用户名: 密码: 验证码:
金属—电介质多层复合结构负折射及超分辨特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,负折射介质由于其新颖独特的物理性质和重要的应用前景而获得了学术界广泛的关注,并且已经成为当前电磁学界和光电子学界非常前沿和热门的研究领域之一。负折射介质的特性,特别是超透镜效应,引起了人们从微波波段到可见光波段,在理论分析、数值模拟和实验制备方面的广泛研究。
     本论文通过等效介质的色散理论分析了平面和曲面金属-电介质复合结构的负折射效应,并运用FDTD数值模拟方法研究了光束在其中的折射行为和超分辨效应。研究内容包括平面和曲面金属-电介质复合结构的色散关系,介质分界面上的负折射,超透镜效应,以及远场放大超透镜。
     本论文的研究工作和成果如下:
     1.从等效介质理论出发,将平面和曲面金属-电介质复合结构分别看作直角坐标下和柱坐标下的各向异性介质,在波矢空间中分析给出了平面和曲面金属-电介质复合结构的色散关系,讨论了平面金属-电介质复合结构(MWGAs)中的全角度负折射效应,分析了具有双曲线型色散曲线的平面金属-电介质复合结构中电磁波的波矢和能流在不同倾斜分界面上的折射行为;清晰地给出了曲面金属-电介质复合结构(hyperlens)的远场超分辨机理。这种波矢空间色散曲线分析方法的物理图象清晰简洁,对复合介质的构建和研究具有指导意义。
     2.建立了适用于负折射率材料的双色散时域有限差分模拟平台,用二维FDTD数值模拟方法研究了平面金属-电介质复合结构的出入射端面形貌对折射光的影响。通过构造出射端面,获得了较好的超级透镜超分辨成像效果,成像的强度比原结构提高了24%,分辨率提高了79%,在近场光刻和超分辨成像方面具有良好的应用前景。
     3.用二维FDTD数值模拟方法研究了曲面金属-电介质复合结构(hyperlens)中的曲率、层数等结构参数对光束传播与发散特性的影响,分析了宽光谱在结构中的传播特性,对构造更佳的远场超透镜有很重要的指导作用。由曲面金属-电介质多层复合结构性质出发,发明了一种新型远场超分辨载流管,并给出了其操作方法和工作方式。该载流管在工作波长λ下可以分别使相距0.3λ和0.44λ的精细生物和金属结构在远场得到放大可分辨的像,实现了远场超分辨,在生物探测和金属微纳结构超分辨探测等方面具有很高的实用价值。
     本论文的创新点主要包括:
     1.从等效介质理论出发,分析了平面和曲面金属-电介质复合结构的色散关系,在波矢空间中结合色散曲线,研究了平面金属-电介质复合结构的负折射效应和倾斜分界面上的折射,及曲面金属-电介质复合结构的远场超分辨机理。
     2.用二维FDTD方法研究了金属-电介质复合结构中端面形貌对折射光的调制,通过构造出射端面形貌,获得了更佳的超级透镜超分辨成像效果。
     3.研究了曲面金属-电介质复合结构中的曲率、层数等结构参数对光束传播与发散特性的影响,分析了宽光谱在结构中的传播特性。发明了一种新型曲面金属-电介质复合远场超分辨载流管。
Recently, negative refraction materials have received much attention by the academic world due to their unique properties and alluring applications, which is becoming one of the front and hot focuses both for electromagnetic and optical research .Because of its potential applications in near field optics, especially in superlens phenomena and sub-diffraction-limit imaging, more and more scientists devote to the research on physical properties, experimental fabrication and numerical simulations of negative refraction media from microwave frequencies to visible lights.
     In this dissertation, effective media dispersion theoretical analysis is used to analyze the negative refraction effect of layered metal-dielectric structure. FDTD numerical simulation is used to study the superlens phenomena in the layered metal-dielectric structure. The main work is divided into four parts: dispersion of layered metal-dielectric structure, negative refraction on the interface, superlens phenomena and hyperlens.
     The main research works and conclusions are as following:
     1. From effective media theory, dispersion relation of layered metal-dielectric structure is obtained to demonstrate the all-angle negative refraction of metal waveguide arrays (MWGAs), analyzed the beam refraction on different gradient interface. The rule for decide the direction the energy direction in the k space is provided and possible combinations for refraction of wave vector and energy flux are given. Investigating the eige electromagnetic modes in anisotropic media in cylindrical coordinates, and the physics of far-field magnification hyperlens is studied by using effective media dispersion theoretical analysis. This analysis of k space dispersion curve provides clear and simple physics image and have advantage in constructing layered structure.
     2. Combining Drude dispersion model, two-dimensional double dispersive FDTD simulation software is developed which can accurately simulate the optical phenomena related to dielectric, metal and negative index media. FDTD numerical simulation is used to study the superlens phenomena in the layered metal-dielectric structure. By constructing output interface topography, sharper superdiffraction limit imaging is obtained, resolving power is improved to 179%, which has great applications in near-field photolithography and sub-diffraction-limit imaging.
     3. FDTD numerical simulation is used to study the superlens phenomena in the hyperlens. Influence of curvature radius and layer number of hyperlens on the beam propagation and divergence is studied which is beneficial to the construction of hyperlens. Wavelength range of incident light is also studied to obtain the operating bandwidth of hyperlens. Inventing a curving sub-diffraction-limit carrier pipe which can be used on nanoscale biologic and metallic structure far-field imaging by using hyperlens. 0.3λand 0.44λresolving is obtained and it has great applications in biologic molecule and metallic nanoscale structure detecting.
     Highlights of the dissertation are as following:
     1. From effective media theory, dispersion relation of layered metal-dielectric structure is obtained to analyze the all-angle negative refraction and beam refraction on gradient interface of metal waveguide arrays, and the physics of far-field magnification hyperlens.
     2. FDTD numerical simulation is used to study the superlens phenomena in the layered metal-dielectric structure. By constructing output interface topography, sharper superdiffraction limit imaging is obtained.
     3. Influence of curvature radius and layer number of hyperlens and wide spectrum on the beam propagation and divergence is studied. Inventing a curving far-field sub-diffraction-limit carrier pipe.
引文
[1] V. G. Veselago Usp. Fiz. Nauk, vol. 92, p. 517,1967.
    [2] V. G. Veselago Sov. Phys. Usp., vol. 10, p. 509,1968.
    
