用户名: 密码: 验证码:
基于模型和GIS的江苏省农田土壤有机碳动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究建立在前期建模研究工作基础上,以农田土壤有机碳分解模型为核心,以江苏省农田土壤基本理化特性、基础气象资料、1985-2000年逐年粮食作物产量、常规农作措施为数据源,应用地理信息系统(Geographic Information System,GIS)技术,模拟从1985年到2000年江苏省农田土壤有机碳变化动态,并在此基础上预测不同秸秆还田量下2010年江苏省农田土壤有机碳分布状况。继而,根据模拟和预测研究结果探讨秸秆还田的现实意义。
     首先是对模型中外源有机物影响因子子模型的修正。选取19种有机物料,包括植物的根、茎、叶,初始全氮含量范围为4.0-35.2 g/kg,初始木质素为157.7-254.0 g/kg,不同含量值在该范围分布比较均匀,从而保证统计结果的合理性和所建模型在该范围的整体适用性。采用实验室培养实验,定量研究这些有机物料在25℃、400 g/kg含水量(100 g风干土40 g水)条件下的分解特征,探讨有机物料的化学组成与其在土壤中分解动态的定量描述关系。采用多元逐步回归(Multiple Stepwise Regression)的统计方法,建立易分解组分比例与初始全氮和初始木质素含量的定量关系方程:F_w=150+1.496N-0.572L(R~2=0.7990,p<0.001,n=17),式中F_w为易分解比例(%),N为初始氮含量(g/kg),L为初始木质素含量(g/kg),易分解组分比例总体与初始全氮含量呈正相关,与初始木质素含量呈负相关。
     然后收集整理了铜山、宜兴、丹阳、兴化四个长期培肥试验点的土壤培肥数据和有机质含量动态资料,它们分属徐淮、太湖、宁镇丘陵和里下河四个传统农业区,其种植制度和轮作方式基本代表了江苏省农田土壤利用的整体情况,同时初始有机碳含量有明显的梯度(6.0-13.5 g/kg),用此数据验证所建模型在全省范围内的整体适用性,同时还用山东陵县的土壤培肥资料进一步验证该模型在土壤有机碳背景值很低(4.2 g/kg)条件下的适用性。这5个点的验证结果表明,农田土壤有机碳分解模型能较好的描述不同背景含量下农田土壤有机碳的动态变化趋势,并且模拟值与实测值十分接近,模拟值基本能反映土壤有机碳的实际含量。111组实测值和模拟值数据的相关分析方程为:Y=0.757X+1.9545(R~2=0.6278,Y为模拟值,X为实测值),零截距方程为:Y=0.9656x(R~2=0.5784,Y为模拟值,X为实测值),零截距方程表明模型模拟结果可靠。
     最后,在模型验证通过的基础上,我们尝试将模型与GIS技术进行结合,从而快速而直观的展现有机碳动态区域差异。GIS是分析具有地理特征对象的通用技术,模型与GIS的结合,拓展了模型的使用范围,便捷的实现区域模拟和预测,使我们可以从以前只能通过表格了解一个点的现状到现在可以从图(静态和动态)直观的看到一
    
    基于模型和Gls的江苏省农田土壤有机碳动态模拟
    个区域甚至更大范围的现状差异和动态演变过程,从而发现变化趋势和规律,提出解
    决方案。栅格格式数据可与模型很好的结合,我们以户Jcinfo的Grid数据格式实现模
    型和Gls的结合。通过基本的矢量数据修正、矢量属性追加、栅格数据生成、数据格
    式转换等数据处理,以A SCn码为交换文件格式,以Visual Basic 6.0为开发工具,实
    现全省农田土壤有机碳1 985一2000年动态模拟以及2001一2010年的动态预测。模拟及
    预测结果表明,自第二次土壤普查以来,全省77%的农田土壤有机碳含量有所增加。
    到2000年,苏北和沿海地区的增加量1 .0一3.09瓜g之间,苏南太湖地区增加量3.5一5.0
    g瓜g之间;苏中的江淮平原和宁镇丘陵区略有下降,降低0.5一1 .59瓜g之间。不同桔
    秆还田量(常规还田和50%还田)条件下2010年预测情景分析结果表明,全省大部
    分地区农田土壤有机碳含量将继续增加,土壤仍然具有较大的固持外源有机碳的能
    力.通过增加桔秆还田量,可以增加或维持较高的土壤有机碳含量,这对改善土壤性
    状、促进农业可持续发展、增加土壤碳储量,以及减缓大气CO:浓度增加的趋势具有
    现实意义。
     应用结果证明,模型和GIS的藕合是切实可行的,栅格文件为这种结合提供了很
    好的接入点.模型和栅格数据的结合,可以方便的实现区域模拟,直观的展现空间差
    异,模型应用得到极大的拓展.
