用户名: 密码: 验证码:
不完备测点结构损伤与荷载的同步识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输入信息未知、输出测试信息不完备条件下的结构损伤检测与荷载识别是土木工程结构识别领域中的一个重要问题。据此,本文以结构动态响应灵敏度为基础,提出一种仅利用结构少数测试自由度上的动态响应同步识别结构物理参数和输入时程的方法,并将识别的结构物理参数用于检测结构的局部损伤,同时,针对该方法的关键问题进行了一系列探讨,主要内容如下:
     (1)提出了一种基于动态响应灵敏度同步识别结构物理参数和输入的方法。首先,通过将结构输入力进行正交多项式展开和对结构物理参数进行摄动,引入正交展开系数和单元刚度分数作为待识别的力参数和结构参数;然后,推导了结构动态响应对两类参数的灵敏度,构造了识别方程,并采用迭代形式进行求解。数值模拟表明,所提出的同步识别算法可实现仅利用结构少数测试自由度上的动态响应同步识别结构物理参数和输入时程。
     (2)将同步识别算法推广用于未知基底激励作用下的结构损伤检测与荷载识别。首先,通过对未知基底激励进行正交展开,推导基于动态响应灵敏度、利用结构动态响应同步识别结构局部损伤和未知基底激励的识别方程;然后,采用正则化算法以迭代的形式求解识别方程。数值模拟和试验研究表明,测量噪声较小时,该方法的识别精度较高,正则化方法的引入可提高其抗噪能力;测量噪声较大时,该方法不能有效地识别出结构的损伤状况,但通过去除线性趋势项后处理的识别基底激励可以反映其真实值的变化趋势。
     (3)提出了一种基于动态响应灵敏度概念、从待识别子结构上的动态响应同步识别其损伤及其与相邻子结构之间的界面力的方法。首先推导了子结构系统的动力方程;其次,将子结构之间的界面力进行正交展开,并推导待识别子结构上的动态响应对该子结构物理参数和界面力正交展开系数的灵敏度计算公式;再次,构造了识别方程并采用正则化方法对方程进行迭代求解。数值模拟表明,该方法仅利用待识别子结构内部几个自由度上的动态响应即可识别其上的局部损伤和界面力。
     (4)提出了一种利用复杂结构系统中的某一子结构上的测量响应检测另外一个子结构上局部损伤的方法。首先,利用状态空间法表述两个子结构之间界面力的识别方程;然后,推导界面力对结构物理参数的灵敏度方程,同时构造利用界面力识别待识别子结构内局部损伤的识别方程,并采用正则化方法进行求解。数值模拟表明,所提出的基于界面力识别的子结构损伤检测方法可以精确地识别远离结构响应测点的子结构上的局部损伤。
     (5)提出了一种基于概率可靠度理论、适用于未知输入下不确定性结构损伤与荷载的同步识别方法。首先,推导通过动态响应灵敏度方法同步反演结构损伤与荷载的不确定性公式;其次,利用数据摄动技术和蒙特卡罗法研究测量响应中的不确定性对识别结果的影响,并基于概率统计理论推导了损伤概率的计算公式。数值模拟和试验研究表明,该方法可在观测噪声水平较高的条件下实现多位置损伤的定位与定量,并可较准确地识别出结构的基底激励时程。
Damage detection and load identification of structures with unknown input and incomplete measured output information is an important problem in the area of identification of civil engineering structures. A method based on dynamic response sensitivity is therefore proposed to simultaneously identify structural physical parameters and input time-history from only several responses of structures. The identified structural physical parameters are used to detect structural local damages. Some key problems of the proposed method are studied in the dissertation. Main contents are as follows:
     (1) A method based on dynamic response sensitivity is proposed to simultaneously identify structural physical parameters and input. The input force on structure is represented by using orthogonal polynomial approximation. By representing the input force on structure using orthogonal polynomial approximation and perturbing structural physical parameters, the orthogonal expansion coefficients and the fractional stiffness of structural elements are adopted as the force parameters and the structural physical parameters respectively, which are need to be identified. The sensitivity of structural dynamic response with respect to orthogonal coefficients and structural physical parameters is derived. The identification equation is set up and is solved with the damped least-squares method in an iterative process. Numerical simulation results show that the proposed simultaneous identification algorithm can simultaneously identify structural physical parameters and input from only several responses of structure.
     (2) The proposed simultaneous identification algorithm is extended to identifying damage and load of structure under unknown support excitation. The support excitation on structure is represented by using orthogonal polynomial approximation. The simultaneous identification equation of structural local damages and unknown support excitation is derived based on dynamic response sensitivity. The regularization method is used to solve the identification equation in an iterative process. Numerical simulation and experimental results show that the proposed algorithm has higher identification accuracy when the level of measurement noise is lower. The regularization is helpful for improving the anti-noise ability of the algorithm. When the level of measurement noise is higher, the algorithm can not accurately identify structural damages, but the identified support excitation after removing the linear trend can reflect the true support excitation.