    [3] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs Phys. Rev. Lett., vol. 76, p. 4773,1996.
    [4] J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz J. Phys.: Condens. Matter, vol. 10, p. 4785,1998.
    [5] J. B. Pendry, A. J. Holden, D. J. Robbins, and et al. IEEE Trans. Microwave Theory Tech, vol. 47, p. 2075,1999.
    [6] J. B. Pendry Phys. Rev. Lett, vol. 85, p. 3966,2000.
    [7] R. A. Shelby, D. R. Smith, and S. Schultz vol. 292, p. 77,2001.
    [8] X. Hu, Y. Shen, X. Liu, R. Fu, and J. Zi Phys. Rev. E, vol. 69, p. 030201,2004.
    [9] X. Zhang and Z. Liu Appl. Phys. Lett, vol. 85, p. 341,2004.
    [10] S. Yang, J. H. Page, Z. Liu, and et al. Phys. Rev. Lett, vol. 93, p. 024301,2004.
    
    [11] K. Imamura and S. Tamura Phys. Rev. B, vol. 70, p. 174308,2004.
    [12] J. Li and C. T. Chan Phys. Rev. E, vol. 70, p. 055602,2004.
    
    [13] Y. Jin and S. He Opt. Expr, vol. 13, p. 4974,2005.
    
    [14] C. Monzon and D. Forester Phys. Rev. Lett, vol. 95, p. 123904,2005.
    
    [15] A. L. Pokrovsky and A. L. Efros Solid State Communications, vol. 124, p. 283,2002.
    [16] P. M. Valanju, R. M.Walser, and A. P. Valanju Phys. Rev. Lett, vol. 88, p. 187401,2002.
    
    [17] J. B. Pendry and D. R. Smith Phys. Rev. Lett, vol. 90, p. 029703,2003.
    [18] D. R. Smith, D. Schurig, and J. B. Pendry Appl. Phys. Lett, vol. 81, p. 2713,2002.
    
    [19] D. R. Smith and N. Kroll Phys. Rev. Lett, vol. 85, p. 2933,2000.
    [20] W. T. Lu, J. B. Sokolo, and S. Sridhar Phys. Rev. E, vol. 69, p. 026604,2004.
    [21] R. W. Ziolkowski, Opt. Expr, vol. 11, p. 2157,2003.
    [22] G. W. Hooft Phys. Rev. Lett, vol. 87, p. 249701,2001.
    [23] J. M. Williams Phys. Rev. Lett, vol. 87, p. 249703,2001.
    [24] N. Garcia and M. N. Vesperinas Phys. Rev. Lett, vol. 88, p. 207403,2002.
    [25] J. B. Pendry Phys. Rev. Lett, vol. 87, p. 249702,2001.
    [26] J. B. Pendry Phys. Rev. Lett, vol. 87, p. 249704,2001.
    