Regarding organic carbon decomposition model of agricultural soils as the core, using database consisting of physics and chemistry characters of agriculture soils, meteorological information, production of crops from 1985 to 2000 and agriculture management in Jiangsu province, combining with Geographic Information System technique, the dynamics from 1985 to 2000 and distribution in 2000 of agricultural soils carbon in Jiangsu province was simulated and predicted. Based on these results, the distribution of agricultural soils carbon 2010 was predicted, and the importance of returning straw to soils was discussed.
    At first, the sub-model of external organic matter impact factor was modified. Nineteen residues were sampled from different organs with 13 plants, their initial Total Nitrogen content ranged from 4.0 g/kg to 35.2 g/kg, while initial Lignin content from 157.7 g/kg to 254.0 g/kg and the variation is relatively uniformity. The relation of plants chemical content and their dynamic decomposition were investigated by an incubation experiment with 19 plant residues plus soil under 25 C and water content of 400 g/kg air dried soil. Then quantitative relation of plant nitrogen and lignin content on the residue carbon decomposition was set up by a multiple stepwise regression method. The relation can be well quantitatively described by Fw=l50+1.496N-0.572L(R2=0.7990,p<0.001, n=17). The Y represents decomposition percentage. The N and L represent the initial contents of nitrogen and lignin for a given residue, respectively. The Y could be either the first-order decay rate (B0=3.51 X 10-2, B1=4.61 X 10-4, B2= -1.53 X10
    -4, R2= 0.812**, n=19), or the percentage of CO2-C released over the 9-week period (B0=100, B1 =0.974, B2= -0.364, R2= 0.828**, n=19), or the percentage of weight loss over the 23-week period in the field burying experiment (B0=150,B1=1.496, B2= -0.572, R2= 0.799**, n=17). The percentage of easily decomposition has a positive relation with the initial nitrogen contents as a whole and a negative relation with the initial lignin.
    Secondly, in order to ensure this model could be applied totally in Jiangsu Province, data on soil fertilizer composting and organic matter contents of test points in Tongshan, Yixing, Danyang, Xinghua were collected. Four samples belong to traditional agricultural area of Xuhuai, Taihu, Ningzhen Hill, Lixia River respectively. The landing system and
    
    
    
    farm rotation represent basically common situation utilization of soils in Jiangsu province. In addition, the initial organic carbon had distinct grads. The validation results showed that this model can greatly described the dynamic variation of soil organic matter. Furthermore, the simulative value was close to the real value, which means the simulative value can represent the real situation. Relative equation of 111 groups of simulated value and observed value was Y = 0.757X + 1.9545 (R2 = 0.6278** ), zero intercept equation was Y = 0.9656X (R2 = 0.5784** ) . The results of superficial stimulation of zero intercept equation could completely represent the real results.
    At last, based on model validation, we tried to combine model with GIS technique. Before using the technology, we only describe the situation in one period from tables or figures. Now, we can use GIS technology to describe the trends and process intuitionally. Using GRID format file and Visual Basic 6.0, the integration of models and GIS technique is realized. Simulation and prediction results indicated that the soil organic matter content in approximately 77% of the agricultural soils in Jiangsu province has been increased since the 2nd soil survey completed in the early 1980s. Compared with the values in 1985, the soil organic matter content in the 2000 was estimated to increase by 1.0-3.0 g/kg for the regions of northern Jiangsu and the coastal area, and 3.5-5.0 g/kg for the region of Tai lake in the southern Jiangsu. A slight decrease of 0.5-1.5 g/kg was estimated for the central section of Jiangsu and the Nanjing-Zhenjiang hilly area. Model predic
引文
Abbas E., Jerome B. Mechanistic simulation of vertical distribution of carban concentrations and residence times insoils. Soil Sci. Am. J. 1995, 59:1328-1335
    Adams S.N., Jack W.H., et al. The growth of Sitka Spruce on poorly sites in northern Ireland. Forestry. 1970, 43:125-133
    gren G.I., Bosatta E., Magill A.H. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia. 2001, 128: 94-98.