     (3) A method based on dynamic response sensitivity is proposed to simultaneously identify local damages in a selected substructure and the interface forces between substructures from the dynamic responses on the selected substructure. The motion equation of substructural system is deduced. These interfacing forces between substructures are represented by orthogonal functions, and the sensitivity of the dynamic responses on the selected substructure to the substructural physical parameters and the orthogonal expansion coefficients of the interface forces is derived. An identification equation is set up and is solved by using regularization method in an iterative process. Numerical simulation results show that the proposed method can identify local damages and interface forces of the selected substructure from only several responses of the substructure.
     (4) A method, which uses the measured responses of one substructure in a complex structural system to detect local damges in another substructure in the same structural system, is proposed. The identification equation of the coupling forces is formulated in state space. The sensitivity of interface forces to substructural physical parameters is derived. The equation of local damage identification in the selected substructure from the interface forces is set up and is solved with regularization method. Numerical simulation results show that the proposed damage detection method for substructure based on interface forces can accurately identify local damages of the substructure far from response measurements.
     (5) A probabilistic method is proposed to identify damages of structures with uncertainties under unknown input. The uncertain equation for simultaneously identifying structural damage and load is derived based dynamic response sensitivity. The effect of uncertainties caused by measurement noise on the identified parameters is investigated with data perturbation technique and Monte Carlo method. The formula of probability of identified damages is further derived using the probabilistic method. Numerical simulation and experimental results show that the simultaneous identification method based on probability can locate and quantify multi-damages on structure, and accurately identify structural support excitation.
引文
1欧进萍.重大工程结构的累积损伤与安全度评定.走向21世纪的中国力学-中国科协第9次青年科学家论坛报告文集.清华大学出版社. 1996: 179-189.
    2 G.W. Housner, L.A. Bergman, T.K. Caughey et al. Structure Control: Past, Present and Future. Journal of Engineering Mechanics. 1997, 123(9):897-899.
    3 H. Sohn, C.R. Farrar, F.M. Hemez et al. A Review of Structural Health Monitoring Literature: 1996-2001. Los Alamos National Laboratory Report. LA-13976-MS, 2003.
    4 K.Y. Wong. Design of a Structural Health Monitoring System for Long-Span Bridge. Structure and Infrastructure Engineering. 2007, 3(2):169-185.
    5刘君,夏智勋.动力学系统辨识与建模.国防科技大学出版社. 2007:1-16.
    6 L. A. Zadeh. Fuzzy sets. Information and Control. 1965, 8(3):338-353.
    7 L. Ljung. System Identification: Theory for the User. Prentice-Hall, Upper Saddle River, NJ. 1999:3-7.
    8 L.A. Zadeh. From Circuit Theory to System Theory. Proceedings of the Institute of Radio Engineers. 1962, 50(5):856-865.
    9李国强,李杰.工程结构动力检测理论与应用.科学出版社. 2002:144-146.
    10 S.C. Liu, J.T.P. Yao. Structural Identification Concept. Journal of the Structural Division. 1978, 104(12): 1845-1858.
    11续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述.振动与冲击. 2002, 21(3):1-5.
    12 G. Mustafa, F.N. Catbas. Ambient Vibration Data Analysis for Structural Identification and Global Condition Assessment. Journal of Engineering Mechanics. 2008, 134(8):650-662.
    13曹树谦,张文德,萧龙翔.振动结构模态分析一理论、试验与应用.天津大学出版社. 2000:104-139.
    14李德葆,陆秋海.实验模态分析及其应用.科学出版社. 2001:146-176.
    15 L. Zhang, R. Brincker, P. Andersen. An Overview of Operational Modal Analysis: Major Development and Issues. Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark. 2005.
    16 X. He, B. Moaveni, J.P. Conte et al. Comparative Study of SystemIdentification Techniques Applied to New Carquinez Bridge. Proceedings of the 3rd International Conference on Bridge Maintenance, Safety and Management - Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost. Proto, Portugal. 2006:259-260.
    17任伟新.环境振动系统识别方法的比较分析.福州大学学报(自然科学版). 2001, 29(6): 80-86.
    18张令弥.环境激励振动模态分析在桥梁结构检测与健康监测中的应用.市政技术. 2005, 23(增刊):172-177.
    19 M. Meo, G. Zumpano, X. Meng et al. Measurements of Dynamic Properties of a Medium Span Suspension Bridge by Using the Wavelet Transforms. Mechanical Systems and Signal Processing. 2006, 20(5):1112-1133.
    20 B.F. Yan, A. Miyamoto. Wavelet Transform-Based Modal Parameter Identification Considering Uncertainty. Journal of Sound and Vibration. Journal of Sound and Vibration 2006, 291(1-2):285-301.
    21 S. Naqarajaiah, B. Basu. Output Only Modal Identification and Structural Damage Detection Using Time Frequency & Wavelet Techniques. Earthquake Engineering and Engineering Vibration. 2010, 8(4):583-605.
    22黄天立.结构系统和损伤识别的若干方法研究.同济大学博士论文. 2007:20-28.
    23何启源.基于现代时频分析的环境激励模态参数识别方法研究.重庆大学博士论文. 2009:8-10.
