用户名: 密码: 验证码:
基于声学超材料的新型隔声技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声学超材料是近年来理论声学领域发展起来的一个方兴未艾的热点方向。由于声学超材料具有不可替代的声波控制功能,使它成为了众多具有奇异特性的声学功能器件的实现途径之一。基于声学超材料的声学功能器件设计过程也是功能-结构-材料一体化设计过程的典型代表。
     本文以声学超材料为基础,对多种新型隔声技术进行了理论与实验研究。根据隔声装置的声场特性,将其分为无散射和有散射两种情况。在无散射装置中,声波不但不会进入隔声区域,同时在隔声装置外也不会产生散射波,声隐身衣是其中一个最具代表性的结构。相对的,有散射装置功能比较单一,只具有隔声特性,而隔声装置外侧依然会存在散射波。针对这两方面内容,本文所做工作和取得的重要结果与结论如下:
     1、在圆柱形声隐身衣层状等效结构的基础上,对“离散-等效”方法进行推广,提出了实现具有弱对称形式的椭圆柱形声隐身衣的实现方法。进而,针对任意形状声隐身衣,提出了一种近似层状等效结构,该结构可由均匀各向同性材料实现,此项工作解决了基于现实材料实现复杂形状声隐身衣的重要问题。
     2、基于无散射需求,在层状流体介质反射系数的基础上,推导了各向同性介质声场中,质量密度各向异性超材料界面处的参数匹配条件,并进而提出了一种声传感器隐身衣的设计方法。研究发现,在转换声学方法基础上得到的理想声隐身衣,只适合实现传感器密度与背景介质密度相同的传感器隐身衣。弱化声隐身衣是避免这一问题的有效途径之一。可以通过调节弱化系数,实现对任意参数声传感器的隐身。
     3、基于理论与实验方法,系统研究了带点缺陷的一维Helmholtz腔超材料中缺陷模式的基本特性、能量局域化现象以及不同振动模式下声场和相位分布等问题。缺陷模式对应了局域共振型禁带中的一处非常窄的声通带,并且在此频率下,缺陷单元附近会出现能量集中的现象。缺陷模式的位置受到了缺陷参数的影响,而它又进而会影响到能量局域化的程度。局域化的能量在结构中的分布情况则受到了缺陷单元与完美单元共振频率比的影响。带点缺陷的一维Helmholtz腔超材料中存在多种振动模式,不同的振动模式对应不同的能量分布形式。通过研究相位分布特性,发现该结构中还存在局部负参数形式,且负质量密度不但存在于声禁带中,在缺陷模式引起的声通带中也表存在负参数特性。
     4、基于Helmholtz腔超材料单元,设计了一种嵌入式的低频宽带隔声装置。埋入平面以下的共振单元却会对平面之上的区域进行隔声,是实现无障碍隔声的一种有效手段。实验结果表明,当Helmholtz腔单元共振时,会将入射声波隔绝在由它所围成的区域外,产生较好的隔声效果。通过在装置内设置多种共振频率的Helmholtz共振单元,可以实现对宽频带进行隔声。
     综上所述,本文研究了两种不同类型的新型隔声装置的设计与实现方法,并对有散射隔声装置进行了实验研究,无论是理论结果还是实验结果都证明了文中方法的正确性和有效性。这些研究成果为利用声学超材料技术实现新型隔声装置提供了支撑和参考,对推动声学超材料理论与技术走向应用也具有重要意义。
Acoustic metamaterial (AMM) is one of the hottest topics in acoustic realm inrecent years. Due to the dramatical property of controlling the propagation path ofacoustic waves, the AMM is considered as one of the most promising materials torealize acoustical functional devices.
     This dissertation is aimed at providing some methods to investigate new soundinsulation technology with AMMs. Based on the properties of the acoustic scatteringfield, the sound insulation device (SID) can be classified as two kinds, which arescattering case and non-scattering case, respectively. For the case of non-scattering, theacoustic waves neither transmit into the insulation area, nor reflect back into the hostmedium. On the other hand, the function of the scattering device is simpler. Theinsulation shell can only prevent the incident wave penetrating into the inner area, butcan not eliminating the acoustic reflection. The main contents and findings of thisdissertation include:
     1. On the basis of the layered structure of cylindrical acoustic cloak, therealizability of acoustic cloaks with complex shapes is analyzed. A layeredelliptical-cylindrical acoustic cloak with the same focus is designed based on theeffective medium theory. Furthermore, an approximation approach is proposed forrealizing arbitrarily shaped acoustic cloak. Based on the effective medium theory, thedesigned cloak is a discrete layered structure using homogeneous isotropic materials.The performance of the cloaks is simulated. The results demonstrate that the cloakpossesses properties of low-reflection outside the cloak and wavefront-bending in thecloak shell. In this section, we solve the problem of realizing a complicated shapedacoustic cloak with normal materials.
