用户名: 密码: 验证码:
亚波长金属结构中表面等离子体调控机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作是在国家重点基础研究发展规划项目No.2006CB302905,国家自然科学基金项目No.60736037、No.10474093等项目的资助下完成的。主要运用二维非线性时域有限差分法(FDTD),研究了亚波长金属结构中表面等离子体(Surface Plasmons,SPs)相关调控机理和应用:通过构造不同结构参数,分析了SPs等多种光学模式对亚波长金属结构中异常透射现象的作用机理,提出了金属表面位相是影响光学模式和透射的重要因素;引入非线性效应实现了亚波长金属结构中光束偏折、聚焦、分束等现象的动态调控;研究了非线性光学材料复合亚波长金属结构的光学双稳态特性,设计了一个基于光学双稳态的亚波长高速全光开关结构。
     本论文主要的研究工作和成果如下:
     1.结合二维时域有限差分法数值模拟软件,通过构造不同结构参数,研究了SPs、复合衍射衰逝波(CDEW)、腔模(CM)等多种光学模式对亚波长金属结构中透射增强和削弱现象的影响,分析了它们各自不同的作用机理,明确了结构参数对这些光学模式的影响和对远场透射的调控规律,提出了金属表面位相是影响光学模式和透射的重要因素。利用结构参数对SPs的调控,实现了亚波长结构中光束单向透过的功能,得到了47.83dB的最大消光比,在光信号的通讯和处理等方面有重要的应用前景。
     2.运用非线性时域有限差分法数值模拟软件,研究了与非线性光学材料复合的亚波长金属结构中,三阶非线性光学效应的引入对SPs色散关系、激发、耦合、传播等物理过程的影响。通过结构设计和优化,实现了对光束偏折、聚焦、分束等现象的动态调控,得到了较大范围的的偏折角度调控(偏折角8°-24°)和焦点位置调控(调控范围在1μm以上),在近场探测与光刻、SPs天线扫描、纳米集成光学等领域都有广阔的应用前景。
     3.研究了非线性材料复合亚波长金属结构的光学双稳态效应,探索了非线性材料厚度、光栅狭缝宽度等结构参数对远场透射和双稳态效果的影响,运用SPs特性和金属波导理论分析了其中的物理机理。在此基础上设计了一个基于光学双稳态的高速亚波长全光开关结构,研究了该开关结构的远场透射、双稳态和时间响应特性,得到了0.2ps的最快开关时间。
     本论文的创新点主要包括:
     1.通过构造不同亚波长金属结构,研究了SPs、CDEW、CM等不同光学模式在异常透射现象中各自不同的作用机理,提出了金属表面位相是影响光学模式和透射的重要因素。实现了亚波长结构中光束单向透过的功能,得到了47.83dB的最大消光比。
     2.通过引入三阶非线性效应,实现了对亚波长金属结构中光束偏折、聚焦、分束等现象的动态调控,研究了相关的调控机理和调控手段,得到了较大的调控范围和明显的调控效果。
     3.利用非线性FDTD方法研究了非线性光学材料复合亚波长金属结构的光学双稳态特性,并由此设计了一个亚波长高速全光开关结构,得到了0.2ps的最快开关时间。
The research work within this dissertation is supported by the National Key Basic Research Program of China(No.2006CB302905),the Key Program of National Natural Science Foundation of China(No.60736037),the National Natural Science Foundation of China(No.10474093)and so on.By using the two dimensional nonlinear finite difference time domain(FDTD)method,the roles of surface plasmons(SPs)and other optical modes in extraordinary optical transmission(EOT) are analyzed,beam deflection and focusing controlled by nonlinear optical effect are studied in micro-and nano-metallic structures containing nonlinear materials.Optical bistability is also numerically investigated in subwavelength metallic structures,and an ultrafast all-optical switching structure is designed and studied with a switching time of picosecond's level.
     The main research works and conclusions are as following:
     1.Based on two-dimensional FDTD method,the roles of SPs,Composite Diffracted Evanescent Wave(CDEW)and Cavity Mode(CM)are analyzed and distinguished in EOT of subwavelength metallic structures.The influences of structure parameters on these optical modes and far-field transmission are studied.By controlling the structure parameters,a single-pass transmission effect is achieved in subwavelength metallic structures with a maximal extinction ratio of 47.83dB.