    24 R.Chnaem, M.Shinozuka. Structural System IdentificationΙ: Theory. Journal of Engineering Mechanics.1995, 121(2):255-264.
    25 K.K. Denoyer, L.D.Peterson. Model Update Using Modal Contribution to Static Flexibility Error. AIAA Journal. 1997, 35(11):1739-1745.
    26 J.C. Chen, B.K. Wada. Matrix Perturbation for Structural Dynamic Analysis. AIAA Journal. 1977, 15(8):1095-1100.
    27 A. Berman. E.J. Nagy. Improvement of Large Analytical Model Using Test Data. AIAA Journal. 1983, 21(8):1168-1173.
    28 F.E. Udwadia, D.K. Sharma, P.C. Shah. Uniqueness of Damping and Stiffness Distribution in the Identification of Soil and Structural Systems. Journal of Applied Mechanics. 1978, 45(1):181-187.
    29徐张明,高天明,沈荣碱,华宏星.一种改进的利用频响函数进行有限元模型修正的方法.振动与冲击. 2002,21(3):43-45.
    30方崇智,萧德云.过程辨识.清华大学出版社. 1988:133-197.
    31 M. Hoshiya, A. Sutoh. Kalmal Filter-Finite Element System Method in Identification. Journal of Engineering Mechanics. 1993, 119(2):197-210.
    32夏天昌(著),刘绍球,朱可炎(译).系统辨识-最小二乘法.国防工业出版社. 1984:33-120.
    33 T. Iwasaki, T. Kataoka. Application of an Extended Kalman Filter to Parameter Identification of an Induction Motor. Conference Record of the 1989 IEEE Industry Applications Society Annual Meeting. San Diego, CA, USA.1989:248-253.
    34 L. Ljung. Asymptotic Behavior of the Extended Kalman Filter as a Parameter Estimator for Linear System. IEEE Transactions on Automatic Control. 1979, 24(1):36-50.
    35李杰.基于微分算子变换的广义卡尔曼估计方法.计算结构力学及应用. 1995, 10(4):394-400.
    36赵昕,李杰.一类加权全局迭代参数卡尔曼滤波算法.计算力学学报. 2002, 19(4):403-408.
    37 J.N. Yang, S. Lin, H. Huang et al. An Adaptive Extended Kalman Filter for Structural Damage Identification. Structural Control and Health Monitoring.2006,13(4):849-867.
    38 J.N. Yang, S. Pan, S. Lin. Least-Squares Estimation with Unknown Excitations for Damage Identification of Structures. Journal of Engineering Mechanics. 2007, 133(1):12-21.
    39 K. Katkhuda, A. Haldar. A Novel Health Assessment Technique with Minimum Information. Structural Control and Health Monitoring. 2008, 15(6):821-838.
    40 S.W. Doebling, C.R.Farrar, M.B. Prime et al. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. USA: LosAlamos national laboratory. LA-10370-MS, 1996.
    41 A. Rytter. Vibration Based Inspection of Civil Engineering Structures. Ph.D. Dissertation, Aalborg University. 1993.
    42 P. Cawley, R.D. Admas. The Location of Defects in Structures from Measurements of the Natural Frequencies. Journal of Strain Analysis. 1979, 14(2):49-57.
    43 O.S. Salawu. Detection of Structural Damage Through Changes in Frequency: aReview. Engineering Structures. 1997, 19(9):718-723.
    44 P. Cornwell, C.R. Farrar, S.W. Doebling et al. Environmental Variability of Modal Properties. Experimental Techniques. 1999, 23(6):45-48.
    45高芳清.基于模态分析的结构损伤检测方法研究.西南交通大学学报. 1998, 33(1):108-113.
    46 D.P. Patil, S.K. Maiti. Detection of Multiple Cracks Using Frequency Measurements. Engineering Fracture Mechanics. 2003, (70): 1553-1572.
    47 C.R. Farrar, D.A. Jauragui. Comparative Study of Damage Identification Algorithms Applied to a Bridge:Ι. Experiment. Smart Materials and Structures. 1998, 7(5):704-719.
    48 C.R. Farrar, D.A. Jauragui. Comparative Study of Damage Identification Algorithms Applied to a Bridge:Ⅱ. Numerical Study. Smart Materials and Structures. 1998, 7(5):720-731.
    49 B.S. Wang, X.B. Liang, Y.Q. Ni et al. Comparative Study of Damage Indices in Application to a Long-span Suspension Bridge. Proceeding of the International Conference on Advances in Structural Dynamics. Hong Kong: the Hong Kong Polytechnic University. 2000,12:1085-1092.
    50 F.N. Catbas, A.E. Aktan. Condition and Damage Assessment: Issues and Some Promising Indices. Journal of Structural Engineering. 2002, 128(8):1026-1036.
    51 Z. Sun. Wavelet Packet Based Structural Health Monitoring and Damage Assessment. Ph. D. Dissertation, Hong Kong University of Science and Technology. 2003.
    52 H. Xu, J. Humar. Damage Detection in a Girder Bridge by Artificial Neural Network Technique. Computer-Aided Civil and Infrastructure Engineering. 2006, 21(6): 450-464.
