用户名: 密码: 验证码:
光子晶体应用理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以光子晶体功能器件原理结构设计为切入点开展光子晶体应用理论研究,研究内容包括如下相关的四个方面:
     (1)仿真平台建立。光子晶体是一个复杂的多组元结构,难以求出其严格解析解,通常只能应用近似的处理方法或数值模拟。为了对光子晶体功能器件进行深入理论分析,首先需要建立完整的光子晶体设计和仿真平台。
     (2)功能器件原理结构设计。本课题主要从类比、优化改进、提出等三个途径开展光子晶体功能器件原理结构设计:由传统介质波导波分复用器类比设计光子晶体波分复用器;优化Y.H.Lee研究小组提出的电激励光子晶体激光腔结构;研究新的光子晶体波导腔原理和新型光子晶体光开关原理;研究光子晶体环形腔的转动效应。
     (3)耦合技术研究。基于光子晶体的功能器件特征尺度为光波长,比传统的光学器件体积小得多。因此,对于未来的集成光学系统来说,光子晶体功能器件和传统光学器件之间的高效耦合是光子晶体器件应用的一个关键技术。
     (4)制备误差分析。在光子晶体功能器件的制备过程中,由于工艺水平、实验设备等条件的限制,制作出来的光子晶体结构并不能满足严格的空间周期性,绝大多数情况下会与理想光子晶体有一定的随机误差。这种误差对光子晶体功能器件的性能有着怎样的影响也是本课题研究的内容。
     本课题的主要研究结果如下:
     (1)用FDTD和VC++开发了能够仿真包含非线性、金属以及各种缺陷的二维光子晶体软件。软件有良好的用户界面,能够交互地、直观地、简洁地建立各种复杂结构的二维光子晶体模型。构建了用于高性能并行计算的微机机群环境,用MPI+FORTRAN设计了一个基于此机群环境的三维并行FDTD程序。光子晶体二维、三维完整仿真平台的建立为本文及以后的光子晶体理论研究打下了基础。该研究结果已正式发表于光学学报、光子学报等杂志。
     (2)由传统介质波导波分复用器类比提出了基于光子晶体定向耦合和多模干涉效应的粗波分复用器结构。该研究结果已正式发表于光学学报、光学技术等杂志。
     (3)提出了一种基于驻波不同位置处非线性效应不同的光控光原理。利用这种原理设计的光子晶体结构能够宽带宽和高对比度的实现光控光开关功能和光的与运算。该研究结果已正式发表于Optics Express杂志。
     (4)优化了Y.H.Lee研究小组提出的电激励光子晶体单缺陷激光腔结构,将工作模式的Q值和Purcell因子分别提高7倍和6.8倍。该研究结果已正式发表于Journal of the Optical Society of America B杂志。
     (5)提出了一种基于模式控制的光子晶体波导腔原理,即用两个仅支持0阶模的单模窄波导来约束多模波导中的1阶模。该研究结果待发表。
     (6)探讨性地将时域有限差分方法用于转动坐标系下光子晶体理论研究,导出了转动坐标系下的差分方程和PML边界条件,研究了光子晶体环形腔的转动特性。该研究结果已正式发表于光学学报杂志。
     (7)提出了用级联缓变波导解决传统介质波导和光子晶体波导之间耦合问题的思路,缓变部分由波导两边半径按线性方式逐渐增大的空气孔组成。该研究结果待发表。
     (8)提出了用耦合腔准直光子晶体波导口出射光的新方法。这种耦合腔结构能宽带宽和小发散角地实现光的准直输出。该研究结果已正式发表于AppliedPhysics B杂志。
     (9)讨论了光子晶体制作过程中单元半径和位置随机误差对光子晶体带隙特性和光子晶体功能器件性能的影响。该研究结果已正式发表于Applied Physics B和光学学报等杂志。
     总之,本课题在光子晶体应用理论研究方面从建立完整的仿真平台入手,重点对提出的新型光子晶体功能器件及相关耦合系统进行了结构设计和性能仿真,最后研究了实验制作中不可避免的制备误差对光子晶体带隙特性和光子晶体功能器件性能的影响。本课题工作受到国家安全重大基础研究项目“军用光子/声子晶体基础研究”的资助,已于2006年通过结题验收。
In this thesis, we focus on the theoretical research of photonic crystal applications with the cut-in point of fundamental design of photonic crystal function devices. Our research mainly includes the following four correlative contents:
     (1) Developing the platform for design and simulation. Photonic crystals are complex structures, which make it difficult to solve the photonic band structure or transmission property by analytical method. In order to deal with the theoretical research, we must develop a comprehensive platform as the numeric tool for photonic crystal design and simulation. However, the computation of 3D model requires very large memories and is time consuming, so high performance parallel computation is necessary.
     (2) Fundamental design of functional devices. The research mainly includes these aspects: Design of photonic crystal wavelength demultiplexers by analogy with conventional waveguide wavelength demultiplexers. Optimization for the operation mode in electrically driven single-cell photonic crystal laser cavity demonstrated by Y.H.Lee research group. Presenting a new principle of photonic crystal waveguide cavity. Presenting a new light-by-light photonic crystal switching. Development of FDTD method for analyzing the photonic crystals in the non-inertial frame for photonic crystal ring cavity.
     (3) Research of coupling technique. The size of photonic crystal devices is scaled down to the sub-micro-range, which is far smaller than conventional optical devices. For an integrated optical system, the coupling into and out of the photonic crystal devices would be one of key techniques.