    [27] J. B. Pendry Phys. Rev. Lett, vol. 91, p. 099701,2003.
    
    [28] J. T. Shen and P. M. Platzman Appl. Phys. Lett, vol. 80, p. 3286,2002.
    
    [29] Z. Ye Phys. Rev. B, vol. 67, p. 193106,2003.
    
    [30] K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson Phys. Rev. E, vol. 70, p.035602,2004.
    
    [31] V. A. Podolskiy and E. E. Narimanov Opt. Lett, vol. 30, p. 75,2005.
    [32] D. Maystre and S. Enoch J. Opt. Soc. Am. A, vol. 21, p. 122,2004.
    [33] F. D. Haldane arXiv:cond-mat, vol. 0206420,2002.
    
    [34] M. R. D. R. Smith, D. Schurig and et al. Appl. Phys. Lett, vol. 82, p. 1506,2003.
    [35] S. A. Cummea and B.-I. Popa Appl. Phys. Lett, vol. 85, p. 4564, 2004.
    [36] M. K. Karkkainen, S. A. Tretyakov, S. I. Maslovski, and P. A. Belov arXiv:condmat, p. 0302407,2003.
    [37] G. G. Santos Phys. Rev. Lett, vol. 90,2003.
    
    [38] L. Chen, S. He, and L. Shen Phys. Rev. Lett, vol. 92, p. 107404,2004.
    [39] M.W. Feise, P. J. Bevelacqua, and J. B. Schneider Phys. Rev. B, vol. 66, p.035113,2002.
    
    [40] P. G. Kik, S. A. Maier, and H. A. Atwater Phys. Rev. B, vol. 69, p. 045418,2004.
    [41] R. W. Ziolkowski and E. Heyman Phys. Rev. E, vol. 74, p. 056625,2001.
    [42] N. Fang and X. Zhang Appl. Phys. Lett, vol. 82, p. 161,2003.
    [43] Z. Liu, N. Fang, T. J. Yen, and X. Zhang Proceedings of SPIE, vol. 5221, p. 116,2003.
    
    [44] N. Fang, Z. Liu, T.-J. Yen, and X. Zhang Opt. Expr, vol. 11, p. 2150,2003.
    [45] E. Cubukcu, K. Aydin, E. Ozbay, and et al. Phys. Rev. Lett, vol. 91, p. 207401,2003.
    [46] Z. Liu, N. Fang, T.-J. Yen,, and X. Zhanga Appl. Phys. Lett, vol. 83, p. 5184,2003.
    [47] D. O. S. Melville, R. J. Blaikie, and C. R. Wolfc Appl. Phys. Lett., vol. 84, p.4403,2004.
    
    [48] D. O. S. Melville and R. J. Blaikie Opt. Expr, vol. 13, p. 2127,2005.
    [49] N. Fang, H. Lee, C. Sun, X. Zhang, Science, 308, 534,2005.
    [50] Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, J. P. Samluk, and D. W. Prather, Opt. Expr, vol. 14, p. 2228,2006.
    [51] Z. Feng, X. Zhang, K. Ren, S. Feng, Z. Y. Li, B. Cheng, and D. Zhang, Phys. Rev. B, 73, 075118,2006
    
    [52] D. R. Smith, W. J. Padilla, D. C. Vier, and et al. Phys. Rev. Lett., vol. 84, p. 4184, 2000.
    [53] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz Appl. Phys. Lett., vol. 78, p. 489,2001.
    
    [54] C. Caloz, C. C. Chang, and T. Itoh J. Appl. Phys., vol. 90, p. 5483,2001.
    [55] K. G. Koray Aydin, M. Kafesaki, and et al. Opt. Lett., vol. 29, p. 2623,2004.
    [56] K. Aydina, K. Guven, C. M. Soukoulis, and et al. Appl. Phys. Lett., vol. 86, p. 124102,2005.
    [57] C. G. Parazzoli, R. B. Greegor, K. Li, and et al. Phys. Rev. Lett., vol. 90, p. 107401,2003.
    [58] A. A. Houck, J. B. Brock,, and I. L. Chuang Phys. Rev. Lett, vol. 90, p. 137401, 2003.
    [59] J. S. Li, L. Zhou, C. T. Chan, and P. Sheng Phys. Rev. Lett, vol. 90, p. 083901, 2003.
    