    53 J.J. Lee, C.B Yun. Two-Step Approaches for Effective Bridge Health Monitoring. Structural Engineering and Mechanics. 2006, 23(1):75-95.
    54张德文, (美)魏阜旋.模型修正与破损诊断.科学出版社. 1999:1-3.
    55 D.C. Zimmerman, M. Kaouk. Structural Damage Detection Using a Minimum Rank Update Theory. Journal of Vibration and Acoustics. 1994, 116:222-230.
    56 D.C. Kammer. Optimal Approximation for Residual Stiffness in Linear System Identification. AIAA Journal. 1988,26(1):104-112.
    57 M. Kaouk. D.C. Zimmerman. Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory. AIAA Journal. 1994,32(4):836-842.
    58 S.W. Doebling. Minimum-Rank Optimal Update of Elemental Stiffness Parameters for Structural Damage Identification. AIAA Journal. 1996, 34(12):2615-2621.
    59 D.C. Zimmerman, M. Kaouk. Eigenstructure Assignment Approach for Structural Damage Detection. AIAA Journal. 1992, 30(7):1848-1855.
    60 T.W. Lim, T.A.L. Kashangaki. Structural Damage Detection of Space Truss Structure Using Best Achievable Eigenvectors. AIAA Journal. 1994, 32(5): 1049-1057.
    61 R.G. Cobb, B.S. Liebst. Structural Damage Identification Using Assigned Partial Eigenstructure. AIAA Journal. 1997, 35(1):152-158.
    62傅志方,华宏星.模态分析理论与应用.上海交通大学出版社. 2000:251-273.
    63 A. Messina, E.J. Williams, T. Contursi. Structural Damage Detection by a Sensitivity and Statistical-Based Method. Journal of Sound and Vibration. 1998, 216(5):791-808.
    64 J.C. Chen, J.A. Garba. Analytical Model Improvement Using Modal Test Results. AIAA Journal. 1980, 18(6):684-690.
    65 E.F. Haug, K.K. Choi. Structural Design Sensitivity Analysis with Generalized Global Stiffness and Mass Matrices. AIAA Journal. 1984, 22(9): 1299-1303.
    66 Z.R. Lu, S.S. Law. Features of Dynamic Response Sensitivity and Its Application in Damage Detection. Journal of Sound and Vibration. 2007, 303(1-2):305-329.
    67 S.S. Law, X.Y. Li, X.Q. Zhu, S.L. Chan. Structural Damage Detection from Wavelet Packet Sensitivity. Engineering Structures. 2005, 27(9): 1339-1348.
    68 S.S. Law, XY. Li, Z.R. Lu. Structural Damage Detection from Wavelet Coefficient Sensitivity with Model Errors. Journal of Engineering Mechanics, ASCE. 2006, 132(10):1077-1087.
    69 S.S. Law, X.Y. Li. Wavelet-Based Sensitivity Analysis of the Impulse Response Function for Damage Detection. Journal of Applied Mechanics, Transactions ASME. 2007, 74(2):375-377.
    70 B. Jaishi, W.X. Ren. Structural Finite Element Model Updating Using Ambient Vibration Test Results. Journal of Structural Engineering. 2005, 131(4):617-628.
    71王乐,杨智春,李斌等.基于固有频率向量的模型修正方法.西北工业大学学报. 2008, 26(1):93-98.
    72 J.L. Beck. Statistical System Identification of Structure. Proceeding of 5th International Conference on Structure Safety and Reliability, ASCE, New York, 1989: 1395-1402.
    73 J.L. Beck. System Identification Methods Applied to Measured Seismic Response. Proceeding of 11th World Conference on Earthquake Engineering, Elsevier, Amsterdam, 1996.
    74 J.L. Beck, L.S. Katafygiotis. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework. Journal of Engineering Mechanics. 1998, 124(4):455-461.
    75 K.V. Yuen, J.L. Beck, L.S. Katafygiotis. Unified Probabilistic Approach for Model Updating and Damage Detection. Journal of Applied Mechanics, Transactions ASME. 2006, 73(4):555-564.
    76 S.H. Cheung, J.L. Beck. Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters. Journal of Engineering Mechanics. 2009, 135(4):243-255.
    77 M.W. Vanik, J.L. Beck, S.K. Au. Bayesian Probabilistic Approach to Structural Health Monitoring. Journal of Structural Engineering. ASCE, 2002, 126(7): 736-745.
    78 H. Sohn. K.H. Law. Application of Load-Dependent Ritz Vectors to Bayesian Probabilistic Damage Detection. Probabilistic Engineering Mechanics. 2000, 15(2):139-153.
    79 J.M. Ricles, J.B. Kosmatka. Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity. AIAA Journal. 1992, 30(9):2310-2316.
    80 H. Sohn, C.R. Farrar. Statistical Process Control and Projection Techniques for Damage Detection. Proceeding of Conference on System Identification and Structural Health Monitoring. Madrid, Spain. 2000: 105-114.