     2. Based on the non-scattering parameter-matched conditions on the interfacebetween the isotropic material and the metamaterial with an anisotropic mass density, amethod to design the acoustic scattering cancellation cloak for acoustic sensors isproposed. The cloak is a transparent structure while canceling the scattering of theacoustic sensors which can receive the outside information without any scattering. Thesimulation results indicate that the acoustic cloak designed by transformation acousticsis only suitable for acoustic sensors with an identical mass density equaling to the hostmedium. The reduced cloak is one of the possible approaches to avoid this restriction.Reduction coefficient is introduced to the material parameter expressions, by which theproperties of the sensor cloak are totally changed. The reduced sensor cloaks areadapted to acoustic sensors with arbitrary parameters only by adjusting the values thereduction coefficient.
     3. The properties of defect mode, the energy localization effect and the resonantmodes in a one-dimensional Helmholtz resonantor (HR) metamaterial with point defectare researched analytically and experimentally. Defect mode corresponds to a narrowpass band in local resonant forbidden band. At the frequency of the defect mode, energycan be localized around the defect resonator. The frequency of the defect mode isassociated with the defect parameter; however, it can further affect the degree of thelocalized energy. The ratio of the resonant frequencies of defect reonator and perfectreonantor can influence the position of the localized energy in the structure. There aremany resonant modes in the HR metamaterial with point defect. Different modescorrespond to different distributions of the acoustic energy. By studying thedistributions of the phase, local negative parameter is observed. The negative dynamicmass density not only exists in the forbidden band, but also appears in the pass bandbrought by the defect mode.
     4. A low-frequency wideband SID with inbuilt elements is designed andimplemented. The embedded structure can insulate the incident acoustic energy above it,which is a possible scheme to realize acoustic defence structure with no obstacle. Theexperimental results show that the acoustic energy is reflected by the resonant HRswhen they are resonating, and a large low-frequency area is formed by the rounded HRs.Wideband insulation area can be achieved by introducing much more HRs withgradually changed resonant frequencies.
     In conclusion, we studied two kinds of new sound insulation devices, and carriedout experiments on the low-frequency wideband sound insulation device. Boththeoretical and experimental results all verified the feasibility of the methods proposedin this dissertation. This work is helpful for realizing new acoustic sound insulationdevices with acoustic metamaterials, and also significative for pushing forword theapplication of the acoustic metamaterial.
引文
[1]何琳.潜艇声隐身技术进展[J].舰船科学技术,2006,28:9-17.
    [2]何琳,姚耀中.潜艇声隐身技术研究进展[J].舰船科学技术,2007,10:30-31.
    [3]孙卫红,晏欣.潜艇振动与噪声控制技术的最新研究进展[J].噪声与振动控制,2012,(5):6-10.
    [4]沈豪.强噪声学[M].北京:科学出版社,1996:152-260.
    [5]国家自然科学基金委员会,中国科学院.未来10年中国学科发展战略——物理学[M].北京:科学出版社,2012:164-169.
    [6]李永,宋健.非均质材料电磁力学与功能设计[M].北京:国防工业出版社,2010:61-78.
    [7]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云.声子晶体[M].北京:国防工业出版社,2009:1.
    [8] Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B. Acoustic bandstructure of periodic elastic composites [J]. Phys. Rev. Lett.,1993,71(13):2022-2025.
    [9] Sigalas M M, Economou E N. Elastic and acoustic wave band structure [J]. J.Sound and Vib.,1992,158(2):377-382.
    [10]刘启能.一维固-固结构声子晶体中弹性波的传输特性[J].物理学报,2011,60(3):034301.
    [11] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P.Locally resonant sonic materials [J]. Science,2000,289(5485):1734-1736.