    Allison F.E Soil organic matter and its role in crop production. Elseviet Sci. Pub. Com. Amsterdam. 1973:97-177
    Andren O., Paustian K. barley straw decomposition in the field: a comparison of models. Ecology. 1987, 68(5): 1190-1200
    Ashraf M., Loftis J.C., Hubbard K.G. Application of geostatistics to evaluate partial station network. Agriculture and Forest Meteorol. 1997, 84:225-271
    Askam T., Choudhary M.A., et al. Influence of land-use management on CO_2 emissions from a silt loam soil in New Zealand.Agriculture Ecosystem & Environment. 2000:257-262
    Barry R.T., Parkinson D., Parsons F.J. Nitrogen and lignin content as predictors of litter decay rates: a microcosmtest. Ecology. 1989, 70(1): 97-104
    Beek E.G., Stein A., Janssen L.L.F. Spatial variability and interpolation of daily precipitation amount. Stochastic Hydrology and Hydraulics. 1992, 6:304-320
    Berg B. Lignin and holocellulose relations during longterm decomposition of some forest litters in a scorts pine forest. Can. J. Bot. J. 1984, 62:2540-2550
    Bosate E., Agren G.L. Theeoretical analysis of decomposition of heterogeneous substrates. Soil Biology & Biochemtry. 1985, 16:63-67
    Chambers J. Q., Higuchi N., Schimel J.P., Ferreira L.V., Melack J.M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia. 2000, 122:380-388
    Chertov O.G. SPECOM- A single tree model of pine stand/raw humus soil ecosystem. Ecological modeling. 1990, 50: 107-132
    Chertov O.G., Komarov A.S., Tsiplianovsky A.M. The simulation of soil organic matter and nitrogen accumulation in Scots pine plantations on bare parent material using the combined forest model EFIMOD. Plant and Soil. 1999, 213:31-41
    Dallas P., Anderson J.M., et al. Long-term effects of temperature on carbon mineralisation processes. Soil Biology & biochemistry. 2001, 32: 1049-1057
    Dobson J E. Commentary aconceptual framework for integrating remote sensing, GIS, and gorgraphy. Photogrammetric Engineering and Remotesensing.
    
    
    ESRI. Building application with Mapobjects. Environmental Research Institute, Mapobjects2.1 User Document. 1999:13-16
    ESRI. What is ArcGIS8.3. Environmental Research Institute , ArcGIS8.3.软件文档. 2002:9-22
    Eswaran H. E., Berg V.D., Reich P. Organic carbon in soils of the world. Soil Science Society of America Journal. 1993, 57:192-194
    Franko U., Oelsechlagel B. Simulation of temperature-, water-, and nitrogen- dynamics using the model CANDY. Ecological modeling. 1995: 213-222
    Fronent A. Soil respiration in a mixed oak forest. Oikos. 1972:273-277
    Gottschalk L., Batchvarova E., Gryning S. E., et al. Scale aggregation-comparison of flux estimates from NOPEX. Agriculture and Forest Meteorol. 1999, 98-99:103-119
    Harsen S., Jensen H.E., Nielsen N.E., et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fer Res. 1991, 27: 245-259
    Haynes R.J. Labile organic matter as an indicator or organic matter quality in arable and pastoral soils in New Zealand. Soil Biology & Biochemistry. 2000, 32: 211-219
    Hindell R.P., McKenzie B.M., et al. Relationships between casts of geophagous earthworms and matric potential. 2. Clay dispersion from casts. Biology and Fertility of Soils. 1994b, 18:127-131
    Hindell R.P., McKenzie B.M., et al. Relationships between casts of geophagous earthworms and matric potential. 1. Cast production, water content, and bulk density. Biology and Fertility of Soils. 1994a, 10: 119-126
    Houghton J.T., Jenkins G.J., et al. Climate change. The IPCCScientific Assessment. New York: Cambridge University Press, 1990
    Huggins D.R., Clapp C.E., et al. Carbon dynamics in corn-soybean sequences as estimated from matural carbon-13 aboundence. Soil Sci. Am. J. 1998, 629:195-203
    Jenkinson D.S. Studies on the decomposition of plant material in soil. J. Soil. Sci. 1977, 28:424-434
    Jenkinson D.S., Hart P.B.S., et al. Modelling the turnover of organic matter in long-term experiments. Intecol Bulletin. 1987, 15:1-8
    Jenkinson D.S., Rayner J.H. The turnover of soil organic matter in some of Rothamsted classical experiments. Soil Sci. 1977, 125:298-305
    Jerry M.M. Nitrogen and lignin control of hardwood leaf litter decompostion dynamics. Ecology. 1982, 63(3): 621-626
    Keeling R.F., Piper S.C., Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature. 1996, 381: 218-221
    Kirschbaum M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 1995, 27:753—760
    Kononova, M.M.(ed.), Soil Organic Matter. Pergamon Press. Oxford, London. 1966, 1961.