    81 T. Saito, S. Mase, K. Morita. A Probabilistic Approach to Structural Damage Estimation. Structural Control and Health Monitoring. 2005, 12(3-4):283-299.
    82 K.V. Yuen, L. S. Katafygiotis. Substructure Identification and Health Monitoring Using Noisy Response Measurements Only. Computer-Aided Civil and Infrastructure Engineering. 2006, 21(4):280-291.
    83 Y. Xia, H. Hao. Statistical Damage Identification of Structures with Frequency Changes. Journal of Sound and Vibration. 2003, 263(4):853-870.
    84 X. Jiang. S. Mahadevan. Bayesian Probabilistic Inference for Nonparametric Damage Detection of Structures. Journal of Engineering Mechanics. 2008,134(10):820-831.
    85 X.Y. Li, S.S. Law. Damage Identification of Structures Including System Uncertainties and Measurement Noise. AIAA Journal. 2008, 46(1):263-276.
    86 Z.X.Li, X.M. Yang. Damage Ddentification for Beams Using ANN Based on Statistical Property of Structural Responses. Computers and Structures. 2008,86(1-2):64-71.
    87 Y. Qian, A. Mita. Acceleration-Based Damage Indicators for Building Structures Using Neural Network Emulators. Structural Control and Health Monitoring.2008,15(6):901-920.
    88 K. Worden, A J. Lane. Damage Identification Using Support Vector Machines. Smart Materials and Structures. 2001, 10(3):540-547.
    89 H. Hagiwara, A. Mita. Damage Assessment of Bending Structures Using Support Vector Machine. Proceedings of SPIE - The International Society for Optical Engineering. San Diego, CA, United States. 2005:923-930.
    90 A. Bulut, A. Singh, P. Shin et al. Real-time Nondestructive Structural Health Monitoring Using Support Vector Machines and Wavelets. Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring. Proceedings of SPIE-The International Society for Optical Engineering. San Diego, CA, United States. 2005: 180-189.
    91刘龙,黄海,孟光.基于支持向量机的结构损伤分步识别研究.工程力学. 2007, 24(2):313-317.
    92 M.M.R. Taha, J. Lucero. Damage Identification for Structural Health Monitoring Using Fuzzy Pattern Recognition. Engineering Structures. 2005, 27(12):1774-1783.
    93 P.M. Pawar, R. Ganquli.Matrix Crack Detection in Thin-Walled Composite Beam Using Genetic Fuzzy System. Journal of Intelligent Material Systems and Structures. 2005, 16(5):395-409.
    94 K. Hijikata, A. Mita. Damage Detection of Wooden Building Using Chaos Analysis and System Identification. Proceedings of SPIE-The International Society for Optical Engineering. San Diego, CA, United States. 2006:617410.
    95 K.S.C. Kuang, M. Maalej, S.T. Quek. An Application of a Plastic Optical Fiber Sensor and Genetic Algorithm for Structural Health Monitoring. Journal ofIntelligent Material Systems and Structures. 2006, 17(5), 361-379.
    96瞿伟廉,王锦文.振动结构动态荷载识别综述.华中科技大学学报(城市科学版). 2004, 21(4):1-4,8.
    97 G. Desanghere, R. Snoeys. Indirect Identification of Excitation Forces by Modal Coordinate Transformation. Proceedings of the 3rd International Modal Analysis Conference, USA. 1985: 685-690.
    98 J.M. Starkey, G. L. Merrill. On the Ill-conditioned Nature of Indirect Force Measurement Techniques. International Journal of Analytic and Experimental Modal Analysis.1989, 4(3): 103-108.
    99智浩,文祥荣,缪龙秀等.动态载荷的频域识别方法.北方交通大学学报. 2000, 24(4):5-10.
    100林家浩,智浩,郭杏林.平稳随机振动载荷识别逆虚拟激励法(一).计算力学学报. 1998, 15(2):127-136.
    101智浩,郭杏林,林家浩.平稳随机振动载荷识别逆虚拟激励法(二).计算力学学报. 1998, 15(4):395-400.
    102李东升,郭杏林.逆虚拟激励法随机载荷识别试验研究.工程力学. 2004, 21(2): 134-139.
    103许锋,陈怀海,鲍明.动载荷识别的广义域模态模型及其精度分析研究.计算力学学报. 2003, 20(2): 218-222.
    104王彦卫,赵玫.一种新的动态载荷识别方法.噪声与振动控制. 2003(3):11-13.
    105 G. Desanghere, R. Snoeys. Indirect Identification of Excitation Forces by Modal Coordinate Transformation. Proceedings of the 3rd International Modal Analysis Conference, USA. 1985: 685-690.
    106 H. Ory, H.Glaser, D. Holzdeppe. The Reconstruction of Forcing Function Based on Aeroelasticity and Structural Dynamics. Aschen, FRG, USA.1985: 164-168.
    107 H. Ory, H.Glaser, D. Holzdeppe. Quality of Modal Analysis and Reconstruction of Forcing Function Based on Measured Output Data. Proceedings of 4th International Modal Analysis Conference, USA. 1986: 350-357.
    108唐秀近.动态力识别的时域方法.大连工学院学报. 1987, 26(4): 21-27.