     (4) Analysis of fabrication errors. In order to fabricate the photonic crystals that operate in the near-infrared or optical-wavelength, the feature size of photonic crystal has to be some hundreds of nanometers. Fabrication of such fine structures inevitably generates random deviations from the perfectly ordered structures. The effects of disorder on the performance of photonic crystal devices are also in the scope of this paper.
     The main research results of this paper are as follows.
     (1) We developed a two-dimensional photonic crystal simulation software written in Visual C++ based on FDTD method. This software which provides a modern graphical user interface can conveniently build all kinds of complex photonic crystal structures including nonlinearity, metal, dot and line defects. With the high-performance cluster systems consisting of personal computers, we also developed a parallelized three-dimensional photonic crystal FDTD code written in Message Passing Interface (MPI) and Fortran.
     (2) We designed two kinds of photonic crystal wavelength demultiplexers based on an analogy of conventional waveguide directional coupling and multimode interference effect.
     (3) We presnted a new principle of light-by-light operation based on the nonlinear optical effect difference between different positions of standing waves. We show that such a photonic crystal configuration operating on the principle can demonstrate light-by-light and all-optical AND gate operation with a wide bandwidth and high contrast between the OFF state and the ON state in its transmission.
     (4) We optimized the electrically driven single-cell photonic crystal laser cavity demonstrated by Y.H.Lee research group to increase the quality factor and Purcell factor of the operation mode. We show that the quality factor and Purcell factor for the modified cavity are about 7 and 6.8 times higher than that of the unmodified structure, respectively.
     (5) We present a new principle of photonic crystal waveguide cavity based on mode control, which utilize two narrow waveguide operating only in the Oth order mode to confine 1st order mode of wide waveguide.
     (6) We made tentative research on rotation effect in ring-shaped photonic crystal cavity and developed an FDTD method for simulating the photonic crystals in the non-inertial frame.
     (7) We present a new approach for high efficient coupling between conventional dielectric waveguide and photonic crystal waveguide by introducing a cascade tapered waveguide. The tapered waveguide is formed by increasing radii of air holes step by step.
     (8) We proposed a novel photonic crystal configuration consisting of coupled cavities and diffraction gratings at the photonic crystal surface to obtain beaming of light and enhanced transmission. We showed that such a configuration can demonstrate beaming of light in a wide bandwidth range and narrow radiation angle.
     (9) We study and discuss how do the random errors, including radius and position errors which may arise during fabrication, affect the fundamental properties of photonic crystals and the performance of photonic crystal function devices.
     In summary, we begin the research field of photonic crystal applications by developing the platform for design and simulation. Then, we utilize the platform to simulate the function devices based on some new principles and ideas. Finally, we study the effects of random error which inevitably arise during fabrication on the performance of the functional devices.
引文
[1] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 1987, 58:2059-2062
    