    
    
    Kucera C., Kirkham D. Soil respiration studies in tallgrass prairie in Missouri. Ecology. 1971, 52: 912-915
    Kwabiah A. B., Voroney R. P., Palm C.A., Stoskopf N. C. Inorganic fertilizer enrichment of soil: effect on decomposition of plant litter under subhumid tropical conditions. Biology and Fertility of Soils. 1999, 30:224-231
    Ling C. S., Folkring S., Folkring T.A. A model of nitrous oxide evolution from soil driven by rainfall events-1 : Model structure and sensitivity. J of Geophsical Res. 1992, 97:9759-9776
    Lloyd J., Taylor J.A. On the temperature dependence of soil respiration. Functional Ecology. 1994, 8: 315-323
    Maciej T. Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 1998, 2(2): 18—30
    Markus R., Frank B., et al. Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples. Soil Biology & Biochemistry. 2000, 32: 947-958
    McGill W.B. Review and classification of ten soil organic matter models. In: Evaluation of soil organic matter models. Berlin, Heidelberg: Springer-Verlag. 1996:111-132
    Molina J.A.E., Clapp C.E., et al. NCSOIL, a model of nitrogen and carbon transformation in soil: Description, calibration, and behavior. Soil. Sci. Soc. Am. J. 1983, 47:85-91
    Morgan J.A., LeCain D.R., Mosier A.R., Milchunas D.G. Elevated CO_2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biology. 2001. 7:451-466
    Murayama S. Decomposition kinetics of straw saccharides and synthesis of microbial saccharides under field conditions. Journal of Soil Science. 1984, 35:231-242
    Nalder I A, Wein R W. Spatial inerpolation of climate normals: test of a new method in the Canadian boreal forest. Agriculture and Forest Meteorol. 1998, 92:211-255
    Olson J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44:322-331
    Palaca S.W., Hurtt G.C., Baker D. et al.. Cónsistent land- and atmosphere-based U.S. carbon sink estimates/Science/2001. 292:2320-2322
    Parshotam A., Saggar S., Searle P.L., et al. Carbon residence times obtained from labelled ryegrass decomposition in soils under contrasting environmental conditions. Soil Biology and Biochemistry, 2000, 32: 75-83
    Parton W.J., Schimel D.S., Cole C.V., Ojima D.S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal. 1987, 51:1173-1179
    Parton W.J., Schimel D.S., et al. Analysis of factors controlling soil organic matter levels in Great Plains
    
    Grasslands. Soil. Sci. Am. J. 1987, 51:1173-1179
    Pascal M., Dominique C., Denis A., et al. Spatial interpolation of air temperature using environmental context: application to a crop model. Environmental and Ecological Statistics. 2001, 8:297-309
    Paul E.A., Clark F.E. Soil microbiology and biochemistry. Academic Press Inc. New York, London, 1989, 1(31): 91-130
    Paustian K. Modelling soil organic matter dynamics-global challenges. Sustainable management of soil organic matter[C]. Published CAB International, 2001, 43-53
    Petroutsos E. Mastering Visual Basic 5.电子工业出版社.1997,1-5
    Post W.M., Peng T.H., Emanuel W.R., et al. The global carbon American scientist. 1990, 78:310-326
    Reich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to climate. Tellus, 1992, 44B: 81-99
    Reich J.W., Rastetter E.B, et al. Potential net primary production in South America. Ecological Applications. 1991, 1:399-429
    Reichstein M.,, Bednorz F. Temperature dependence of carbon mineralisation: conclusions from a long-term incubation ofsubalpine soil sample. Soil Biology and Biochemistry. 2000, 32:947-958
    Rutigliano F.A., Santo B., et al. Lignin decomposition in decaying leaves of Fagus Sylvatica L. and needles ofAbies Alba mill. Soil Biology and Biochemistry. 1996, 28:101-106
    Scala N.L., Marques J.J., et al. Carbon dioxide emission related to chemical properties of a tropical bare soil.Soil Biology & Biochemistry. 2000, 32:1469-1473
    Schimel D.S. Terrestrial ecosystems and the carbon cycle. Global Change Biology. 1995, 1: 77-91
    Schimel D S. The carbon equation. Nature, 1998, 393: 208—209.
