用户名: 密码: 验证码:
飞行器网络控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统(NCS)作为一种新型的控制系统,以其优秀的系统结构较好地满足了现代飞行器智能性和自主性的要求,代表了飞行器控制系统的发展趋势。论文针对NCS的共性问题和飞行器应用的特有问题,对飞行器网络控制系统(FV-NCS)进行了深入的研究。
     首先,选择了适用于飞行器系统的控制网络。通过对1553B总线、CAN总线和工业以太网的分析和对比,最终选择CAN总线来组建FV-NCS。通过对CAN总线在飞行器系统的应用实例进行分析,证明了飞行器应用CAN总线是可行的。
     通过仿真实验和理论分析,研究了CAN网络控制系统(CAN-NCS)的时延特性。讨论了NCS时延的两种组成分析方法,并揭示了两者的关系;利用数字仿真工具TrueTime对NCS进行仿真,探讨了网络协议、网络负载等因素对消息时延的影响;针对CAN-NCS,运用实时系统任务调度方法,给出了CAN总线最差情况消息等待时间的连续和离散调度公式,确定了CAN总线数据帧的最长传输时间计算公式,总结了CAN-NCS时延的一般特性:利用TTCAN改进了CAN-NCS时延的实时性,并分析了TTCAN飞行器应用的可行性。
     通过输出响应和闭环带宽,研究了CAN-NCS时延对飞行器控制系统的影响。研究表明,CAN-NCS时延基本不影响飞行器的质心运动和姿态运动,但对带宽较高的伺服机构将产生明显影响。论文以直流伺服电机作为这类时延敏感对象的代表,开展后续控制器的研究,确保复杂、多回路的FV-NCS的整体性能。对短时延NCS,针对四种不同情况,建立了形式统一的广义被控对象模型和包括控制器在内的闭环系统模型,为采用通用方法分析、设计NCS奠定了基础。
     研究了FV-NCS的自适应控制。设计了误差积分型LQG控制器作为基本控制器,解决了标准LQG控制器无法跟踪给定输入的问题;利用TrueTime对基本控制器控制的直流伺服电机NCS进行了仿真实现,研究了采样周期和网络时延对系统性能的影响;对固定的网络时延,利用状态增广法,设计了参数固定的LQG控制器;对时变的网络时延,设计了参数自适应LQG控制器,提出了合理增大控制器参数的更新周期、自动切换控制策略等方法,较好地解决了系统响应严重振荡问题;对传感器数据丢包和时变的网络时延,通过引入事件/时间混合驱动方式和丢包处理算法,设计了带数据丢包处理的参数自适应LQG控制器。利用TrueTime对上述三种控制器进行了仿真实验,实验结果表明,对各自针对的情形,三种控制器均获得了很好的控制效果。
     研究了FV-NCS的鲁棒控制。针对一般的系统矩阵,建立了统一的CAN-NCS鲁棒控制模型,提出了一种不确定矩阵界值的实用计算方法,满足了鲁棒控制模型对不确定矩阵的要求;对直接状态反馈,推导了NCS鲁棒稳定和H_∞控制的充分条件,通过适当变换,获得了线性矩阵不等式(LMI)形式的约束;对带观测器状态反馈,针对参数矩阵中包含矩阵变量的问题,提出了矩阵变量逆阵的近似线性化方法,确定了NCS鲁棒稳定和H_∞控制的LMI求解算法;针对直流伺服电机NCS,利用MATLAB的LMI工具箱获得了各可行解,并在TrueTime下进行了仿真实验,实验结果表明,鲁棒稳定的可行解确保了闭环系统稳定,H_∞控制的可行解在确保闭环系统稳定的前提下,对外部干扰具有较好的抑制作用。
     研究了FV-NCS的增益调度控制。探讨了对原控制器进行输出增益调度的一般方法;以误差积分型LQR控制器为原控制器,研究了固定网络时延的增益调度方法,提出了多级寻优策略,实现了最优增益的快速确定,改进了代价函数,解决了以误差平方和为代价函数时,最优增益的系统性能并非最优的问题;通过在线估计网络时延和动态调度增益系数,实现了时变网络时延的增益调度控制;利用TrueTime进行了仿真实验,实验结果表明,与原控制器相比,增益调度控制的系统性能有明显改善,可以使原控制器以尽可能小的代价较好地适应网络环境。
As a new kind of control system, networked control systems (NCS) satisfies intelligent and autonomous requests of modern flight vehicle by the good system architecture, and represents the future development of flight vehicle control system. This thesis focuses on NCS of flight vehicle (FV-NCS) both the common problems of NCS and the special problems for flight vehicle application.