    [12] Goffaux C, Sánchez-Dehesa J, Yeyati A L, Lambin P, Khelif A, Vasseur J O,Djafari-rouhani B. Evidence of Fano-like interference phenomena in locally resonantmaterials [J]. Phys. Rev. Lett.,2002,88(22):225502.
    [13] Goffaux C, Sánchez-Dehesa J. Two-dimensional phononic crystals studiedusing a variational method: Application to lattices of locally resonant materials [J]. Phys.Rev. B.,2003,67(14):144301.
    [14] Wang G, Shao L, Liu Y, Wen J. Accurate evaluation of lowest band gaps internary locally resonant phononic crystals [J]. Chin. Phys.,2006,15(8):1843-1848.
    [15] Wang G, Wen X, Wen J, Liu Y. Quasi-one-dimensional periodic structurewith locally resonant band gap [J]. J. Appl. Mech.,2006,73(1):167-170.
    [16] Wang G, Wen X, Wen J, Shao L, Liu Y. Two-dimensional locally resonantphononic crystals with binary structures [J]. Phys. Rev. Lett.,2004,93(15):154302.
    [17] Hu X H, Chan C T. Two-dimensional sonic crystals with Helmholtzresonators [J]. Phys. Rev. E,2005,71(5):055601(R).
    [18] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X.Ultrasonicmetamaterials with negative modulus [J]. Nature Mater.,2006,5(6):452-456.
    [19] Cheng Y, Xu J Y, Liu X J. One-dimensional structured ultrasonicmetamaterials with simultaneously negative dynamic density and modulus [J]. Phys.Rev. B,2008,77(4):045134.
    [20] Cheng Y, Xu J Y, Liu X J. Broad forbidden bands in parallel-coupled locallyresonant ultrasonic metamaterials [J]. Appl. Phys. Lett.,2008,92:051913.
    [21]丁昌林,赵晓鹏.可听频段的声学超材料[J].物理学报,2009,58(9):6351-6355.
    [22]丁昌林,赵晓鹏,郝丽梅,朱卫仁.一种基于开口空心球的声学超材料[J].物理学报,2011,60(4):044301.
    [23]刘敏,侯志军,傅秀军.二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究[J].物理学报,2012,61(10):104302.
    [24] Cheng Y, Liu X J. Coupled resonant modes in twisted acoustic metamaterials[J]. Appl. Phys. A,2012,109:805-901.
    [25] Yu D, Liu Y, Wang G, Zhao H, Qiu J. Flexural vibration band gaps inTimoshenko beams with locally resonant structures [J]. J. Appl. Phys.,2006,100(12):124901.
    [26] Yu D, Liu Y, Zhao H, Wang G, Qiu J. Flexural vibration band gaps inEuler-Bernoulli beams with locally resonant structures with two degrees of freedom [J].Phys. Rev. B,2006,73(6):064301.
    [27]王刚,温激鸿,温熙森,郁殿龙,刘耀宗.细直梁弯曲振动中的局域共振带隙[J].机械工程学报,2005,41(10):107-110.
    [28] Cai L, Han, X Y, Wen X. Band-structure results for elastic waves interpretedwith multiple-scattering theory [J]. Phys. Rev. B,2006,74:153101.
    [29] Wen J, Wang G, Yu D, Zhao H, Liu Y. Theoretical and experimentalinvestigation of flexural wave propagation in straight beams with periodic structures:Application to a vibration isolation structure [J]. J. Appl. Phys.,2005,97:114907.
    [30] Xiao Y, Wen J, Wen X. Longitudinal wave band gaps in metamaterial-basedelastic rods containing multi-degree-of-freedom resonators [J]. New J. Phys.,2012,14:033042.
    [31]文岐华,左曙光,魏欢.多振子梁弯曲振动中的局域共振型待隙[J].物理学报,2012,61(3):034301.
    [32] Sigalas M M. Elastic wave band gaps and defect states in two-dimensionalcomposites [J].1997, J. Acoust. Soc. Am.,101(3):1256-1261.
    [33] Wu F G, Liu Z Y, Liu Y Y. Stop gaps and single defect states of acousticwaves in two-dimensional lattice of liquid cylinders [J]. Chin. Phys. Lett.,2001,18(6):785-787.
    [34]朱敏,方云团,沈廷根.一维声子晶体缺陷态的研究[J].人工晶体学报,2005,34(3):536-541.