    109唐秀近.时域识别动态载荷的精度问题.大连理工大学学报. 1990, 30(1): 31-37.
    110张方,朱德懋.动态载荷时域识别的级数方法.振动工程学报.1995,9(1): 1-8.
    111 S.S. Law, T.H.T. Chan, Q.H. Zeng. Moving Force Identification: a TimeDomain Method. Journal of Sound and Vibration. 1997, 201(1):1-22.
    112 X.Q Zhu, S.S. Law. Practical Aspects in Moving Load Identification. Journal of Sound and Vibration. 2002, 258(1):123-146.
    113 X.Q Zhu, S.S. Law. Time Domain Identification of Moving Loads on Bridge Deck. Journal of Vibration and Acoustics, Transactions of the ASME. 2003, 125(2):187-198.
    114 S.S. Law, J.Q. Bu, X.Q. Zhu et al. Moving Load Identification on a Simply Supported Orthotropic Plate. International Journal of Mechanical Sciences. 2007, 49(11): 1262-1275.
    115 T.J. Kreiginger. Non-parametric Force Identification from Structural Response. Soil Dynamics and Earthquake Engineering. 1992, 11(5):269-277.
    116 H. Inoue et al. Estimation of Impact Load by Inverse Analysis. JSME International Journal Series I. 1992, 35(4): 420-427.
    117张方,朱德懋,张福祥.动荷载识别的时间有限元模型理论及其应用.振动与冲击. 1998, 17(2):1-4.
    118 C. Pezerat, J.L. Guyader. Identification of Vibration Sources. Applied Acoustics. 2000, 61: 309-324.
    119 Y.C. Liang, C.G. Zhou, Z.S. Wang. Identification of Restoring Forces in Non-linear Vibration Systems Based on Neural networks. Journal of Sound and Vibration. 1997, 206(1): 103-108.
    120 L. Gaul, S. Hurlebaus. Identification of the Impact Location on a Plate Using Wavelets. Mechanical Systems and Signal Processing. 1997, 12(6): 783-795.
    121 S.S. Law, S.Q. Wu, Z.Y. Shi. Moving Load and Prestress Identification Using Wavelet-based Method. Journal of Applied Mechanics, Transactions ASME. 2008, 75(2): 0210141-0210147.
    122 G. Yan, L. Zhou. Impact Load Identification of Composite Structure Using Genetic Algorithms. Journal of Sound and Vibration. 2009, 319(3-5):869-884.
    123 K. Shin, J.K. Hammond. Force-state Mapping Method of a Chaotic Dynamical System. Journal of Sound and Vibration. 1998, 218(3): 405-418.
    124 M. Hoshiya, O. Maruyma. Identification of Running Load and Beam System. Journal of Engineering Mechanics. 1992, 113(6):813-824.
    125 M. Hoshiya, A. Sutoh. Identification of Input and Parameter of MDOF System. Proceeding of EASEC-5. Griffith University, Gold Cold Coast, Australia, 1995:1390-1314.
    126 D. Wang, A. Haldar. Element-level System Identification with Unknown Input. Journal of Engineering Mechanics. 1994, 120(1):159-176.
    127 X. Ling, A. Haldar. Element Level System Identification with Unknown Input with Rayleigh Damping. Journal of Engineering Mechanics. 2004, 130(8): 877-885.
    128李杰,陈隽.结构参数未知条件下的地震动反演研究.地震工程与工程振动. 1997, 17(3):27-35.
    129李杰,陈隽.子结构物理参数识别与输入地震动的复合反演研究.振动与冲击. 1998,17(1):58-62,97.
    130李杰,陈隽.未知输入条件下的结构物理参数识别研究.计算力学学报. 1999, 16(1):32-40,114.
    131李杰,陈隽.部分输入未知条件下的结构系统识别研究.地震工程与工程振动. 1998, 18(4):40-45.
    132李杰,陈隽.部分输入未知时求解动力复合反演问题的补偿算法.计算力学学报. 2008, 19(3): 312-314.
    133 J. Chen, J. Li. Simultaneous Identification of Structural Parameters and Input Time History from Output-Only Measurements. Computational Mechanics. 2004, 33(5):365-374.
    134陈健云,王建有.部分输入未知条件下结构参数识别法研究.计算力学学报. 2005, 22(2): 149-154.
    135陈健云,王建有,林皋.未知输入下的复合反演研究.工程力学. 2006, 23(1): 6-10, 16.
    136陈健云,王建有,黄景忠.参数完全不确定系统在未知输入下的损伤识别.防灾减灾工程学报. 2007, 27(3):335-338.
    137王建有,陈健云,李宗坤等.输入未知下非比例阻尼结构参数识别方法的研究.振动与冲击. 2007, 26(4):119-122,125.
    138谢献忠,易伟建.全量补偿复合反演算法的改进及其应用.工程力学. 2005,22(1):28-32.
    139谢献忠,易伟建,刘锡军.部分输入未知条件下结构动力复合反演的分解算法.计算力学学报. 2005, 22(6): 745-749.