    [2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58:2486-2489
    [3] Z. Zhang and S. Satpathy. Electromagnetic wave propagation in periodic structures -Bloch wave solution of Maxwell equations. Phys.Rev.Lett., 1990,65:2650
    [4] K. M. Ho, C. T. chan, and C. M. soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys.Rev.Lett., 1990,65:3152
    [5] K. M. Leung and Y. F. Liu. Full vector wave calculation of photonic band structures in fcc dielectric media. Phys.Rev.Lett., 1990,65:2646
    [6] E. Yablonovitch, T. J. Gmitter, K. M. Leung. Photonic band structure:The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett., 1991,67:2295
    [7] JB Pendry and A. MacKinnon. Calculation of photon dispersion relations. Phys. Rev.Lett., 1992, 69:2772
    [8] J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu. Two-dimensional photonic band structure in the chiral medium|transfer matrix method. Opt. Commun., 1997,142:179
    [9] A. Mekis, S. Fan, and J. D. Yoannopoulos. Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides. IEEE Microwave Guided Wave Lett.,1999,9:502-504
    [10] Rene M. de Ridder and Remco Stoffer. Applicability of the Finite-Difference Time-Domain Method to Photonic Crystal Structures, AIP Conference Proceedings,2001, 560: 99
    
    [11] Davad Yuk Kei Ko and C. Inkson. Matrix method for tunneling in heterostructures:Resonant tunneling in multilayer systems. Phys. Rev. B , 1988,38:9945
    
    [12] Xiaoyan Wang, Junjun Lou, Chao Lu, Chun-Liu Zhao. Modeling of PCF with Multiple reciprocity boundary element method. Opt. Express, 2004,12:961
    [13] Chan. C. T, Yu. Q. L, Ho. K. M. Order-N spectralmethodforelectromagneticwaves.Phys. Rev. B, 1995, 51:16635
    [14] J. M. Elson and P. Tran. Coupled-mode calculation with the R-matrix propagator for the dispersion of surface waves on truncated photonic crystal. Phys. Rev. B, 1996, 54:1711
    [15] K. M. Ho, C. T. chan,and C. M. soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys.Rev.Lett., 1990,65:3152
    [16] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B, 1996, 54:11245
    [17] E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis. Tight-binding parameterization for photonic band-gap materials. Phys. Rev. Lett., 1998, 81:1405
    [18] D. Mogilevtsev, T. A. Birks, and P. St. J. Russell.Localized function method for modeling defect modes in 2D photonic crystals. J. Lightwave Tech., 1999,17:2078
    [19] K. M. Leung. Defect modes in photonic band structures: a Green's function approach using vector Wannier functions. J. Opt. Soc. Am. B, 1993, 10:303
    [20] D. C. Dobson. An efficient method for band structure calculations in 2D photonic crystals. J. Comput. Phys., 1999,149:363
    [21] S. Y. Lin, E. Chow, V. Hietch, P. R. Villeneuve, J. D. Joannopoulos. Experimental demonstration of guiding and bending of light in a photonic crystal. Science, 1998,282:274
    [22] Y. Fink, J. N. Wnn, S. Fan, C. Chen J. Michel, J. D. Joannopoulos, A dielectric omnidirectional reflector, Science, 1998,282:1679—1682.
    [23] J. Zi, J. Wan, and C. Zhang. Large frequency range of negligible transmission in 1D photonic quantum well structures. Appl. Phys. Lett., 1998, 73:2084
    [24] I. Abram and G. Bourdon. Photonic-well microcavities for spontaneous emission control. Phys. Rev. A, 1996, 54:3476
    [25] A. Mekis. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett., 1996,77:3787-3790
    [26] J. D. Joannopoulos, P. R. Villeneuve and S. Fan. Photonic crystals: putting a new twist on light. Nature, 1997,386:143
    [27] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D.Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen. Photonic-bandgap microcavities in optical waveguides. Nature, 1997,390:143-145
    [28] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K.Kash. Novel applications of photonic band gap materials: low-loss bends and high Q cavities. J. Appl. Phys., 1994, 75:4753
    [29] P. R. Villeneuve, D. A. Abrams, S. Fan, and J. D. Joannopoulos. Single-mode waveguide microcavity for fast optical switching. Opt. Lett., 1996, 21:2107
    [30] J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos. Optical filters from photonic band gap air bridges. J. Lightwave Technol., 1996, 14:2575
    [31] M. Notomi. Theory of light propagation in strongly modulated photonic crystals:Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B, 2000,62:10696
    [32] J. B. Pendry. All-angle negative refraction without negative effective index. Phys. Rev.B,2002,65:201104
    [33] Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi. Superprism phenomena in photonic crystals. Phys. Rev. B , 1998,58:10096
    [34] Kosaka H., Kawashima T., Tomita A., Notomi M., Tamamura T., Sato T. and Kawakami S. Superprism phenomena in photonic crystals: toward microscale lightwave circuits. J. Lightwave Technol, 1999,17:2032
    [35] K. Sakoda. Optical properties of photonic crystals, Berlin Heidelberg: Springer-Verlag ,2001
    [36] Kerwyn Casey Huang, M. L. Povinelli, and John D. Joannopoulos. Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett., 2004, 85: 543
    [37] K. B. Chung and S. W. Hong. Wavelength demultiplexers based on the superprism phenomena in photonic crystals. Appl. Phys. Lett.,2002, 81:1549
    