     2.Based on nonlinear FDTD method,the influence of 3rd nonlinear effect is investigated on excitation,coupling,transmission and dispersive relation of SPs in micro-and nano-metallic structures containing nonlinear materials.The dynamic control of beam deflection,focusing and splitting is studied by modulating incident light.Large modulating ranges of deflection angle(8°~24°) and focusing distance(>1μm)are achieved,which will offer great applications in near-field optics,SPs antenna and nano-integrate optics etc.
     3.Optical bistability is numerically investigated in a subwavelength metallic grating coated by nonlinear material.The influences of structure parameters, such as thickness of nonlinear material and slit width of metallic grating,are studied on far-field transmission and bistability.The physical mechanism in the structure is analyzed by SPs and optical waveguide theory.Based on optical bistability,an ultrafast all-optical switching structure is designed with metal-dielectric composite nonlinear materials.The characters of far-field transmission,bistability and response time of the switching are studied and a shortest switching time of 0.2ps is achieved.
     Highlights of the dissertation are as following:
     1.The roles of SPs,CDEW and CM are analyzed and distinguished in EOT of subwavelength metallic structures.A single-pass transmission effect is achieved in subwavelength metallic structures with a maximal extinction ratio of 47.83dB.
     2.The dynamic controls of beam deflection,focusing and splitting is numerically studied for the first time in micro-and nano-metallic structures containing nonlinear materials.Large modulating ranges of deflection angle(8°~24°)and focusing distance(>1μm)are achieved by nonlinear FDTD method.
     3.Optical bistability is numerically investigated in a subwavelength metallic grating coated by nonlinear material for the first time.An ultrafast all-optical switching structure based on bistability is designed with a shortest switching time of 0.2ps.
引文
曹庄琪,2000.导波光学中的转移矩阵方法[M].上海交通大学出版社.
    方容川.2001.固体光谱学[M].中国科学技术大学出版社.
    葛德彪.2002.电磁场时域有限差分方法[M].西安电子科技大学出版社.
    黄昆.2002.固体物理学[M].高等教育出版社.
    王长清,祝西里.1994.电磁场计算中的时域有限差分法[M].北京大学出版社.
    赵凯华,罗蔚茵.2004.量子物理[M].高等教育出版社.
    Adam P M,Salomon L,Fomel F,et al.1993.Determination oft.he spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope[J].Phys.Rev.B 48:2680- 2683.
    Agranovich V M.1982.Surface Polaritons[M].Amsterdam:North-Holland.
    Albada M P,Mark M B,Langendijk A.1990.Scattering and Localization of Classical Waves in Random Media[M].Singapore:World Scientific.
    Barnes W L,Dereux A,Ebbesen T W.2003.Surface Plasmon Subwavelength Optics[J].Nature 424:824-830.
    Barnes W L,Preist T W,Kitson S C,et al.1996.Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings[J].Phys.Rev.B 54:6227-6244.
    Barnes W L.2006.Surface plasmon-polariton length scales:a route to sub-wavelength optics [J].J.Opt.A:Pure Appl.Opt.8:S87-S93.
    Berenger J P.1994.A perfectly matched layer for the absorption of electromagnetic waves [J].J.Comput.Phys.114:185-200.
    Berini P,Charbonneau R,Lahoud N,et al.2005.Characterization of long-range surface-plasmon-polariton waveguides[J].J.Appl.Phys.98:043109.
    Berini P.2000.Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures[J].Phys.Rev.B 61:10484-10503.
    Bethe H A.1944.Theory of Diffraction by Small Holes[J].Phys.Rev.66:163-182.
    Binning G,Rohrer H,Gerber Ch,et al.1982.Surface Studies by Scanning Tunneling Microscopy[J].Phys.Rev.Lett.49:57-61.
    Boardman A D.1982.Electromagnetic Surface Modes[M].New York:Wiley.
    Born M, Wolf E. 1999. Principles of Optics [M]. Cambridge University Press.
    Bouwkamp C J. 1950. On Sommerfeld's Surface Wave [J]. Phys. Rev. 80:294-294.
    Bozhevolnyi S I, et al. 2001. Waveguiding in Surface Plasmon Polariton Band Gap Structures [J]. Phys. Rev. Lett. 86:3008-3011.
    Bozhevolnyi S I, Pudonin F A. 1997. Two-Dimensional Micro-Optics of Surface Plasmons [J]. Phys. Rev. Lett. 78:2823-2826.