    Schnitzer M., Khan S.U.(eds), Soil Organic Matter. Elsevier.Sci.Pub.,Combridge. Amsterdom, Oxford, New York, 1978
    Sharpe P.J., Michell D.M. Reaction kinetics of poikotherm development. Journal of Theoretical Biology. 1977, 64:649-670
    Singh J.S., Gupta S.R. Plant decomposition and soil respir-ation in terrestrial ecosystems. The Botanical Review. 1977, 43: 449-528.
    Sowerby A., Blum H., et al. The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biology and Biochemistry. 2000, 32:1359-1366
    Stevemon F.J. Cycles of soil carbon, nitrogen, phosphors, sulfur, micronutrients. John Wiley & Sons. 1986:1-44
    Stotzky G., Rem L.T. Influence of clay minerals on microor-ganisms.Ⅲ. Effect of particle size, cation exchange capacity andsurface area on bacteria. Canadian Journal of Microbiology. 1966, 12: 1235-1246
    Thornley J.H., Verberne E.L.J.A model of nitrogen flows in grassland. Plant cdll and
    
    Environment. 1989, 12:863-886
    Vestergaard R, Rφnn R., Christensen S. Reduced particle size of plant material does not stimulate decomposition, but affects the microbivorous microfauna. Soil Biology and Biochemistry. 2001, 33: 1805-1810
    Waksman S.A., Tenney F.G. The composition of natural organic materials and their decomposition in soil. Ⅱ. Influence of age of plant upon the rapidity and nature of its decomposion-rye plants. Soil Science. 1927, 24:317-334
    Weerakoon W.M., Olszyk D.M., Moss D.N. Effects of nitrogen nutrition on responses of rice seedlings to carbon dioxide. Agriculture, Ecosystems and Environment. 1999, 72:1-8
    Whitbread A.M., Lefroy R.D.B., Blair G.J. A survey of impact of cropping on soil physical and chemical properties in north-western New South Wales. Austrulian Journal of soil Research. 1998, 36:669-681
    Winemiller E., Roff J. Visual Basic 6.0 database development.清华大学出版社,2000,358-409
    Witkamp M. Decompostition of leaf litter in relation to environment, microflora and microbial respiration. Ecology. 1966, 47:194-201
    Yakov K., Grzegorz D. Carbon input by plants into the soil. J. Plant. Nutr. Soil. Sci. 2000, 163: 421-431
    Zhou L.X. Study on the dynamics of municipal sewage decomposition and its ecological effect on forest land. Ph.D. thesis, Nanjing, Nanjing Agricultural University. 1995
    曹卫星,罗卫红.作物系统模拟及智能管理.华文出版社,2000:140
    陈华癸,李阜俪.土壤微生物学.上海科技出版社,1981,61-63
    陈庆强,沈承德,易惟熙.土壤碳循环研究进展.地球科学进展.1998,13(6):555-563
    陈述彭,鲁学军,周成虎等.地理信息系统导论.中国科学出版社,2001:1-2