    [38] B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C. C. Lin, and J. S. Harris. Use of a dielectric stack as a onedimensional photonic crystal for wavelength demultiplexing by beam shifting. Opt. Lett., 2000,25:1502—1504.
    [39] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos. Channel drop tunneling through localized states. Phys. Rev. Lett., 1998, 80:960 - 963
    [40] C. Jin, S. Fan, S. Han, and D. Zhang. Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration. IEEE J. Quantum Electron,2003,39:160-165
    [41] A. Martinez, F. Cuesta, and J. Marti, Ultrashort 2-D photonic crystal directional couplers. IEEE Photon. Technol. Lett., 2003, 15:694-696
    [42] S. Haxha, W. Belhadj, F. AbdelMalek, H. Bouchriha. Analysis of wavelength demultiplexer based on photonic crystals. IEE Proceedings, Optoelectronics, 2005,152:193-198
    
    [43] 朱志宏,叶卫民,季家鎔,袁晓东,曾淳.光子晶体波导定向耦合器.光学学报,2003(23): 1237-1240
    [44] K. B. Chung and S. W. Hong. Wavelength demultiplexers based on the superprism phenomena in photonic crystals. Appl. Phys. Lett.,2002, 81: 1549-1551
    [45] Yanik M F, Fan S, Soljacic M. High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phy Lett, 2003, 83:2739.
    [46] M. Notomi, A.Shinya, and S. Mitsugi. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express, 2005,13:2678
    [47] A. R. Cowan and J. F. Young. Optical bistability involving photonic crystal microcavities and Fano line shapes. Phys. Rev. E, 2003, 68:046606
    [48] F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti.All-optical switching structure based on a photonic crystal directional coupler. Opt.Express, 2003, 12:161
    [49] S. F. Mingaleev and Y. S. Kivshar. Nonlinear transmission and light localization in photonic-crystal waveguides. J. Opt. Soc. Am. B, 2002, 19:2241
    [50] S. Pereira, P. Chak, J. E. Sipe. Gap-soliton switching in short microresonator structures. J Opt Soc B , 2002 ,19 : 2191 -2202
    [51]P.Tran.All-optical switching with a nonlinear chiral photonic bandgap structure.J Opt Soc Am B,1999,16:70-73
    [52]Happ T D.Two-dimensional photonic crystal laser mirror.Semicond.Sci.Technol.,2001,16:227
    [53]Thomas D.Happ,Martin Kamp,and Alfred Forchel.Two-dimensional photonic crystal coupled-defect laser diode.Appl.Phys.Lett.,2003,.82:4
    [54]Kwon S H,Ryu H Y,Kim G H.Photonic band edge lasers in two-dimensional square-lattice photonic crystal slabs.Appl.Phys.Lett.,2003,83:3 870
    [55]Han-Youl Ryu,Soon-Hong Kwon,Yong-Jae Lee.Very-low-threshold photonic band-edge lasers from free-standing reiangular photonic crystal slabs.Appl.Phys.Lett.,2002,80:1913
    [56]S.Noda,M.Yokoyama,M.Imada,A.Chutinan,and M.Mochizuki.Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design.Science,2001,293:1123-1125
    [57]B.S.Song,S.Noda,T.Asano,and Y.Akahane.Ultra-high-Q photonic doubleheterostructure nanocavity.Nature Materials,2005,4:207-210
    [58]E.Kuramochi,M.Notomi,S.Mitsugi,A.Shinya,T.Tanabe,T.Watanabe.Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect.Applied Physics Letters,2006,88:041112
    [59]Hong-Gyu Park,Se-Heon Kim,Soon-Hong Kwon,Young-Gu Ju,Jin-Kyu Yang,Jong-Hwa Baek,Sung-Bock Kim,Yong-Hee Lee.Electrically driven single-cell photonic crystal laser.Science,2004,305:1444
    [60]Wan K,Cheolwoo K and Andrew St.Grating-assisted coupling of optical fibers and photonic crystal waveguides.Opt.Lett.,2002,27:1604
    [61]D.W.Prather,J.Murakowski,S.Shi,S.Venkataram,A.Sharkawy,C.Chen and D.Pustai.High-effciency coupling structure for a single-line-defect photonic-crystal waveguide.Opt.Lett.,2002,27:1601
    [62]Michael E P and Richard W Z.Two compact structures for perpendicular coupling of optical signals between dielectric and photonic crystal waveguides.Opt.Express,2002,10:691
    [63]E.H.Khoo,A.Q.Liu,and J.H.Wu.Nonuniform photonic crystal taper for high-efficiency mode coupling.Opt.Express,2005,13:7748[64]柏宁丰,刘旭,肖金标,张明德,孙小苗。光子晶体平面波导与脊波导高效耦合技术的研究。物理学报,2005(54):4933-4937.
    [65]E.Moreno,F.J.Garcia,L.Martin-Moreno.Enhanced transmission and beaming of light via photonic crystal surface modes.Phys.Rev.B,2004,69:121402
    [66]P.Kramper,M.Agio,C.M.Soukoulis,A.Birner,F.Muller,R.B.Wehrspohn,U. Gosele, and V. Sandoghdar. Highly directional emission from photonic crystal waveguides of subwavelength width. Phys. Rev. Lett.,2004, 92:113903
    [67] S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos.Theoretical investigation of fabrication-related disorder on the properties of photonic crystals. J. Appl. Phys.,1995,78 :1415-141
    [68] W. Bogaerts, P. Bienstman, and R. Baets. Scattering at sidewall roughness in photonic crystal slabs. Opt. Lett.,2003, 28:689-691
    