    Bozhevolnyi S I, Smolyaninov I I, Zayats A V. 1995. Near-field microscopy of surface-plasmon polaritons: Localization and internal interface imaging [J]. Phys. Rev. B 51:17916-17924.
    Bozhevolnyi S I, Vohnsen B, Zayats A V. 1996. Optics at the Nanometer Scale [M]. Dordrecht: Kluwer Academic.
    Bozhevolnyi S I, Volkov V S, Devaux E, et al. 2006. Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J]. Nature 440:508-511.
    Bozhevolnyi S I, Volkov V S, Leosson K. 2002. Localization and Waveguiding of Surface Plasmon Polaritons in Random Nanostructures [J]. Phys. Rev. Lett. 89:186801.
    Burstein E. 1974. Polaritons [M]. New York: Pergamon.
    Cao Q, Lalanne P. 2002. Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits [J]. Phys. Rev. Lett. 88: 057403
    Chen F, Itagi A, Bain J A, et al. 2003. Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser [J]. Appl. Phys. Lett. 83:3245.
    Crouse D, Keshavareddy P. 2005. Role of optical and surface plasmon modes in enhanced transmission and applications [J]. Opt. Express 13:7760-7771.
    Darmanyan S A, Zayats A V. 2003. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study [J]. Phys. Rev. B 67:035424.
    Davies A J. 1980. The Finite Element Method [M]. Oxford: Clarendon Press.
    Dawson P, Puygranier B, Goudonnet J P. 2001. Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection [J]. Phys. Rev. B 63:205410.
    Debye P. 1909. Der Lichtdruck auf Kugeln von beliebige Material [J]. Ann. Phys. 30:57-136.
    Degiron A, Lezec H J, et al. 2002. Effects of hole depth on enhanced light transmission through subwavelength hole arrays [J]. Appl. Phys. Lett. 81:4327.
    Ditlbacher H, Krenn J R, Schider G, et al. 2002. Two-dimensional optics with surface plasmon polaritons [J]. Appl. Phys. Lett. 81:1762.
    Drude P. 1900. [J]. Ann. Phys. 1:566.
    Ebbesen T W, et al. 1998. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature 391:667-669.
    Fang N, Lee H, Sun C, et al. 2005. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science 308:534-537.
    Fano U. 1936. Some Theoretical Considerations on Anomalous Diffraction Gratings [J]. Phys. Rev. 50:573.
    Fano U. 1937. On the Anomalous Diffraction Gratings. II [J]. Phys. Rev. 51:288.
    Ferrell R A. 1957. Predicted Radiation of Plasma Oscillations in Metal Films [J]. Phys. Rev. 111:1214-1222.
    Fornel F. 2001. Evanescent Waves [M]. Berlin: Springer.
    Fujii M, Koos C, Poulton C, et al. 2005. A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing [J]. Microwave Opt. Technol. Lett. 48:88-91.
    Garcia-Vidal F J, Martin-Moreno L. 2002. Transmission and focusing of light in one-dimensional periodically nanostructured metals [J]. Phys. Rev. B 66:155412
    Gay G, ALLOSCHERY O, VIARIS DE LESEGNO B, et al. 2006. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model [J]. Nat. Phys. 2: 262-267.
    Genet C, Ebbesen T W. 2007. Light in tiny holes [J]. Nature 445:39-46.
    Goodman J W. 1968. Introduction to Fourier Optics [M]. McGraw-Hill.
    Gresillon S, Aigouy L, Boccara A C, et al. 1999. Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films [J]. Phys. Rev. Lett. 82:4520-4523.
    Guo BS, Song GF, Chen LH. 2007. Plasmonic very-small-aperture lasers [J]. Appl. Phys. Lett. 91:021103.
    Hamer C. 1993. The 3d Electromagnetic Wave Simulator [M]. Chichester: Wiley.
    Hamanaka Y, Fukuta K, Nakamura A. 2004. Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations [J]. Appl. Phys. Lett. 84:4938-4940.
    Hecht B, Bielefeldt H, Novotny L, et al. 1996. Local Excitation, Scattering, and Interference of Surface Plasmons [J]. Phys. Rev. Lett. 77:1889-1892.
    Herminghaus S, Klopfleisch M, Schmidt H J. 1994. Attenuated total reflectance as a quantum interference phenomenon [J]. Opt. Lett. 19:293-295.