     The control network which is adapted to flight vehicle control system is studied. 1553B bus、CAN bus and Ethernet are analyzed and compared, and CAN bus is selected to build FV-NCS. The examples of CAN bus being applied to flight vehicle control system indicate the feasibility of flight vehicle system applying CAN bus.
     The delay characteristic of NCS based on CAN (CAN-NCS) are researched by simulation experiments and theoretical analysis. Two methods of analyzing the components of NCS delay are discussed and their relationship is described. NCS is simulated by TrueTime and message delay characteristic which is affected by network protocol, network load and other factors is discussed. For CAN-NCS, the formula of continuous scheduling and discrete scheduling for the worst case message waiting time of CAN are given by methods of real-time system task scheduling, the formula of the longest transmission time of CAN data frame is defined, the generic characteristic of CAN-NCS delay is obtained. Real-time capability of CAN-NCS is improved by TTCAN, the feasibility of flight vehicle system applying TTCAN is analyzed.
     The influences of CAN-NCS delay to flight vehicle control system are researched by output response and bandwidth of closed loop system. It is discovered that CAN-NCS delay can not affect centroid movement and attitude movement of flight vehicle, but CAN-NCS delay can affect many servo mechanisms which always have higher bandwidth. As the representation of these type of plants which are sensitive to CAN-NCS delay, DC motor is used as the control plant in this thesis to develop the controller study, in order to ensure the whole performance of complex and multiple loops of FV-NCS. As the basic of analyzing and designing of NCS by generic methods, the uniform augmented plant model and closed loop system model of short delay NCS are built for four different cases.
     Adaptive control of FV-NCS is studied. Error-integral LQG controller is designed as the basic controller, in order to solve the problem that standard LQG controller can not track the giving input. The simulation of DC motor NCS with basic controller based on TrueTime is realized, the influences by sampling period and network delay to control system performance are analyzed. For fixed network delay, fixed parameter LQG controller is designed by state argumentation. For time-varying network delay, adaptive parameter LQG controller is designed. The methods of increasing the update period of controller parameter and automatically switching control strategies are put forward and the problem of serious oscillation of system response is solved . Considering sensor package loss and time- varying network delay, adaptive parameter LQG controller with package loss managing is designed by mixed event/time driving mode and arithmetic of package loss managing. The simulation experiments for the three kinds of controller are made based on TrueTime, the results indicate that the three kinds of controller all achieve good control effect for the certain case.
     Robust control of FV-NCS is investigated. Uniform robust control model of CAN-NCS is built for a generic system matrix. A calculate method of the bound value for uncertain matrix is brought forward to satisfy the demand for uncertain matrix in the robust control model. For direct state feedback, sufficient conditions of stability and H_∞control of NCS are deduced, the restricts of LMI form are obtained by appropriate transformation. For state feedback with observer, because parameter matrix contains matrix variables, the approximate linearization method of inverse matrix of matrix variable is presented, and the arithmetic of LMI form for stability and H_∞control of NCS are given. For DC motor NCS, the feasible solutions are obtained by LMI toolbox of MATLAB, the simulation experiments are made based on TrueTime. The results indicate that the feasible solutions of robust stability can guarantee the closed loop system stable and the feasible solutions of H_∞control can restrain the external disturbances effectively.
     Gain scheduling control of FV-NCS is studied. The generic method for original controller to schedule output is discussed. Error-integral LQR controller is used as the original controller, gain scheduling method for fixed network delay is researched, the multilevel searching strategy is put forward and the optimal gain is quickly found, cost function is modified and the problem is solved that system performance of the optimal gain is not the best when sum of error square is the cost function. Gain scheduling control for time-varying network delay is realized by on-line delay estimation and dynamic scheduling gain coefficient. The simulation experiments are made based on TrueTime, the results indicate that the system performances are improved by gain scheduling control comparing to original controller and gain scheduling control can make original controller to adapt the network environment with the possible little expense.