    [69] M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljiacic.Effect of a photonic band gap on scattering from waveguide disorder. Appl. Phys. Lett.,2004, 84:3639
    
    [70] S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe. Extrinsic optical scattering loss in photonic crystal waveguides:role of fabrication disorder and photon group velocity.Phys. Rev. Lett., 2005, 94:033903
    
    [71] Xue-Hua Wang, Rongzhou Wang, Ben-Yuan Gu, and Guo-Zhen Yang. Decay Distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps. Phys. Rev. Lett., 2002, 88:093902
    
    [72] Yiquan Wang, Xiaoyong Hu, Xingsheng Xu, Bingying Cheng, and Daozhong Zhang.Localized modes in defect freed odecagonalqu asiperiodic photonic crystals. Phys. Rev.B,2003, 68:16510
    [73] He, SL; Ruan, ZC; Chen, L. Focusing properties of a photonic crystal slab with negative refraction. Phys. Rev. B, 2004, 70:115113
    
    [74] Zhou J, Sun C.Q, Pita K, Lam Y.L, Zhou Y, Ng S. L, Kam C.H, Li LT. and Gui Z.L.Thermally tuning of photonic band gap of SiO2 colloid-crysyal infilled with ferroelectric BaTiO 3 . Applied Physics Letters, 2001, 78:661
    [75] J. Zi, J. Wan, and C. Zhang. Large frequency range of negligible transmission in 1D photonic quantum well structures. Appl. Phys. Lett., 1998, 73:2084
    [76] Peigen Ni, Bingying Cheng, and Daozhong Zhang. Inverse opal with an ultraviolet photonic gap. Appl. Phys. Let., 2002, 80:1879
    
    [77] Y. Zhang, Z. Li, and B. Li. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves. Optics express, 2006,14:2679-2689.
    
    [78] K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas Propagation, 1966,17:302
    
    [79] 高本庆.进域有限差分法.北京:国防工业出版社, 1995
    
    [80] G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time Domain Electromagnetic Field Equations. IEEE Trans. Electromagnetic Compatibility, 1981:23:377
    