    Hibbins A P, Sambles J R, et al. 2002. Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate [J]. Appl. Phys. Lett. 81:4661.
    Hooper I R, Sambles J R. 2002. Broadband polarization-converting mirror for the visible region of the spectrum [J]. Opt. Lett. 27:2152-2154.
    Jersch J, Demming F, Dickmann K. 1997. Nanostructuring with laser radiation in the nearfield of a tip from a scanning force microscope [J]. Appl. Phys. A 64:29.
    Jiao X, Wang P, Tang L, et al. 2005. Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits [J]. Appl. Phys. B 80:301-305.
    Johnson S G. and Joannopoulos J D. 2002. Photonic Crystals: The Road from Theoryto Practice [M]. Boston: Kluwer Academic Publisher.
    Jubkins J B, Ziolkowski R W. 1995. Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings [J]. J. Opt. Soc. Am. A. 12:1974-1983.
    Kawata S. 2001. Near-Field Optics and Surface Plasmon Polaritons [M]. Berlin: Springer.
    Kik P G, Maier S A, Atwater H A. 2004. Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources [J]. Phys. Rev. B 69:45418.
    Kim Y K, Ketterson J B, Morgan D J. 1996. Scanning plasmon optical microscope operation in atomic force microscope mode [J]. Opt. Lett. 21:165-167.
    Kneipp K, Kneipp H., Itzkan I, et al. 2002. Surface-enhanced Raman scattering and biophysics [J]. J. Phys.: Condens. Matter. 14:R597-624.
    Kneipp K, Wang Y, Kneipp H, et al. 1997. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) [J]. Phys. Rev. Lett. 78:1667 - 1670.
    Kreibig U, et al. 1995. Optical Properties of Metal Clusters [M]. Berlin: Springer.
    Krenn J R, Dereux A, Weeber J C, et al. 1999. Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles [J]. Phys. Rev. Lett. 82:2590 - 2593.
    Kreschmann E and Raether H. 1968. Radiative Decay of Non-Radiative Surface Plasmons Excited by Light [J]. Z. Naturforsch 23:2135-2136.
    Lalanne P, Hugonin J P, Astilean S, et al. 2000. One-mode model and Airy-like formulae for one-dimensional metallic gratings [J]. J. Opt. A Pure Appl. Opt. 2:48-51.
    Lalanne P, Hugonin J P. 2006. Interaction between optical nano-objects at metallo-dielectric interfaces [J]. Nat. Phys. 2:551-556.
    Lezec H J, Degiron A, Devaux E, et al. 2002. Beaming light from a subwavelength aperture [J]. Science 297:820-822.
    Lezec H J, Thio T. 2004. Diffracted evansecent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays [J]. Opt. Express 12:3629-3651.
    Liao H B, Xiao R F, Fu J S, et al. 1998. Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales [J]. Appl. Phys. Lett. 23:388-390.
    Liu Y, Bartal G, Genov D A, Zhang X. 2007. Subwavelength Discrete Solitons in Nonlinear Metamaterials [J]. Phys. Rev. Lett. 95:153901.
    LOPEZ-TEJEIRA F, RODRIGO S G, MARTIN-MORENO L, et al. 2007. Efficient unidirectional nanoslit couplers for surface plasmons [J]. Nat. Phys. 3:324-328.
    Lorentz HA. 1909. The Theory of Electrons [M]. Teubne.
    Luo X G, Ishihara T. 2004. Surface plasmon resonant interference nano-lithography technique [J]. Appl. Phys. Lett. 84:4780-4782.
    Ma G H, Sun W X, Tang S H, et al. 2002. Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices [J]. Opt. Lett. 27:1043-1045.
    Maier S A, Kik P G, et al. 2003. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J]. Nature Mat. 2:229-232.
    Maier S A. 2007. PLASMONICS: FUNDAMENTALS AND APPLICATIONS [M]. Berlin: Springer.
    Malshukov A G. 1990. Surface-enhanced Raman scattering [J]. Phys. Rep. 194:343-349.
    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, et al. 2001. Theory of extraordinary optical transmission through subwavelength hole arrays [J]. Phys. Rev. Lett. 86:1114-1117.
    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, et al. 2003. Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations [J]. Phys. Rev. Lett. 90:167401.
    Mie G. 1908. Beitrage zur optik truber medien speziell kolloidaler metallosungen [J]. Ann. Phys. 25:377.