引文
[1]DDC.MIL-STD-1553 Designer's Guide(6~(th) ed.) Data Device Corporation,2003
    [2]罗志强.航空电子综合化系统.北京:北京航天航空大学出版社,1990
    [3]黄永葵,吴建民,李卫民.GJB289A-97《数字式时分制指令/响应型多路传输数据总线》系列标准编制与应用.航空电子技术,2006,37(2):49-54
    [4]王丹,吴家兴.新一代的航空电子系统高速数据总线.光通信技术,1996,20(1):59-65
    [5]马兴瑞,张永维,白照光.实践5号卫星及其飞行成果.中国航天,1999,13(11):3-8
    [6]Woodroffe A,Madle P.Application and Experience of CAN as a low cost OBDH bus system.Surrey Satellite Technology Limited,2004
    [7]Johansson K H,Torngren M,Nielsen L.Vehicle Applications of Controller Area Network.Royal Institute of Technology,2005
    [8]刘淑芬,孙听.CAN总线在卫星中的应用技术研究.航天控制,2004(6):79-83
    [9]Stock Flight Systems.CANaerospace Interface specification for airborne CAN applications Vl.6.2001
    [10]Stock Flight Systems.CANaerospace Interface specification for airborne CAN applications V1.7.2006
    [11]NASA Langley Research Center.System Standard for the AGATE airplane avionics data bus V1.0.2001
    [12]Thomas S.Multiple agent-based autonomy for satellite constellations.Artificial Intelligence,2003,145:147-180
    [13]Chien S,Rabideau G,Willis J.Automating planning and scheduling of shuttle payload operations.Artificial Intelligence,1999,114:239-255
    [14]Douglas B.Autonomy and software technology on NASA's Deep Space One.IEEE Intelligent System,1999
    [15]Bukley A P.Hubble Space Telescope pointing control system design improvement study results.Guidance,Control and Dynamics,1995,18(2):194-199
    [16]Weisbin C R.Evolving directions in NASA's planetary rover requirements and technology.Robotics and Automation,1993,3(11):3-11
    [17]李智斌,李果.航天器自主控制与智能信息处理技术.航天控制,2004,22(5):20-25,35
    [18]Walsh G C.On race conditions for networked control systems.Proceeding of the 30~(th) CISS,1996:411-415
    [19]Ye H.Research on networked control systems:Ph.D.dissertation.College Park:University of Maryland,2000
    [20]Nitin S.Control algorithms for networked control and communication system:Ph.D.dissertation.Arlington:The University of Texas at Arlington,2003
    [21]Montestruque L A.Model-based networked control systems:Ph.D.dissertation.Notre Dame:University of Notre Dame,2004
    [22]Baliga G B.A middleware framework for networked control systems:Ph.D.dissertation.Urbana:University of Illinois,2005
    [23]Tang P L.Network-enabled monitoring and stable control of dynamic systems:Ph.D.dissertation.Vancouver:University of British Columbia,2005
    [24]Yalagandula P.A scalable information management middleware for large distributed systems:Ph.D.dissertation.Austin:The University of Texas at Austin,2005
    [25]Kim S H.Design and analysis of high-speed ring-based networked control systems for real-time applications:Ph.D.dissertation.Berkeley:University of California,2005
    [26]Hadjicostis C N,Touri R.Feedback control utilizing packet dropping network links.Proceeding of the 41~(st) IEEE CDC,2002:1205-1210
    [27]Lian F L,Moyne J,Tilbury D.Network design consideration for distributed control systems.IEEE Transaction on Control System Technology,2002,10(2):297-307
    [28]Montestruque L A,Antsaklis P J.Stability of model-based networked control systems with time-varying transmission times.IEEE Transaction on Automatic Control,2004,49(9):1562-1572
    [29]Lee K K,Chanson S T.Packet loss probability for bursty wireless real-time traffic through delay model.IEEE Transaction on Vehicular Technology,2004,53(3):929-938
    [30]Lian F L.Analysis,Design,Modeling and Control of Netwoked Control System:Ph.D.dissertation.Michigan:The University of Michigan,2001
    [31]顾洪军.网络控制系统建模及性能分析方法的研究:博士学位论文.北京:清华大学,2001
    [32]夏德海.现场总线技术.北京:中国电力出版社,2003
    [33]阳宪惠.现场总线技术及其应用.北京:清华大学出版社,1999
    [34]张云生.网络控制系统.重庆:重庆大学出版社,2003