    [60] L. Ran, J. Huangfu, H. Chen, and et al. J. Appl. Phys, vol. 95, p. 2238,2004.
    [61] P. Markos and C. M. Soukoulis Phys. Rev. B, vol. 65, p. 033401,2001.
    [62] N. C. Panoiu and R. M. O. Jr. Opt. Commun, vol. 223, p. 331,2003.
    [63] P. Kolinko and D. R. Smith Opt. Expr, vol. 11, p. 1998,2003.
    [64] P. G. Balmaz and O. J. Martin Appl. Phys. Lett, vol. 81, p. 939,2002.
    [65] T. Weiland, R. Schuhmann, R. B. Greegor, and et al. J. Appl. Phys, vol. 90, p. 5419,2001.
    
    [66] M. W. Stefan Linden, Christian Enkrich and et al. vol. 306, p. 1351,2004.
    [67] K. A. M. Bayindir and E. Ozbay Appl. Phys. Lett, vol. 81, p. 120,2002.
    [68] A. Garbic and G. V. Eleftheriades IEEE Trans. Microwave Theory Tech, vol. 51, p. 2297,2003.
    
    [69] A. Grbic and G. Eleftheriades Phys. Rev. Lett, vol. 92, p. 117403,2004.
    [70] K. Krieger vol. 303, p. 1597,2004.
    
    [71] H. Kosaka, A. T. T. Kawashima, and et al. Phys. Rev. B, vol. 58, p. 10096,1998.
    [72] C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry Phys. Rev. B, vol. 65, p. 201104,2002.
    
    [73] C. Luo, S. G. Johnson,, and J. D. Joannopoulos Opt. Expr, vol. 11, p. 2075, 2003.
    [74] B. Gralak, S. Enoch, and G. Tayeb J. Opt. Soc. Am. A, vol. 17, p. 1012, 2000.
    [75] S. O. Brien and J. B. Pendry J. Phys.: Condens. Matter, vol. 14, p. 4035,2002.
    [76] S. O. Brien and J. B. Pendry J. Phys.: Condens. Matter, vol. 14, p. 6383,2002.
    [77] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis Phys. Rev. Lett., vol. 90,p.107402,2003.
    
    [78] Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather Opt. Expr., vol. 13, p. 2007,2005.
    [79] L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy Phys. Rev. B, vol. 66, p.155411,2002.
    [80] P. Parimi, W. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar Phys. Rev. Lett.,vol.92,p.127401,2004
    
    [81] S. T. Chui and L. B. Hu Phys. Rev. B, vol. 65, p. 144407,2002.
    [82] D. R. Fredkin and A. Ron Appl. Phys. Lett., vol. 81, 2002.
    [83] I. S. Nefedov and S. A. Tretyakov Phys. Rev. E, vol. 66, p. 036611,2002.
    [84] V. A. Podolskiy Opt. Expr., vol. 11, p. 2122,2003.
    
    [85] H. Liu, S. N. Zhu, Z. G. Dong, and et al. Phys. Rev. B, vol. 71, p. 125106,2005.
    [86] V. A. Podolskiy and E. E. Narimanov Phys. Rev. B, vol. 71, p. 201101,2005.
    [87] X. Fan, G. P. Wang, Phys. Rev. Lett. 97, 073901,2006.
    [88] Z. Jacob, L. V. Alekseyev, E. Narimanov, Opt. Express 14, 8247,2006.
    [89] A. Salandrino, N. Engheta, Phys. Rev. B 74, 075103,2006.
    [90] Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science, 315,1686,2007.
    [91] Z. Jacob, L. V. Alekseyev, and E. Narimanov, J. Opt. Soc. Am. A, 24, A52, 2007.
    [92] A. Doppler, Koniglichen Bohmischen Ges Wiss, 2, p465,1843.
    [93] S. A. Ramakrishna, Rep. Prog. Phys, 68,449, 2005
    [94] S. Shui and M. Qiu, Microw. Opt. Techn. Let. 47(1), 76,2005.
    [95] R. Ruppin Phys. Lett. A, vol. 277, p. 61, 2000.
    [96] R. Ruppin J. Phys.: Condens. Matter, vol. 13, p. 1811,2001.
    [97] J. N. Gollub, D. R. Smith, D. C. Vier, and et al. Phys. Rev. B, vol. 71, p. 195402,2005.
    
    [98] L. Zhou and C. T. Chan Appl. Phys. Lett., vol. 86, p. 101104,2005.
    [99] J. Yoon, S. H. Song, C.-H. Oh, and P.-S. Kim Opt. Expr., vol. 13, p. 417,2005.
    [100] Z. M. Zhang and C. J. Fu Appl. Phys. Lett., vol. 80, p. 1097,2002.
    [101] Z. Liu, L. B. Hu, and Z. F. Lin Phys. Lett. A, vol. 308, p. 294,2003.
    [102] K.-Y. Kim Phys. Rev. E, vol. 70, p. 047603,2004.
    [103] K.-Y. Kim Opt. Lett, vol. 30, p. 430,2005.
    [104] P. R. Berman Phys. Rev. E, vol. 66, p. 067603,2002.
    