    Mills D L, Burstein E. 1974. The Electromagnetic Modes of Media [J]. Rep. Prog. Phys. 37:817-926.
    Mills D L. 2002. Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces [J]. Phys. Rev. B 65:125419.
    Moharam M G, Gaylord T K. 1983. Three-dimensional vector coupled-wave analysis of planar-grating [J]. J. Opt. Soc. Am. 73:1105.
    Moskovits M. 1985. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys. 57:783 - 826.
    Mur G. 1981. The modeling of singularities in the finite-difference approximation of the time-domain electromagnetic-field equations [J]. IEEE Trans on Microwave Theory and Tech. 10:1073-1077.
    Newton I. 1704. Opticks, or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light [M]. London: Smith and Walford.
    Nie S M, Emery S R. 1997. Probing single molecules and single nanoparticles by surface2enhanced. Raman scattering [J]. Science 275:1102.
    Novikov I V, Maradudin A A. 2002. Channel polaritons [J]. Phys. Rev. B 66:035403.
    Novotny L, Bian R X, Xie X S. 1997. Theory of Nanometric Optical Tweezers [J]. Phys. Rev. Lett. 79: 645-647
    Ohtsu M, et al. 2002. Nanophotonics: Design, Fabrication, and Operation of Nanometric Devices Using Optical Near Fields [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 8:839.
    Okamoto K, Niki I, Shvartser A. 2004. Surface plasmon enhanced light emitters based on InGaN quantum wells [J]. Nature Materials, 3.
    Otto A. 1968. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection [J]. Z. Phys. 216:398-410.
    Ozbay E. 2006. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions [J]. Science 311:189-193.
    Palik E D. 1985. Handbook of Optical Constants of Solids [M]. New York: Academic Press.
    Partovi A, Peale D, Wuttig M, et al. 1999. High-power laser light source for near-field optics and its application to high-density optical data storage [J]. Appl. Phys. Lett. 75:1515.
    Pendry J B. 2000. Negative Refraction Makes a Perfect Lens [J]. Phys. Rev. Lett. 85: 3966-3969.
    Pohl D and Courjon D. 1993. Near-field Optics (NATO ASI Series E242) [M]. Dordrecht: Kluwer.
    Pohl D W, Denk W, Lanz M. 1984. Optical stethoscopy: image recording with resolution λ/20 [J]. Appl. Phys. Lett. 44:651-653.
    Popov E, Bonod N, Nenievre N, et al. 2005. Surface plasmon excitation on a single subwavelength hole in a metallic sheet [J]. Appl. Opt. 44:2332-2337.
    Powell C J and Swan J B. 1960. Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium [J]. Phys. Rev. 118:640-643.
    Raether H. 1988. Surface Plasmons [M]. Berlin: Springer.
    Reddick R C, Warmack R J, Ferrel T L. 1989. New form of scanning optical microscopy [J]. Phys. Rev. B 39:767-770.
    Ritchie R H. 1957. Plasma Losses by Fast Electrons in Thin Films [J]. Phys. Rev. 106:874-881.
    Salomon L, Bassou G, Aourag H, et al. 2002. Local excitation of surface plasmon polaritons at discontinuities of a metal film: Theoretical analysis and optical near-field measurements [J]. Phys. Rev. B 65:125409.
    Salomon L, Grillot F, Zayats A V. 2001. Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film [J]. Phys. Rev. Lett. 86:1110 - 1113.
    Sarid D. 1981. Long-Range Surface-Plasma Waves on Very Thin Metal Films [J]. Phys. Rev. Lett. 47:1927-1930.
    Schouten H F, Kuzmin N, Dubois G, et al. 2005. Plasmon-assisted two-slit transmission: Young's experiment revisited. [J]. Phys. Rev. Lett. 94: 053901.
    Shchegrov A V, Novikov I V, Maradudin A A. 1997. Scattering of Surface Plasmon Polaritons by a Circularly Symmetric Surface Defect [J]. Phys. Rev. Lett. 78:4269.
    Sheng P. 1995. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena [M]. New York: Academic.
    Shi H, Wang C, Du C, et al. 2005. Beam manipulating by metallic nano-slits with variant widths [J]. Opt. Express. 13:6815-6820.
    Smolyaninov I I, Mazzoni D L, Davis C C. 1996. Imaging of Surface Plasmon Scattering by Lithographically Created Individual Surface Defects [J]. Phys. Rev. Lett. 77:3877-3880.