    [81] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J.Computational Physics,1994,114:185
    [82]J.P.Berenger.Perfectly matched layer for the FDTD solution of wave-structure interaction problem.IEEE trans.Antennas Propogat.,1996,44:110
    [83]E.Centeno and D.Felbacq.Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity.Phys.Rev.B,2000,62:7683
    [84]M.Soljacic,M.Ibanescu,S.G.Johnson,Y.Fink,and J.D.Joannopoulos.Optimal bistable switching in nonlinear photonic crystals.Phys.Rev.E,2002,66:055601
    [85]Guy Van der Sande,Bjorn Maes etc,Nonlinear lattice model for spatially guided solitons in nonlinear photonic crystals.Optics Express,2005,13:1544
    [86]钱世雄,王恭明.非线性光学-原理与进展.上海:复旦大学出版社,2001.
    [87]Lezec.HJ.Beaming light from a subwavelength aperture.Science,2002,107:1895
    [88]JG Fleming,SY Lin,I.El-Kady,R.Biswas,KM Ho.All-metallic three-dimensional photonic crystals with a large infrared bandgap.Nature,2002,417:52
    [89]Esteban Moreno,Daniel Emi,and Christian Hafner.Band structure computations of metallic photonic crystals with the multiple multipole method.Phys.Rev.B,2002,65:155120
    [90]孙家昶.并行化:大型科学工程计算的重要趋势.自然杂志:现代科学专题综述,1992(15):569-572
    [91]王明福.VisualC++程序设计.北京:高等教育出版社,2003
    [92]孙家昶,张林波,迟学斌,汪道柳.网络并行计算与分布式编程环境.北京:科学出版社,1996
    [93]薛正辉,杨仕明,高本庆,张泽杰.FDTD算法的网络并行运算实现.电子学报,2003(31):1839-1843
    [94]莫则尧,袁国兴.消息传递并行编程环境MPI.北京:科学出版社,2001
    [95]李代平,张信.分布式并行计算技术.北京:冶金工业出版社,2004
    [96]都志辉.高性能计算并行编程技术-MPI并行程序设计.北京:清华大学出版社,2001
    [97]陈国良.并行计算-结构·算法·编程.北京:高等教育出版社,1999
    [98]朱志宏,叶卫民,季家镕,袁晓东.曾淳用时域有限差分法研究二维光子晶体传输特性.光学学报,2003(23):522-525
    [99]袁晓东.光子/声子晶体基础研究2003年协作研讨会.长沙:国防科技大学光子/声子晶体研究中心,2003
    [100]B.E.Nelson,M.Gerken,D.A.B.Miller,R.Piestun,C.C.Lin,and J.S.Harris.Use of a dielectric stack as a onedimensional photonic crystal for wavelength demultiplexing by beam shifting.Opt.Lett.,2000,25:1502-1504
    [101]S.Fan,P.R.Villeneuve,and J.D.Joannopoulos.Channel drop tunneling through localized states.Phys.Rev.Lett.,1998,80:960 - 963
    [102]C.Jin,S.Fan,S.Han,and D.Zhang.Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration.IEEE J.Quantum Electron,2003,39:160-165
    [103]M.K.Smit.New focusing and dispersive planar component based on an optical phased array.Electron.Lett,1988,24:385-386.
    [104]A.Martinez,F.Cuesta,and J.Marti,Ultrashort 2-D photonic crystal directional couplers.IEEE Photon.Technol.Lett.,2003,15:694-696
    [105]S.Haxha,W.Belhadj,F.AbdelMalek,H.Bouchriha.Analysis of wavelength demultiplexer based on photonic crystals.IEEE Proceedings,Optoelectronics,2005,152:193-198
    [106]朱志宏,叶卫民,季家镕,袁晓东,曾淳.光子晶体波导定向耦合器.光学学报,2003(23):1237-1240
    [107]K.B.Chung and S.W.Hong.Wavelength demultiplexers based on the superprism phenomena in photonic crystals.Appl.Phys.Lett.,2002,81:1549-1551
    [108]L.B.Soldano,E.C.M.Pennings.Optical multi-mode interference device based on self-imaging:principles and applications.J Lightwave Technol,1995,13:615.
    [109]E.A.Patent.Effect of the first-order mode in access waveguides on the performance of unbalanced MMI couplers.IEEE Photo.Technol.Lett.,2004,1682:84
    [110]张光潜.微波与光电子学中的电磁理论.北京:电子工业出版社,1994
    [111]王华.硕士学位论文,光子晶体带结构的研究.国防科技大学研究生院,2002
    [112]A.Mekis,S.Fan,and J.D.Joannopoulos.Bound states in photonic crystal waveguides and waveguide bends.Phys.Rev.B,1998,58:4809-4817
    [113]M.Qiu,K.Azizi,A.Karlsson,M.Swillo,and B.Jaskorzynska.Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals.Phys.Rev.B,2001,64:155113
    [114]L.B.Soldano and E.C.M.Pennings.Optical multi-mode interference devices based on self-imaging:principles and applications.J.Lightwave Technol.,1995,13:615-627