    [35]Tipsuwan Y.Gain scheduling for networked control systems:Ph.D.dissertation.Raleigh:North Carolina State University,2003
    [36]Ray A.Distribute data communication networks for real time process control.Chemical Engineering Communications,1988,65(2):139-154
    [37]Halevi Y,Ray A.Integrated communication and control systems:Part Ⅰ-analysis.Journal of Dynamic Systems,Measurement andControl,1988,110(4):367-373
    [38]Ray A,Halevi Y.Integrated communication and control systems:Part Ⅱ-design considerations.Journal of Dynamic Systems,Measurement and Control,1988,110(4):374-381
    [39]Liou L W,Ray A.Integrated communication and control systems:Part Ⅲ-nonidentical sensor and controller sampling.Journal of Dynamic Systems,Measurement and Control,1990,112(3):3574364
    [40]Song S J.A software-based approach to scalable fault-tolerant real-time ethernet for networked control systems:Ph.D.dissertation.Twin Cities:University of Minnesota,2001
    [41]KaplanG.Ethernet's Winning Ways.IEEESpectrum,2001:113-115
    [42]Otanez P G,Parrott J T,Moyne J R.The Implications of Ethernet as a Control Network.Proc.Global Powertrain Conference,2002:1-9
    [43]Tang P L,Silva C W.Ethernet-based predictive control of an industrial hydraulic machine.Proc.IEEE Conf.on Decision and Control,2003:695-700
    [44]Ye H,Walsh G C,Bushnell L.Wireless local area networks in the manufacturing industry.Proceedings of the American Control Conference,2000:2363-2367
    [45]Ye H,Walsh G C,Bushnell L.Real-time mixed-traffic wireless networks.IEEE Transactions on Industrial Electronics,2001,48(5):883-890
    [46]Eker J,Cervin A,Horjel A.Distributed wireless control using bluetooth.IFAC Conference on New Technologies for Computer Control,2001
    [47]Walsh G C,Ye H,Bushnell L.Stability analysis of networked control systems.Proceedings of the American Control Conference,1999:2876-2880
    [48] Walsh G C, Beldiman O, Bushnell L. Asymptotic behavior of networked control systems. Proceedings of the 1999 IEEE: International Conference on Control Applications, 1999: 1448-1453
    [49] Walsh G C, Beldiman O, Bushnell L. Asymptotic behavior of nonlinear networked control systems. IEEE Translations of Automatic Control, 2001, 46(7) : 1093-1097
    
    [50] Krishna CM, Shin KG. Real-time system. 北京:清华大学出版社, 2001
    [51] Zhang W, Branicky M S, Philips S M. Stability analysis of networked control systems. IEEE Control Systems Magazine, 2001, 21 (1) : 84—99
    [52] Zhang W . Stability analysis of networked control systems : Ph. D.dissertation. Cleveland: Case Western Reserve University, 2001
    [53] Stankovic J A , Lu C Y . The case for feedback control real-time scheduling. Proceedings of the 11~(th) Euromicro Conference on Real-Time Systems, 1999: 11-20
    [54] Lu C Y, Stankovic J A. Feedback control real-time scheduling: framework,modeling and algorithms. Journal of Real-Time Systems, 2002, 23 (2) : 85 —126
    [55] Matveev A S, Savkin A V. Optimal control of networked system via asynchronous communication channel with irregular delay. Proceeding of the 40~(th) IEEE Conference on Decision and Control, 2001: 2327—2332
    [56] Baillieul J. Feedback coding for information-based control: operating near the data rate limit. Proceeding of the 41~(st) IEEE Conference on Decision and Control, 2002: 3229-3236
    [57] Gil A E. Stability analysis of network-based cooperative resource allocation strategies: Ph. D. dissertation. Columbus: The Ohio State University, 2003
    [58] Xu Y G. Communication scheduling methods for estimation over networks: Ph.D. dissertation. Santa Barbara: University of California, 2006
    [59] Beldiman O V. networked control system: Ph. D. dissertation. Durham: Duke University, 2001