    [35] Wang Z G, Lee S H, Kim C K. Acoustic wave propagation inone-dimensional phononic crystals containing Helmhotz resonators [J].2008, J. Appl.Phys.,103:164907.
    [36] Wu L Y, Chen L W, Liu C M. Acoustic energy harvesting using resonantcavity of a sonic crystal [J]. Appl. Phys. Lett.,2009,95(1):013506.
    [37] Zhao Y C, Wu Y B, Yuan L B. Characteristics of the localized modes in2Dphononic crystal with heterostructure point defect [J]. Phys. Scr.,2009,80(6):065401.
    [38] Maldovan M, Thomas E L. Simultaneous localization of photons and phononsin two-dimensional periodic structures [J]. Appl. Phys. Lett.,2006,88(25):251907.
    [39] Hsu F C, Wu T T, Hsu J C, Sun J H. Directional enhanced acoustic radiationcaused by a point cavity in a finitesize two-dimensional phononic crystal [J]. Appl. Phys.Lett.,2008,93(20):201904.
    [40]魏琦,程营,刘晓峻.点缺陷阵列对声子晶体波导定向辐射性能的影响[J].物理学报,2011,60(12):124301.
    [41] Qiu C Y, Liu Z Y, Shi J, Chan C T. Directional acoustic source based on theresonant cavity of two-dimensional phononic crystals [J]. Appl. Phys. Lett.,2005,86(22):224105.
    [42] Fok L, Zhang X. Negative acoustic index metamaterial [J]. Phys. Rev. B,2011,83(21):214304.
    [43] Liu X N, Hu G K, Huang G L, Sun C T. An elastic metamaterial withsimultaneously negative mass density and bulk modulus [J]. Appl. Phys. Lett.,2011,98(25):251907.
    [44] Pichard H, Richoux O, Groby J-P. Experimental demonstrations in audiblefrequency range of band gap tunability and negative refraction in two-dimensional soniccrystal [J]. J. Acoust. Soc. Am.,2012,132(4):2816-2822.
    [45] Pendry J P. Negative refraction makes a perfect lens [J]. Phys. Rev. Lett.,2000,85(18):3966-3969.
    [46] Hu X H, Shen Y F, Liu X H, Fu R T, Zi J. Superlensing effect in liquidsurface waves [J]. Phys. Rev. E,2004,69(3):030201(R).
    [47] Yan M, Yan W, Qiu M. Cylindrical superlens by a coordinate transformation[J]. Phys. Rev. B,2008,78(12):125113.
    [48] Jia H, Ke M Z, Hao R, Ye Y T, Liu F M, Liu Z Y. Subwavelength imaging bya simple planar acoustic superlens [J]. Appl. Phys. Lett.,2010,97(17):173507.
    [49] Sigalas M M, Soukoulis C M. Elastic-wave propagation through disorderedand/or absorptive layered systems [J]. Phys. Rev. B,1995,51(5):2780-2789.
    [50] Camley R E, Djafari-rouhani B, Dobrzynski L, Maradudin A A. Transverseelastic waves in periodically layered infinite and semi-infinite media [J]. Phys. Rev. B,1983,27(12):7318-7329.
    [51] Wu F, Liu Z, Liu Y. Acoustic band gaps in2D liquid phononic crystals ofrectangular structure [J]. J. Phys. D: Appl. Phys.,2002,35(2):162-165.
    [52] Liu Z, Chan C T, Sheng P. Three-component elastic wave band-gap material[J]. Phys. Rev. B,2002,65(16):165116.
    [53] Liu Z, Chan C T, Sheng P, Goertzen A L, Page J H. Elastic wave scattering byperiodic structures of spherical objects: Theory and experiment [J]. Phys. Rev. B,2000,62(4):2446-2457.
    [54] Sigalas M M, García N. Theoretical study of three dimensional elastic bandgaps with the finite-difference time-domain method [J]. J. Appl. Phys.,2000,87(6):3122-3125.
    [55]王刚,赵宏刚,温激鸿,韩小云.二维周期钢管阵列带隙特性计算中的时域有限差分算法[J].国防科技大学学报,2004,26(4):72-76.
    [56] Huang Z G, Chen Z Y. Acoustic waves in two-dimensional phononic crystalswith reticular geometric structures [J]. J. Vib. Acoust.,2011,133(3):31011-31016.