    Smolyaninov I I, Mazzoni D L, et al. 1997. Experimental study of surface-plasm on scattering by individual surface defects [J]. Phys. Rev. B 56:1601 -1611.
    Smolyaninov I I, Zayats A V, Keller O. 1995. The effect of the surface enhanced polariton field on the tunneling current of a STM [J]. Phys. Lett. A 200:438-444.
    Smolyaninov I I, Zayats A V, Stanishevsky A. 2002. Optical control of photon tunneling through an array of nanometer-scale cylindrical channels [J]. Phys. Rev. B 66:205414.
    Smolyaninov I I. 2005. Quantum Fluctuations of the Refractive Index near the Interface between a metal and a Nonlinear Dielectric [J]. Phys. Rev. Lett. 94:057403.
    Sommerfeld A. 1909. Uber die Ausbreitlung der Wellen in der drahtlosen Telegraphie [J]. Ann. Phys. 28:665-736.
    Specht M, Pedarnig J D, Heckl W M, Hansch T W. 1992. Scanning plasmon near-field microscope [J]. Phys. Rev. Lett. 68:476-479.
    Suckling J R, Hibbins A P, Lockyear M J, et al. 2004. Finite Conductance Governs the Resonance Transmission of Thin Metal Slits at Microwave Frequencies [J]. Phys. Rev. Lett. 92: 147401.
    Sun Z J, Jung Y S, Kim H K. 2003. Role of surface plasmons in the optical interaction in metallic gratings with narrow slits [J]. Appl. Phys. Lett. 83:3021.
    Sun Z J, Kim H K. 2004. Refractive transmission of light and beam shaping with metallic nano-optic lenses [J]. Appl. Phys. Lett. 85: 642-644.
    Taflove A, Hagness S. 2000. Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed [M]. Artech House, Boston.
    Takakura Y. 2001. Optical Resonance in a Narrow Slit in a Thick Metallic Screen [J]. Phys. Rev. Lett. 86: 5601-5603.
    Treacy M. 2002. Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings [J]. Phys. Rev. B 66: 195105.
    Tsai D P, Kovacs J, Wang Z. 1994. Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters [J]. Phys. Rev. Lett. 72:4149-4152.
    Wang W T, Chen Z H, Yang G, et al. 2003. Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters [J]. Appl. Phys. Lett. 83:1983-1985.
    Weber W H, Ford G W. 1981. Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation [J]. Opt. Lett. 6:122.
    Weeber J C, Dereux A, Girard C, et al. 1999. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light [J]. Phys. Rev. B 60:9061-9068.
    Weeber J C, Krenn J R, Dereux A, et al. 2001. Near-field observation of surface plasmon polariton propagation on thin metal stripes [J]. Phys. Rev. B 64:045411.
    West C S, ODonnell K A. 1995. Observations of backscattering enhancement from polaritons on a rough metal surface [J]. J. Opt. Soc. Am. A 12:390-397.
    Wurtz G A, Pollard R, Zayats A V. 2006. Optical Bistability in Nonlinear Surface-Plasmon
    Polaritonic Crystals [J]. Phys. Rev. Lett. 97:057402.
    Xiao M, Zayats A V, Siqueiros J. 1997. Scattering of surface-plasmon polaritons by dipoles near a surface: Optical near-field localization [J]. Phys. Rev. B 55:1824-1837.
    Yang F, Sambles J R. 2002. Resonant Transmission of Microwaves through a Narrow Metallic Slit [J]. Phys. Rev. Lett. 89: 63901.
    Yee K S. 1966. Numerical solution of initial boundary value problems in isotropic media [J]. IEEE Trans. Antennas Propagat. 14:302-307.
    Yu Z N, Deshpande P, Wu W, et al. 2000. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography [J]. Appl. Phys. Lett. 77:927.
    Zia R, Schuller J A, Chandran A, Brongersma M L. 2006. Plasmonics: the next chip-scale technology [J]. Materials Today. 9:7-8.
    Zayats A V. 1999. Electromagnetic field enhancement in the context of apertureless near-field microscopy [J]. Opt. Commun. 161:156-162.
    Zenneck J. 1907. Uber die Fortpflanzung ebener elektromagnetischer Wellen Mngs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie [J]. Ann. Phys. 23:846-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700