    [115]Y.Zhang,Z.Li,and B.Li.Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves.Opt.Express,2006,14:2679-2689
    [116]David J.Bishop,C.Randy Giles,and Gary P.Austin,Lucentte chnologies.the lucent lambda router:MEMS technology of the future here today.IEEE Communications Magazine,2002,3:75
    [117]杨建义,江晓清,杨方辉.Y分支有机聚合物热光开关的研制.光学学报,2002(22):735-739
    [118]Mark A.Rhodes,B.Wood,J.J.DeYoreo.Performance of large-aperture optical switches for high energy inertial-confinement fusion laser.Appl.Opt.,1995,34:5312
    [119]肖立峰,刘迎,王启樟,耿凡,赵鸿敏.集成光学声光光关的研究.中国激光,2005(32):1073-1076
    [120]Sharping J E,Fiorentino M,Kumar P,et al.All-optical switching based on cross-phase modulation in microstructure fiber.IEEE Photonics Technology Letters,2002,14:77
    [121]Ayman M.Kan'an,Patrick Likamwa,Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-qunantum-well Mach-Zehnder interferometer.J.Opt.Soc.Am.B,1997,14:3217
    [122]易武秀.超高速半导体平面型光一光开关.光纤通信技术.1996(5):32-35
    [123]易武秀,张听.非线性技术在光通信中的应用前景研究.光纤通信,1999(2):14-24.
    [124]Takahide Sakamoto.Fumio Futami,Kazuro Kikuchi,Shinichi Takeda,Yasushi Sugaya,and Shigeki Watanabe.All-optical wavelength conversion of 500-fs pulse trains by using a nonlinear-optical loop mirror composed of a highly nonlinear DSF.IEEE Photonics Technology Leters,2001,13:502
    [125]Shigeru Nakamura,Yoshiyasu Ueno,KazuhitoTajima.Ultrafast all-optical switching using a frequency shift accompanied by cross-phase modulation in a semiconductor optical amplifier.CLEO,2001,23:245.
    [126]F.Cuesta-Soto,A.Martinez,J.Garcia,F.Ramos,P.Sanchis,J.Blasco,and J.Marti.All-optical switching structure based on a photonic crystal directional coupler.Opt.Express,2003,12:161
    [127]S.F.Mingaleev and Y.S.Kivshar.Nonlinear transmission and light localization in photonic-crystal waveguides.J.Opt.Soc.Am.B,2002,19:2241
    [128]M.Notomi,A.Shinya,and S.Mitsugi.Optical bistable switching action of Si high-Q photonic-crystal nanocavities.Opt.Express,2005,13:2678
    [129]A.R.Cowan and J.F.Young.Optical bistability involving photonic crystal microcavities and Fano line shapes.Phys.Rev.E,2003,68:046606
    [130]E.Centeno and D.Felbacq.Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity.Phys.Rev.B,2000,62:7683
    [131]Happ T D.Two-dimensional photonic crystal laser mirror.Semicond.Sci.Technol.,2001,16:227
    [132]Thomas D.Happ,Martin Kamp,and Alfred Forchel.Two-dimensional Photonic Crystal coupled-defect laser diode.Appl.Phys.Lett.,2003,82:4
    [133]Kwon S H,Ryu H Y,Kim G H.Photonic band edge lasers in two-dimensional square-lattice photonic crystal slabs.Appl.Phys.Lett.,2003,83:3 870
    [134]Han-Youl Ryu,Soon-Hong Kwon,Yong-Jae Lee.Very-low-threshold photonic band-edge lasers from free-standing reiangular photonic crystal slabs. Appl.Phys.Lett.,2002,80:1913
    [135]O.Painter,R.K.Lee,A.Ascherer,A.Yariv.Two-dimensional photonic band-gap defect mode laser.Science,1999,284:1819
    [136]Se-Heon Kim and Yong-Hee Lee.Symmetry relations of two-dimensional photonic crystal cavity modes.IEEE J.Quantum Electron,2003,39:1081
    [137]B.S.Song,S.Noda,T.Asano,and Y.Akahane.Ultra-high-Q photonic doubleheterostructure nanocavity.Nature Materials,2005,4:207-210
    [138]E.Kuramochi,M.Notomi,S.Mitsugi,A.Shinya,T.Tanabe,T.Watanabe.Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect.Applied Physics Letters,2006,88:041112
    [139]Hong-Gyu Park,Se-Heon Kim,Soon-Hong Kwon,Young-Gu Ju,Jin-Kyu Yang,Jong-Hwa Baek,Sung-Bock Kim,Yong-Hee Lee.Electrically driven single-cell photonic crystal laser.Science,2004,305:1444