    [57] Oudich M, Assouar M B, Hou Z. Propagation of acoustic waves andwaveguiding in a two-dimensional locally resonant phononic crystal plate [J]. Appl.Phys. Lett.,2010,97:193503.
    [58] Hsu J C. Local resonances-induced low-frequency band gaps intwo-dimensional phononic crystal slabs with periodic stepped resonators [J]. J. Phys. D:Appl. Phys.,2011,44(5):055401.
    [59] Cui T J, Smith D R, Liu R P. Metamaterials: theory, design, and application[M]. New York: Springer,2010:1-4.
    [60] Li J, Chan C T. Double-negative acoustic metamaterial [J]. Phys. Rev. E,2004,70(5):055602(R).
    [61] Wu Y, Lai Y, Zhang Z Q. Effective medium theory for elastic metamaterialsin two dimensions [J]. Phys. Rev. B,2007,76(20):205313.
    [62] Zhou X M, Hu G K. Analytic model of elastic metamaterials with localresonances [J]. Phys. Rev. B,2009,79(19):195109.
    [63] Wu Y, Lai Y, Zhang Z Q. Elastic metamaterials with simultaneously negativeeffective shear modulus and mass density [J]. Phys. Rev. Lett.,2011,107(10):105506.
    [64] Sheng P, Mei J, Liu Z, Wen W. Dynamic mass density and acousticmetamaterials [J]. Physica B,2007,394(2):256-261.
    [65] Popa B-I, Cummer S A. Design and characterization of broadband acousticcomposite metamaterials [J]. Phys. Rev. B,2009,80(17):174303.
    [66] Zigoneanu L, Popa B-I, Starr A F, Cummer S A. Design and measurements ofa broadband two-dimensional acoustic metamaterial with anisotropic effective massdensity [J]. J. Appl. Phys.,2011,109(5):054906.
    [67] Liu Z, Chan C T, Sheng P. Analytic model of phononic crystals with localresonances [J]. Phys. Rev. B,2005,71(1):014103.
    [68]高东宝,曾新吾,周泽民,田章福.一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究[J].物理学报,2013,62(9):094304.
    [69] Yao S S, Zhou X M, Hu G K. Investigation of the negative-mass behaviorsoccurring below a cut-off frequency [J]. New J. Phys.,2010,12(10):103025.
    [70] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. Acoustic metamaterialwith negative density [J]. Phys. Lett. A,2009,373:4464-4469.
    [71] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. Acoustic metamaterialwith negative modulus [J]. J. Phys.: Condens. Matter.,2009,21(17):175704.
    [72] Hao L M, Ding C L, Zhao X P. Tunable acoustic metamaterial with negativemodulus [J]. Appl. Phys. A,2012,106:807-811.
    [73] García-Chocano V M, Graciá-Salgado R, Torrent D, Cervera F,Sánchez-Dehesa J. Quasi-two-dimensional acoustic metamaterial with negative bulkmodulus [J]. Phys. Rev. B,2012,85(18):184102.
    [74] Christensen J, García de Abajo F J. Negative refraction and backward wavesin layered acoustic metamaterials [J]. Phys. Rev. B,2012,86(2):024301.
    [75] Huang H H, Sun C T, Huang G L. On the negative effective mass density inacoustic metamaterials [J]. Inter. J. Engin. Sci.,2009,47:610-617.
    [76] Ding Y Q, Liu Z Y, Qiu C Y, Shi J. Metamaterial with simultaneouslynegative bulk modulus and mass density [J]. Phys. Rev. Lett.,2007,99(9):093904.
    [77] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. Composite acousticmedium with simultaneously negative density and modulus [J]. Phys. Rev. Lett.,2010,104(5):054301.
    [78] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J].Science,2006,312:1780-1782.
    [79] Leonhardt U. Optical Conformal Mapping [J]. Science,2006,312:1777-1780.
    [80] Milton G W, Briane M, Willis J R. On cloaking for elasticity and physicalequations with a transformation invariant form [J]. New J. Phys.,2006,8(10):248.
    [81] Cummer S A, Popa B-I, Schurig D, Smith D R. Full-wave simulations ofelectromagnetic cloaking structures [J]. Phys. Rev. E,2006,74(3):036621.
    [82] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, SmithD R. Metamaterial Electromagnetic Cloak at Microwave Frequencies [J]. Science,2006,314:977-980.