    140 D. Wang, A. Haldar. System Identification with Limited Observation and Without Input. Journal of Engineering Mechanics. 1997, 123(5):504-511.
    141冯新,周晶,陈健云.一种结构参数识别的二阶段法.计算力学学报. 2002, 19(2):222-225.
    142 X.Q. Zhu, S.S. Law. Damage Detection in Simply Supported Concrete Bridge Structure Under Moving Vehicular Loads. Journal of Vibration and Acoustics, ASME. 2007, 129(1):58-65.
    143 Z.R. Lu, S.S. Law. Identification of System Parameters and Input Force from Output Only. Mechanical Systems and Signal Processing. 2007, 21(5):2099-2111.
    144李杰.随机结构系统——分析与建模.科学出版社. 1996:35-37.
    145 M. Rathinam, L. R. Petzold. A New Look at Proper Orthogonal Decomposition. SIAM Journal on Numerical Analysis. 2003, 41(5):1893-1925.
    146 Y.C. Liang, H.P. Lee, S.P. Lim et al. Proper Orthogonal Decomposition and Its Applications-Part I: Theory. Journal of Sound and Vibration. 2002, 252(3):527-544.
    147 B. Ravindra. Comments on“On the Physical Interpretation of Proper Orthogonal Modes in Vibrations”. Journal of Sound and Vibration. 1999, 219(1):189-192.
    148 G. Kerschen, J.C. Golinval.Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition. Journal of Sound and Vibration. 2003, 249(5):849-865.
    149刘天云,悟朝晖,赵国藩.随机场的投影展开法.计算力学学报. 1997, 14(4): 484-489.
    150 K. K. Phoon, S. P. Huang, S. T. Quek. Comparison Between Karhunen-Loeve and Wavelet Expansions for Simulation of Gaussian Process. Computers and Structures, 2004, 82(13-14):985-991.
    151 G. Stefanou, M. Papadrakakis. Assessment of Spectral Representation and Karhunen-Loeve Expansion Methods for the Simulation of Gaussian Stochastic Fields. Computer Methods in Applied Mechanics and Engineering. 2007,196(21-24):2465-2477.
    152李杰,刘章军.基于标准正交基的随机过程展开法.同济大学学报(自然科学版). 2006, 34(10):1279-1283.
    153 J. Li, J. Liu, J. Chen. Orthogonal Expansion of Ground Motion and PDEM-Based Seismic Response Analysis of Nonlinear Structures.2009, 8(3):313-328.
    154 X. Q. Zhu, S. S. Law. Orthogonal Function in Moving Loads Identification on a Multi-Span Bridge. Journal of Sound and Vibration. 2001, 245(2): 329-345.
    155李忠献,陈锋.基于时间元模型的复杂桥梁结构移动荷载识别.天津大学学报. 2006, 39(9):1043-1047.
    156黄光远,刘小军.数学物理反问题.山东科学技术出版社, 1993:62-70..
    157张清华,李乔,唐亮.斜拉桥结构损伤识别的概率可靠度法.铁道学报. 2005, 27(3):70-75.
    158 T. Pothisiri. An Optimal Regularization for Structural Parameter Estimation from Modal Response. Structural Engineering and Mechanics. 2006, (4):401-418.
    159 B. Weber, P. Paultre, J. Proulx. Structural Damage Detection Using Nonlinear Parameter Identification with Tikhonov Regularization. Structural Control and Health Monitoring. 2007, 14(3):406-427.
    160 H.W. Park, M.W. Park, B.K. Ahn et al.1-Norm-Based Regularization Scheme for System Identification of Structures with Discontinuous System Parameters. International Journal for Numerical Methods in Engineering. 2007, 69(3):504-523.
    161 H.P. Chen. Application of Regularization Methods to Damage Detection in Large Scale Plane Frame Structures Using Incomplete Noisy Modal Data. Engineering Structures. 2008, 30(11):3219-3227.
    162 B. Weber, P. Paultre, J. Proulx. Consistent Regularization of Nonlinear Model Updating for Damage Identification. Mechanical Systems and Signal Processing. 2009, 23(6):1965-1985.
    163 H.G. Choi, A.N. Thite, D.J. Thompson. A Threshold for the Use of Tikhonov Regularization in Inverse Force Determination. Applied Acoustics. 2006, 67(7):700-719.
    164 T. Pinkaew. Identification of Vehicle Axle Loads from Bridge Responses Using Updated Static Component Technique. Engineering Structures. 2006, 28(11): 1599-1608.
    165崔国华.计算方法.华中科技大学出版社. 1996:175-177.
    166李庆扬.数值分析(第4版).清华大学出版社. 2001:11-14.
    167朱华平.不适定问题的正则化理论及其应用.武汉理工大学硕士学位论文. 2007:14-18.
    168 A.N. Tikhonov. On the Solution of Ill-Posed Problems and the Method of Regularization. Soviet Mathematics. 1963, 4(6):1035-1038.
    169 A. Greenbaum, Z. Strakos. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations. SIAM Journal on Matrix Analysis andApplications. 1992, 13(1):121-137.