    [140]Dirk Englund.General recipe for designing photoniccrystal cavities.Opt.Express,2005,13:5961
    [141]Yoshihiro Akahane,Takashi Asano,Bong-Shik Song,and Susumu Noda.Fine-tuned high-Q photonic-crystal nanocavity.Opt.Express,2005,13:1202
    [142]M.Skorobogatiy and J.D.Joannopoulos.Rigid vibrations of a photonic crystal and induced interband transitions.Phys.Rev.B,2000,61:5293
    [143]M.Skorobogatiy and J.D.Joannopoulos.Photon modes in photonic crystals undergoing rigid vibrations and rotations.Phys.Rev.B,2000,61:15554
    [144]Jerzy Plebanski.Electromagnetic waves in gravitational fields.Phys.Rev.,1960,118:1396-1408
    [145]W.W.Chow,J.Gea-Banacloche,and LM Pedrotti.The ring laser gyro.Reviews of Modern Physics,1985,57:62-104
    [146]M.F.Yanik,W.Suh,Z.Wang,and S.Fan.Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency.Phys.Rev.Lett.,2004,93:233903
    [147]M.F.Yanik,and S.Fan.Stopping light all optically.Phys.Rev.Lett.,2004,92:083901
    [148]朱志宏,叶卫民,季家镕,袁晓东,曾淳.用时域有限差分法研究非惯性坐标系下光子晶体传输特性.光学学报,2005(25):1415-1419
    [149]B.Z.Steinberg.Rotating photonic crystals:A medium for compact optical.Gyroscopes.Phys.Rev.E.,2005,71:056621
    [150]J.Scheuer and A.Yariv.Sagnac effect in coupled-resonator slow-light waveguide.structures.Phys.Rev.Letts.,2006,96:053901
    [151]Wan K,Cheolwoo K and Andrew St.Grating-assisted coupling of optical fibers and photonic crystal waveguides.Opt.Lett.,2002,27:1604
    [152]D.W.Prather,J.Murakowski,S.Shi,S.Venkataram,A.Sharkawy,C.Chen and D.Pustai.High-effciency coupling structure for a single-line-defect photonic-crystal waveguide.Opt.Lett.,2002,27:1601
    [153]Michael E P and Richard W Z.Two compact structures for perpendicular coupling of optical signals between dielectric and photonic crystal waveguides.Opt.Express,2002,10:691
    [154]E.H.Khoo,A.Q.Liu,and J.H.Wu.Nonuniform photonic crystal taper for high-efficiency mode coupling.Opt.Express,2005,13:7748
    [155]柏宁丰,刘旭,肖金标,张明德,孙小苗.光子晶体平面波导与脊波导高效耦合技术的研究.物理学报,2005(54):4933-4937.
    [156]E.Moreno,F.J.Garcia,L.Martin-Moreno.Enhanced transmission and beaming of light via photonic crystal surface modes.Phys.Rev.B,2004,69:121402
    [157]P.Kramper,M.Agio,C.M.Soukoulis,A.Birner,F.Muller,R.B.Wehrspohn,U.Gosele,and V.Sandoghdar.Highly directional emission from photonic crystal waveguides of subwavelength width.Phys.Rev.Lett.,2004,92:113903
    [158]Chii-Chang Chen.Directional emission from photonic crystal waveguides.Optics Express,2006,14:2423
    [159]H.J.Lezec,A.Degiron,E.Devaux,R.A.Linke,L.Martin-Moreno,F.J.Garcia-Vidal,and T.W.Ebbesen.Beaming light from a subwavelength aperture.Science,2002,297:820-822
    [160]S.H.Fan,P.R.Villeneuve,and J.D.Joannopoulos.Theoretical investigation of fabrication-related disorder on the properties of photonic crystals.J.Appl.Phys.,1995,78:1415-1418
    [161]W.Bogaerts,P.Bienstman,and R.Baets.Scattering at sidewall roughness in photonic crystal slabs.Opt.Lett.,2003,28:689-691
    [162]M.L.Povinelli,S.G.Johnson,E.Lidorikis,J.D.Joannopoulos,and M.Soljiacic.Effect of a photonic band gap on scattering from waveguide disorder.Appl.Phys.Lett.,2004,84:3639
    [163]S.Hughes,L.Ramunno,J.F.Young,J.E.Sipe.Extrinsic optical scattering loss in photonic crystal waveguides:role of fabrication disorder and photon group velocity.Phys.Rev.Lett.,2005,94:033903
    [164]朱志宏,叶卫民,袁晓东,曾淳.光子晶体的非严格周期性对其传输特性的影响.光学学报,2004(24):847-849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700