    [60] Almutairi N B. Adaptive fuzzy modulation for networked PI control systems:Ph. D. dissertation. Raleigh: North Carolina State University, 2002
    [61] Astrom K J, Wittenmark B. Computer-controlled systems: theory and design,3~(rd) ed. Upper Saddle Riiver, NJ: Prentice Hall, 1997
    [62] Branicky M. S, Philips S. M, Zhang W. Stability of networked control systems: explicit analysis of delay.Proceedings of American Control Conference,2000:2352-2357
    [63]Lian F L,Moyne J,Tilbury D.Analysis and modeling of networked control systems:MIMO case with multiple time delay.Proceedings of American Control Conference,2001:4306-4312
    [64]Lian F L,Moyne J,Tilbury D.Optimal controller design and evaluation for a class of networked control systems with distributed constant delay.Proceedings of American Control Conference,2002:3009-3014
    [65]Lian F L,Moyne J,Tilbury D.Network design consideration for distributed control systems.IEEE Trans.Control System Technology,2002,10(2):297-307
    [66]Luck R,Ray A.An observer-based compensator for distributed delays.Automation,1990,26(5):903-908
    [67]Luck R,Ray A.Experimental Verification of a delay compensation algorithm for integrated communication and control systems.International Journal of Control,1994,59(6):1357-1372
    [68]Nilsson J,Bernhardsson B,Wittenmark B.Stochastic analysis and control of real-time systems with random time delays.Automatica,1998,34(1):57-64
    [69]Nilsson J.Real-time control systems with delays:Ph.D.dissertation.Lund:Lund Institute of Technology,1998
    [70]Nilsson J,Bernhardsson B.Analysis of real time control systems with time delay.Proceeding of the 35~(th)IEEE CDC,1996:3173-3178
    [71]Nilsson J,Bernhardsson B.LQG control over a Markov communication network.Proceeding of the 36~(th)IEEE CDC,1997:4586-4591
    [72]Krtolica R,Ozguner U,Chan H.Stability of linear feed back systems with random communication delays.International Journal of Control,1994,59(4):925-953
    [73]Drew M C.Networked control system design over a wireless LAN:Ph.D.dissertation.Berkeley:University of Calitbrnia,2005
    [74]Sinopoli B.Closing the loop around sensor networks:optimal estimation and control of networked systems:Ph.D.dissertation.Berkeley:University of California,2005
    [75]于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究.控 制理论与应用,2002,19(2):264-267
    [76]于之训,陈辉堂,王月娟.时延网络控制系统均方指数稳定的研究.控制与决策,2000,15(3):278-289
    [77]于之训,蒋平,陈辉堂等.具有传输延迟的网络控制系统中状态观测器的设计.信息与控制,2000,29(2):125-130
    [78]Kolmanovsky I V,Maizenberg T L.Optimal control of continuous-time linear systems with a time-varying random delay.Systems and Control Letters,2001,44(2):119-126
    [79]G(o|¨)ktas F.Distributed control of systems over communication networks:Ph.D.dissertation.Philadelphia..University of Pennsylvania,2000
    [80]于之训,陈辉堂,王月娟.基于H∞和μ综合的闭环网络控制系统的设计.同济大学学报,2001,29(3):308-311
    [81]樊卫华.网络控制系统的建模与控制:博士学位论文.南京:南京理工大学,2004
    [82]黎善斌.网络控制系统的鲁棒控制算法研究:博士学位论文.杭州:浙江大学,2005
    [83]谢林柏,方华京,纪志成等.时延网络化控制系统的H_2/H∞混合控制.控制理论与应用,2004,21(6):1020-1024
    [84]付安新,孟浚.鲁棒控制在网络控制器设计中的应用研究.工业仪表与自动化装置,2006,36(1):15-17,24
    [85]邱占芝,张庆灵.一类不确定时延网络控制系统最优H∞控制.信息与控制,2006,35(1):64-72
    [86]孙海义,张庆灵,李宁.一类时延网络控制系统的H∞控制.沈阳建筑大学学报(自然科学版),2006,22(2):323-328
    [87]樊卫华,蔡骅,吴晓蓓等.一类时延网络控制系统的H∞鲁棒控制.兵工学报,2006,27(1):189-192
    [88]Almutairi N B,Chow M Y,Tipsuwan Y.Network-based controlled DC motor with fuzzy compensation.The 27~(th) Annual Conference of the Industrial Electronics Society,2001:1844-1849
    [89]Almutairi N B,Chow M Y.PI parameterization using adaptive fuzzy modulation (AFM) for networked control systems Ⅰ.Partial adaptationIn.The 28~(th) Annual Conference of the Industrial Electronics Society,2002:3 152 - 3157