    [83] Ma H, Qu S B, Xu Z, Zhang J, Chen B, Wang J. Material parameter equationfor elliptical cylindrical cloaks [J]. Phys. Rev. A,2008,77(1):013825.
    [84] Yan W, Yan M, Ruan Z C, Qiu M. Coordiante transformations make perfectinvisibility cloaks with arbitrary shape [J]. New J. Phys.,2008,10(4):043040.
    [85] Ma H, Qu S B, Xu Z, Wang J F. Numerical method for designing approximatecloaks with arbitrary shapes [J]. Phys. Rev. E,2008,78(3):036608.
    [86] Cummer S A, Schurig D. One path to acoustic cloaking [J]. New J. Phys.,2007,9(3):45.
    [87] Chen H Y, Chan C T. Acoustic cloaking in three dimensions using acousticmetamaterials [J]. Appl. Phys. Lett.,2007,91(18):183518.
    [88] Chen H Y, Chan C T. Acoustic cloaking and transformation acoustics [J]. J.Phys. D: Appl. Phys.,2010,43:113001.
    [89] Farhat M, Guenneau S, Enoch S, Movchan A, Zolla F, Nicolet A. Ahomogenization route towards square cylindrical acoustic cloaks [J]. New J. Phys.,2008,10(11):115030.
    [90] Ma H, Qu S B, Xu Z, Wang J F. Acoustic elliptical cylindrical cloaks [J].Chin. Phys. B,2009,18(3):1123-1126.
    [91] Liu B, Huang J P. Acoustically conceal an object with hearing [J]. Eur. Phys. J.Appl. Phys.,2009,48:20501.
    [92] Brun M, Guenneau S, Movchan A B. Achieving control of in-plane elasticwaves [J]. Appl. Phys. Lett.,2009,94(6):061903.
    [93] Yang T, Cao R F, Luo X D, Ma H R. Acoustic superscatterer and itsmultilayer realization [J]. Appl. Phys. A,2010,99:843-847.
    [94] Wei Q, Cheng Y, Liu X J. Acoustic omnidirectional superabsorber witharbitrary contour [J]. Appl. Phys. Lett.,2012,100(9):094105.
    [95] Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X. Broadband acousticconcentrator with multilayered alternative homogeneous materials [J]. J. Acoust. Soc.Am.,2012,131(2): EL150-EL155.
    [96] Norris A N. Acoustic cloaking theory [J]. Proc. R. Soc. A,2008,464:2411-2434.
    [97] Li J, Pendry J B. Hiding under the Carpet: A New Strategy for Cloaking [J].Phys. Rev. Lett.,2008,101(20):203901.
    [98] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R. Broadband ground-planecloak [J]. Science,2009,323:366-369.
    [99] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M. Three-dimensionalinvisibility cloak at optical wavelengths [J]. Science,2010,328:337-339.
    [100] Torrent D, Sánchez-Dehesa J. Acoustic cloaking in two dimensions: afeasible approach [J]. New J. Phys.,2008,10(6):063015.
    [101] Cheng Y, Yang F, Xu J Y, Liu X J. A multilayer structured acoustic cloakwith homogeneous isotropic materials [J]. Appl. Phys. Lett.,2008,92(15):151913.
    [102] Schoenberg M, Sen P N. Properties of a periodically stratified acoustic halfspace and its relation to a Biot fluid [J]. J. Acoust. Soc. Am.,1983,73(1):61-67.
    [103] Cheng Y, Liu X J. Resonance effects in broadband acoustic cloak withmultilayered homogeneous isotropic materials [J]. Appl. Phys. Lett.,2008,93(7):071903.
    [104] Cheng Y, Liu X J. Specific multiple-scattering process in acoustic cloak withmultilayered homogeneous isotropic materials [J]. J. Appl. Phys.,2008,104(10):104911.
    [105] Cai L W, Sánchez-Dehesa J. Analysis of Cummer–Schurig acoustic cloaking[J]. New J. Phys.,2007,9(12):450.
    [106] Norris A N, Nagy A J. Acoustic metafluids made from three acoustic fluids[J]. J. Acoust. Soc. Am.,2010,128(4):1606-1616.
    [107]高东宝,曾新吾.基于各向同性材料的层状椭圆柱形声隐身衣设计[J].物理学报,2012,61(18):184301.