    170 G. H. Golub, U. Von Matt. Quadratically Constrained Least Squares and Quadratic Problems. Numerische Mathematik. 1991, 59(1):561-580.
    171 P.C. Hansen. Rank-Deficient and Discrete Ill-posed Problems. SIAM Monographs on Mathematical Modeling and Computation, 1998:243.
    172武魏娜.土木工程结构参数识别时域法研究.天津大学硕士学位论文. 2006:62-65.
    173 A. Neumaier. Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization. SIAM Review. 1998, 40(3):436-666.
    174 A.N. Tikhonov, V.Y. Arsenin. Solutions of Ill-Posed Problems. SIAM Review. 1979, 21(2):266-267.
    175 G.H. Golub, M. Heath, G. Wahba. Generalized Cross-Validation as a Method for Choosing a Ridge Parameter. Technometrics. 1979, 21(2):215-223.
    176 H.W. Engl. Discrepancy Principles for Tikhonov Regularization of Ill-Posed Problems Leading to Optimal Convergence Rates. Journal of Optimization Theory and Applications.1987, 52(2):209-215.
    177 P.C. Hansen. Analysis of Discrete Ill-posed Problems by Means of the L-curve. SIAM Review. 1992, 34(4):561-580.
    178 M. Hanke, P.C. Hansen. Regularization Methods for Large-Scale Problems. Surveys on Mathematics for Industry. 1993,3(4):253-315.
    179 V.A. Morozov. On Regularization of Ill-Posed Problems and Selection of Regularization Parameter. Journal of Computational Mathematics and Mathematical Physics. 1996, 6(1):170-175.
    180 P.C. Hansen, Analysis of Discrete Ill-Posed Problems by Means of the L-curve. SIAM Review. 1992, 34(4):561-580.
    181 P.C. Hansen, The Use of the L-curve in the Regularization of Discrete Ill-Posed Problems. SIAM Journal on Scientific Computing. 1993, 14(6):1487-1503.
    182 G.H. Golub, M.T. Heath, G. Wahba. Generalized Corss-Calidation as a Method for Choosing a Good Ridge Parameter. Technometrics. 1979, 21(2):215-223.
    183 G.H. Golub, U. Von Matt. Generalized Corss-Validation for Large Scale Problems. Swiss Center for Scientific Computing, Technical Report, TR-96-28, 1995.
    184 G.H. Golub, U. Von Matt. Generalized Cross-Validation for Large ScaleProblems, Revised Version, Swiss Center for Scientific Computing, Technical Report, 1996, TR-96-28.
    185 S. S. Law, J. Q. Bu, X. Q. Zhu. Time-Varying Wind Load Identification from Structural Responses. Engineering Structures. 2005, 27(10): 1586-1598.
    186 C.G. Koh, K. Shankar. Substructural Identification Method Without Interface Measurement. Journal of Engineering Mechanics, ASCE. 2003, 129(7): 769-776.
    187 K.V. Yuen, L.S. Katafygiotis. Substructure Identification and Health Monitoring Using Noisy Response Measurements Only. Computer-aided Civil and Infrastructure Engineering. 2006, 21(4):280-291.
    188 P. Sj?vall, T. Abrahamsson Substructure System Identification from Coupled System Test Data. Mechanical Systems and Signal Processing. 2007, 22(1):15-33.
    189 S. Weng, Y. Xia, Y.L. Xu et al. Improved Substructuring Method for Eigensolutions of Large-Scale Structures. Journal of Sound and Vibration. 2009, 323(3-5)718-736.
    190 R.K. Kumar, K. Shankar. Parametric Identification of Structures with Nonlinearities Using Global and Substructure Approaches in the Time Domain. Advances in Structural Engineering. 2009, 12(2):195-210.
    191 S. Sandesh, K. Shankar. Time Domain Identification of Structural Parameters and Input Time History Using a Substructural Approach. International Journal of Structural Stability and Dynamics. 2009, 9(2):243-265.
    192 N. Hu, S. Matsumoto, R. Nishi et al. Identification of Impact Forces on Composite Structures Using an Inverse Approach. Structural Engineering and Mechanics. 2007, 27(4): 409-424.
    193 M. Taazount, C. Pluquin, J. Renard et al. Dynamic Identification of Junction Forces by Discrete Time Identification Methods. International Journal for Multiscale Computational Engineering. 2008, 6(2):123-140.
    194 R.J. Guyan. Reduction of Stiffness and Mass Matrices. AIAA Journal. 1965, 3(2): 380.
    195 J.C. O’Callahan. A Procedure for an Improved Reduced System (IRS) Model. Proceedings of the 7th International Modal Analysis Conference, Las Vegas, United States. 1989:17-21.
    196 M.A. Blair, T.S. Camino, J.M. Dickens. An Iterative Approach to a Reduced Mass Matrix. Proceedings of the 8th International Modal Analysis Conference,Florence, Italy. 1991:510-515.
    197 M.I. Friswell, S.D. Garvey, J.E.T. Penny. Model Reduction Using Dynamic and Iterated IRS Technique. Journal of Sound and Vibration. 1995, 186(2): 311-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700