    [90]Almutairi N B,Chow M Y.PI parameterization using adaptive fuzzy modulation (AFM) for networked control systems Ⅱ.Full adaptation.The 28~(th) Annual Conference of the Industrial Electronics Society, 2002: 3158 —3163
    [91] Tipsuwan Y, Chow MY. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation-part I: networked control. IEEE Transactions on Industrial Electronics, 2004, 51 (6) :1218—1227
    [92] Tipsuwan Y, Chow MY. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation-part II :eleoperation. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1228—1237
    [93] Tipsuwan Y, Chow M Y. On the gain scheduling for networked PI controller over IP network. IEEE/ASME Transactions on Mechatronics, 2004, 9 (3) :491-498
    [94] Lee S, Lee S H, Lee K C. Remote fuzzy logic control for networked control systems. The 27~(th) Annual Conference of the Industrial Electronics Society,2001: 1822-1827
    [95] Lee K C, Lee S. Remote Controller design of networked control system using genetic algorithm. Proceedings of IEEE International Symposium on Industrial Electronics, 2001: 1845-1850
    [96] Cervin A. Towards the integration of control and real-time scheduling design. Technical Report, Lund institute of Technology, 2000
    [97] Eker J, Cervin A. A MATLAB Toolbox for real-time and control systems codesign. Proceedings of 6~(th) International real-time computing system and application conference, 1999
    [98] Branicky M S, Phillips SM, Zhang W. Scheduling and feedback co-design for networked control systems. Proceedings of 38~(th) IEEE Conference on Decision and Control, 2002: 1211-1217
    [99] Imer O C. Optimal estimation and control under communication network constraints: Ph. D. dissertation. Urbana: University of Illinois, 2005
    [100] Li K Y. Robust and efficient feedback coding for communication based control:operating under data-rate constraints: Ph. D. dissertation. Boston: Boston University, 2006
    
    [101] 史久根,张培仁,陈真勇.CAN现场总线系统设计技术.北京:国防工业出版社, 2004
    [102] Philips Semiconductors. CAN Specification 2.0, Part A. CAN in Automation, http://www.can-cia.org/downloads/specifications
    [103]Philips Semiconductors.CAN Specification 2.0,Part B.CAN in Automation,http://www.can-cia.org/downloads/specifications
    [104]郑建林.火箭控制系统总线传输技术研究:硕士学位论文.长沙:国防科技大学,2005
    [105]Andersson M,Henriksson D,Cervin A.TRUETIME 1.3-Reference Manual.Lund Institute of Technology.Sweden,2005
    [106]Cervin A,Henriksson D,Lincoln B,et al.Analysis and Simulation of Controller Timing.IEEEControl Systems Magazine,2003,23(3):16-30
    [107]George L,Rivierre N,Spuri M.Preemptive and nonpreemptive real-time uni-processor scheduling.Technical Report 2966.France,1996
    [108]Reinder J,Bril.Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption is too optimistic.CS-Report 06-05.Technology University Eindhoven,2006
    [109]Bosch.TTCAN user's manual.Robet Bosch GmbH,2001
    [110]Hartwich F,M(u|¨)ller B,F(u|¨)hrer T.CAN network with time-triggered communication,Robet Bosch GmbH,2002
    [111]M(u|¨)ller B,F(u|¨)hrer T,Hartwich F.Fault-tolerant TTCAN networks.Proceedings of 8~(th) International CAN Conference,2002
    [112]屠善澄.卫星姿态动力学与控制(2).北京:宇航出版社,1999
    [113]仝西岳.挠性卫星动力学建模与控制系统研究:硕士学位论文.长沙:国防科学技术大学,2001
    [114]张明廉.飞行控制系统.北京:航空工业出版社,1994
    [115]刘明俊.自动控制原理.长沙:国防科技大学出版社,2006
    [116]徐延万.控制系统(上).北京:中国宇航出版社,1989
    [117]徐昕,李涛,伯晓晨等.MATLAB工具箱应用指南-控制工程篇.北京:电子工业出版社,2000
    [118]魏震.网络控制系统在线时延估计及其控制的综合研究:博士学位论文.上海:上海交通大学,2002
    [119]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社,2002
    [120]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002
    [121]Kuo B C.Automatic Control Systems,5~(th) ed.Englewood Cliffs,NJ:Prentice Hall,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700