    [108] Gao D B, Zeng X W. Approximation approach of realizing an arbitrarilyshaped acoustic cloak with homogeneous isotropic materials [J]. Chin. Phys. Lett.,2012,29(11):114302.
    [109] Torrent D, Sánchez-Dehesa J. Anisotropic mass density by two-dimensionalacoustic metamaterials [J]. New J. Phys.,2008,10(2):023004.
    [110] Ni Q, Cheng J C. Homogenization of two-dimensional phononic crystals atlow frequencies [J]. Chin. Phys. Lett.,2005,22(9):2305-2308.
    [111] Ni Q, Cheng J C. Anisotropy of effective velocity for elastic wavepropagation in two-dimensional phononic crystals at low frequencies [J]. Phys. Rev. B,2005,72(1):014305.
    [112] Ni Q, Cheng J C. Long wavelength propagation of elastic waves inthree-dimensional periodic solid-solid media [J]. J. Appl. Phys.,2007,101(7):073515.
    [113] Mei J, Liu Z Y, Wen W J, Sheng P. Effective Mass Density of Fluid-SolidComposites [J]. Phys. Rev. Lett.,2006,96(2):024301.
    [114]沈平,梅君,刘正猷,温维佳.动态质量密度和声学超常介质[J].物理,2007,36(1):1-6.
    [115] Krokhin A A, Arriaga J, Gumen L N. Speed of sound in periodic elasticcomposites [J]. Phys. Rev. Lett.,2003,91(26):264302.
    [116] Zhou X W, Zou X Y, Wang T H, Cheng J C. Effective velocity of2Dphononic crystals with rectangular lattice [J]. Ultrasonics,2010,50:577-582.
    [117] Scandrett C L, Boisvert J E, Howarth T R. Acoustic cloaking using layeredpentamode materials [J]. J. Acoust. Soc. Am.,2010,127(5):2856-2864.
    [118] Scandrett C L, Boisvert J E, Howarth T R. Broadband optimization of apentamode-layered spherical acoustic waveguide [J]. Wave Motion,2011,48:505-514.
    [119] Gokhale N H, Cipolla J L, Norris A N. Special transformations forpentamode acoustic cloaking [J]. J. Acoust. Soc. Am.,2012,132(4):2932-2941.
    [120] Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M. On thepracticability of pentamode mechanical metamaterials [J]. Appl. Phys. Lett.,2012,100(19):191901.
    [121] Milton G W. The theory of composites [M]. Cambridge: CambridgeUniversity Press,2002:643-669.
    [122] Lai Y, Chen H Y, Zhang Z Q, Chan C T. Complementary Media InvisibilityCloak that Cloaks Objects at a Distance Outside the Cloaking Shell [J]. Phys. Rev. Lett.,2009,102(9):093901.
    [123] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C. Acoustic cloaking by asuperlens with single-negative materials [J]. Phys. Rev. Lett.,2011,106(1):014301.
    [124] Xu T, Zhu X F, Liang B, Li Y, Zou X Y, Cheng J C. Scattering reduction foran acoustic sensor using a multilayered shell comprising a pair of homogeneousisotropic single-negative media [J]. Appl. Phys. Lett.,2012,101(3):033509.
    [125] Wei Q, Cheng Y, Liu X J. Acoustic cloak with duplex communication abilityconstructed by multilayered homogeneous isotropic materials [J]. Appl. Phys. A,2012,109:913-919.
    [126] Guild M D, Haberman M R, Alù A. Design and experimental evaluation ofparticulate composite materials for use as acoustic scattering cancellation layers [C]. J.Acoust. Soc. Am.,2010,128:2428.
    [127] Guild M D, Alù A, Haberman M R. Cancellation of the acoustic fieldscattered from an elastic sphere [J]. J. Acoust. Soc. Am.,2011,129(3):1355-1365.
    [128] Guild M D, Alù A, Haberman M R. Cancellation of acoustic scattering froman elastic sphere [J]. J. Acoust. Soc. Am.,2011,129(3):1355-1365.
    [129] Guild M D, Haberman M R, Alù A. Plasmonic cloaking and scatteringcancelation for electromagnetic and acoustic waves [J]. Wave Motion,2011,48:468-482.
    [130] Guild M D, Haberman M R, Alù A. Plasmonic-type acoustic cloak made of abilaminate shell [J]. Phys. Rev. B,2012,86(10):104302.
