
    [40]李伶,尹骏晖,杜青.基于桥梁优化理论的有限元模型修正技术[J].山西建筑,2011,37(1):150-152.
    [41]李利军,胡兆同,曲丽清.青岛海湾大桥大沽河航道桥静风稳定性分析[J].郑州大学学报(工学版),2011,32(4):8-12.
    [42]张革军.青岛海湾大桥大沽河航道桥设计[J].公路,2009,7:203-208.
    [43]蔡建军,季辉,沈锐利.青岛海湾大沽河航道桥钢箱梁大节段安装架设关键技术研究[J].施工技术,2011,40(352):66-71.
    [44]李鹏,杜清,蔡堂.青岛海湾大桥大沽河航道桥钢箱梁架设施工技术.施工技术,2011,40(3):5-7.
    [45]王新敏ANSYS工程结构数值分析[M].人民交通出版社.2007.
    [46]龚曙光,谢桂兰,黄云清ANSYS参数化编程与命令手册[M].机械工业出版社.2009.
    [47]邵新鹏,钱宇音,倪一清.结构健康监测系统与巡检养护管理系统在青岛海湾大桥上的一体化设计[J].公路,2009,1.9:210-205.
    [48]邱勇,刘德富,李卫明,汤正阳.基于ANSYS分析的拱坝体型优化[J].三峡大学学报(自然科学版),2007,29(1):12-15.
    [49]曾攀,雷丽萍,方刚.基于ANSYS平台有限元分析手册-结构的建模与分析[M].机械工业出版社.2011.
    [50]邓杨芳.优化理论及ANSYS程序在桥梁优化设计中的应用研究[J].重庆.重庆交通大学.2009.
    [51]郭彤,李爱群,费庆国,王浩.零阶与一阶优化算法在悬索桥模型修正中的应用对比分析[J].2007,26(4):35-38.
    [52]李春早.大跨径连续刚构桥梁的温度场分析及温度荷载影响下的箱梁截面形式分析[D].西安.长安大学.2010.
    [53]姜言泉,邵新鹏.冰冻海域全寿命周期的桥梁结构耐久性关键技术研究[J].公路,2009,(9):184-187
    [54]江敦双,张苏平,陆惟松.青岛海雾的气候特征和预测研究[J].海洋湖沼通报,2008,(3):7-12.
    [55]丁隆.青岛市主要气象因子变化统计分析研究[D].青岛.中国海洋大学.2008.
    [56]孙宗光,高赞明,倪一清.基于神经网络的损伤构件及损伤程度识别[J].工程力学,2006,23(2):18-22
    [57]孙宗光,栗燕娜,石健,吴雪南,苏健.悬索桥损伤识别模型试验研究[A],福州,第四届全国防震减灾工程学术研讨会[C].2009.
    [58]张治国.基于模态分析理论和神经网络的桥梁损伤识别方法研究[D].武汉.武汉理工大学. 2005.
    [59]施彦,韩力群,廉小亲.神经网络设计方法与实力分析[M].北京.北京邮电大学出版社.2009.
    [60]宋雨,项贻强,徐兴.基于结构振动的桥梁损伤识别[J].振动、测试与诊断,2005,25(3):222-226.
    [61]江墩双,张苏平,陆惟松.青岛海雾的气候特征和预测研究[J].海洋湖沼通报,2008,3:7-12.
    [62]刘邵平,张敏,段永胜.基于零阶优化法的大宁河大桥扣索索力计算[J].市政技术,2009,27(4):354-356,364
    [63]董会丽,郑世杰.基于RBF神经网络的符合材料层合壳荷载识别[J].工程力学,2008,25(3):64-67.
    [64]徐东生,欧进萍.基于大型桥梁健康监测数据的车辆荷载识别[A].第七届全国土木工程研究生学术论坛[C].东南大学,2009.
    [65]Rhim J, Lee S W. A neural network approach for damage detection and identification of structures[J]. Computational Mechanics,1995,16(6),437-443.
    [66]葛林瑞.基于神经网络的拱桥结构损伤识别[D].成都.西南交通大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700