    陈同斌,曾希柏,胡清秀.中国化肥利用率的区域分异.地理学报.2002,57(5):531-538
    丁力,汪小林,罗英伟等.地理信息系统与数据库结合研究.中国图象图形学报.2001,6(11):1101-1106
    方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及其全球意义.温室气体浓度和排放检测及相关过程.中国环境科学出版社,1996,123-139
    方精云,唐艳鸿,林俊达等.气候变化与生态相应.高等教育出版社,2000,165-168
    耿晓源.长白山某些树种叶子的分解动态研究.植物生态学与地植物学学报.1993,17(1):90-96
    顾宗濂.土壤微生物学与生物化学.科学出版社,1993,128-137
    何平安.中国有机肥料养分志.中国农业出版社,1999,54-65
    何勇,方慧,冯雷.基于GPS和GIS的精确农业信息处理系统研究.农业工程学报.2002,18(1):145-149
    黄东迈,朱培立,王志明,余小鹤.旱地和水田有机碳分解速率达探讨与质疑.土壤学报.1998,35(4):482-491
    
    
    黄东迈,朱培立,王志明.旱地和水田有机碳分解速率的探讨与置疑.土壤学报.1998,35:482-492
    黄丽芬,庄恒扬,刘世平等.长期少免耕对稻麦产量与土壤肥力的影响.扬州大学学报.自然科学版.1999,2(1):48-52
    黄耀,刘世梁,沈其荣,宗良纲.农田土壤有机碳动态模拟模型的建立.中国农业科学.2001,34(5):532-536
    黄耀,沈雨,周密等.木质素和氮含量对植物残体分解的影响.植物生态学报.2003,27(2):183-188
    江苏省土壤普查办公室.江苏土壤.中国农业出版社,1995,前言
    金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展.土壤.2000,1:11-17
    李佩忠,王效举.红壤丘陵地区土地利用方式变更后土壤有机碳动态变化的模拟.应用生态学报.1998,9(4):365-370
    李世清,李生秀.有机物料在维持土壤微生物体氮库中的作用.生态学报.2001,21(1):136-142
    李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析.土壤学报.2002,39:351-360
    廖利平,马越超等.杉木与主要阔叶造林树种叶凋落物的混合分解.植物生态学报.2000,24(1):27-33
    林心雄,车玉萍.潮土中有机物质的分解与腐殖质积累.核农学报.1995,9(2):94-101
    林心雄,程励励等.绿肥和秸秆等在苏南地区土壤中的分解特征.土壤学报.1980,17(4):319-327
    林心雄,文启孝,徐宁.广州地区土壤中植物残体的分解速率.土壤学报.1985,22(1):47-55
    林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值.地理学报.2002,57(1):47-56
    刘世梁.黄耀.沈其荣等.农田土壤有机碳动态模拟模型的检验与应用.中国农业科学.2001,34(6):644-648
    吕安民,李成名,林宗坚.面积内插法初探.测绘通报.2002,1:44-46
    潘志强,刘高焕.面插值的研究进展.地理科学进展.2002,21(2):146-152
    童成立,吴金水,向万胜等。长江中游稻田土壤有机碳计算机模拟.长江流域资源与环境.2002,3:229-233
    万洪涛,周成虎,万庆等.地理信息系统与水文模型集成研究述评.水科学进展.2001,12(4):565-568
    王绍强,周成虎.中国陆地土壤有机碳库的计算.地理研究.1999,18(4):349-355
    王文山,张美荣等.植物残体在北京潮褐土中的分解特征.土壤肥料.1986,29-33
    王效科,白艳莹等.全球碳循环中的失汇及其形成原因.生态学报.2002,22(1):94-103
    吴信才,曹志月.时态GIS的基本概念、功能及实现方法.中国地质大学学报.2002,27(3):241-245
    吴信才,吴亮.面向GIS数据的城市环境保护系统的设计研究.计算机工程与应用.2001,24:153-155
    
    
    肖清,马蔚纯,张超.基于Arcview的空间型苏州河环境信息系统原型研究.环境科学研究.1999,12(2):16-20
    谢刚生,于海龙,邹时林等.基于Mapinfo的校园地理信息系统的设计.测绘工程.2002,11(1):32-34
    徐阳春,沈其荣,雷宝坤等.水旱轮作下长期免耕和使用有机肥对土壤某些肥力性状的影响.应用生态学报,2000,11(4):549-552.
    严慧峻,刘继芳,张锐等.黄淮海平原盐滞土有机质消长规律的研究.植物营养与肥料学报.1997,3(1):1-8
    闫惠红.地理信息系统与环境模型结合用于全球变化研究评述.遥感技术与应用.1996,11(3):65-69
    喻长新.江苏土壤,中国农业出版社,1995,343-347
    张福春,朱志辉.中国作物的收获指数.中国农业科学.1990,23(2):83-87.
    张英利.嵝土中有机质分解平衡之研究.土壤通报.1994,25:19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700