    [131] Zhang S, Xia C G, Fang N. Broadband acoustic cloak for ultrasound waves[J]. Phys. Rev. Lett.,2011,106(2):024301.
    [132] Zhang S. Acoustic Metamaterial design and application [D]. Illinois:University of Illinois,2010:114.
    [133] Popa B-I, Zigoneanu L, Cummer S A. Experimental acoustic ground cloak inair [J]. Phys. Rev. Lett.,2011,106(25):253901.
    [134] García-Chocano V M, Sanchis L, Díaz-Rubio A, Martínez-Pastor J, CerveraF, Llopis-Pontiveros R, Sánchez-Dehesa J. Acoustic cloak for airborne sound by inversedesign [J]. Appl. Phys. Lett.,2011,99(7):074102.
    [135] Chen M J, Pei Y M, Fang D N. An improved method of designing isotropicmultilayered spherical cloak for electromagnetic invisibility [J]. Chin. Phys. Lett.,2010,27(3):034102.
    [136] Zhu X F, Zou X Y, Zhou X W, Liang B, Cheng J C. Concealing a passivesensing system with single-negative layers [J]. Chin. Phys. Lett.,2012,29(1):014102.
    [137] Ma H, Qu S B, Xu Z, Zhang J Q, Wang J F. Material parameter equation forrotating elliptical spherical cloaks [J]. Chin. Phys. B,2009,18(1):179-182.
    [138]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2006:651.
    [139] Chen H Y, Yang T, Luo X D, Ma H R. Impedance-matched reduced acousticcloaking with realizable mass and its layered design [J]. Chin. Phys. Lett.,2008,25(10):3696-3699.
    [140] Jiang W X, Ma H F, Cheng Q, Cui T J. A class of line-transformed cloakswith easily-realizable constitutive parameters [J]. J. Appl. Phys.,2010,107(3):034911.
    [141] Urzhumov Y, Ghezzo F, Hunt J, Smith D R. Acoustic cloakingtransformations from attainable material properties [J]. New J. Phys.,2010,12(7):073014.
    [142] Smith J D, Verrier P E. The effect of shear on acoustic cloaking [J]. Proc. R.Soc. A,2011,467:2291-2309.
    [143] Cai L W. Scattering of antiplane shear waves by layered circular elasticcylinder [J]. J. Acoust. Soc. Am.,2004,115(2):515-522.
    [144] Cai L W. Multiple Scattering in single scatterers [J]. J. Acoust. Soc. Am.,2004,115(3):986-995.
    [145] Cai L W. Evaluation of layered multiple-scattering method for antiplaneshear wave scattering from gratings [J]. J. Acoust. Soc. Am.,2006,120(1):49-61.
    [146] Cai L W. Acoustical scattering by reaially stratified scatterers [J]. J. Acoust.Soc. Am.,2008,124(5):2715-2726.
    [147] Cai L W, Dacol D K, Orris G J, Calvo D C, Nicholas M. Acousticalscattering by multilayers spherical elastic scatterer containing electrorheological layer[J]. J. Acoust. Soc. Am.,2011,129(1):12-23.
    [148]张海澜.理论声学[M].北京:高等教育出版社,2007:199-212.
    [149]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [150] Norris A N, Wickham G. Elastic Helmholtz resonators [J]. J. Acoust. Soc.Am.,1993,93(2):617-630.
    [151] Selamet A, Li Z L. Circular asymmetric Helmholtz resonators [J]. J. Acoust.Soc. Am.,2000,107(5):2360-2369.
    [152] Selame t A, Xu M B, Lee I-J, Huff N T. Helmholtz resonator lined withabsorbing material [J]. J. Acoust. Soc. Am.,2005,117(2):725-733.
    [153] Richoux O, Tournat V, Le Van Suu T. Acoustic wave dispersion in aone-dimensional lattice of nonlinear resonant scatters [J]. Phys. Rev. E,2007,75(2):026615.
    [154] Sugimoto N, Horioka T. Dispersion characteristics of sound waves in atunnel with an array of Helmholtz resonators [J]. J. Acoust. Soc. Am.,1995,97(3):1446-1459.
    [155]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001:126-130.
    [156] Fey J, Robertson M. Compact acoustic bandgap material based on asubwavelength collection of detuned Helmholtz resonators [J]. J. Appl. Phys.,2011,109(11):114903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700