    [105] A. Lakhtakia Int. J. Commun., vol. 58, p. 229,2004.
    
    [106] D.-K. Qing and G. Chen Opt. Lett., vol. 29, p. 872,2004.
    
    [107] X. Hu, Y. Huang, W. Zhang, and et al. Opt. Lett., vol. 30, p. 899,2005.
    
    [108] I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar Appl. Phys. Lett., vol. 83, p. 2713,2003.
    
    [109] C. Fu, Z. M. Zhang, and P. N. First Appl. Opt., vol. 44, p. 3716,2005.
    [110] T. M. Grzegorczyk, Z. M. Thomas, and J. A. Kong Appl. Phys. Lett., vol. 86, p. 251909,2005.
    
    [111] V. V. Klimov Opt. Commun., vol. 211, p. 183,2002.
    [112] I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar Phys. Rev. E, vol. 67, p. 057602,2003.
    [113] B.-I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong J. Appl. Phys., vol. 93, p. 9386,2003.
    
    [114] D. Schurig and D. R. Smith Appl. Phys. Lett., vol. 82, p. 2215,2003.
    [115] A. A. S. Ilya V. Shadrivov and Y. S. Kivshar Appl. Phys. Lett., vol. 82, p. 3820, 2003.
    
    [116] S. Guenneau, B. Gralak, and J. B. Pendry Opt. Lett, vol. 30, p. 1204,2005.
    [117] Z. Ruan and S. He Opt. Lett., vol. 30, p. 2308,2005.
    [118] Q. Cheng, T. J. Cui, and W. B. Lu Opt. Expr., vol. 13, p. 770,2005.
    [119] Q. Cheng and T. J. Cui Opt. Lett., vol. 30, p. 1216,2005.
    [120] Q. Cheng, T. J. Cui, and W. B. Lu Phys. Lett. A, vol. 336, p. 235,2005
    [1]K.S.Yee IEEE Trans.Antennas Propagat.,vol.14,p.302,1966.
    [2]A.Taflove,The Finite Difference Time Domain Method.In:Computational Electromagnetics.Boston London:Artech House,1995.
    [3]王长清,祝西里,电磁场计算中的时域有限差分法.北京大学出版社,1994.
    [4]葛德彪等,电磁场时域有限差分方法.西安:西安电子科技大学出版社,2002
    [5]G.Mur IEEE Trans on Microwave Theory and Tech.,vol.10,p.1073,1981.
    [6]J.P.Berenger J.Comp.Phys.,vol.114,p.185,1994.
    [7]E.L.Lindman J.Comp.Phys.,vol.18,p.66,1975.
    [8]Z.P.Liao,H.L.Wong,B.P.Yang,and Y.F.Yuan Scientia Sinica A,vol.27,p.1063,1984.
    [9]A.Bayliss and E.Turkel Pure Appl.Math,vol.23,p.707,2005.
    [10]J.P.Berenger Journal of Computational Physics,vol.127,p.363,1996.
    [11]黄昆,固体物理学.北京:高等教育出版社,2002.
    [1] V.G Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [2] J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    
    [3] D. R. Smith, W. J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84,4184(2000).
    
    [4] D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Science 305, 788 (2004).
    [5] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, Nature (London) 423, 604 (2003).
    
    [6] X. Zhang and L. Li, Appl. Phys. Lett. 86, 121103 (2005).
    [7] Z. Feng, X. Zhang, Y. Wang, Z.Y. Li, B. Cheng, and D. Z. Zhang, Phys. Rev. Lett. 94,247402 (2005)
    
    [8] H. Shin and S. Fan, Phys. Rev. Lett. 96, 073907 (2006).
    [9] X. Fan, G. P. Wang, Phys. Rev. Lett. 97, 073901 (2006).
    [10] Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
    
    [11] J.B. Pendry and D. R. Smith, Phys. Today 57, No. 6, 37 (2004).
    
    [12] D. R. Smith, W. J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84,4184 (2000).
    [13] T. Koschny, M. Kafesaki, E.N. Economou, and C.M. Soukoulis, Phys. Rev. Lett. 93,107402(2004).
    
    [14] D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Science 305, 788 (2004).
    [15] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R.M. Osgood, and S.R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
    
    [16] R.A. Shelby, D.R. Smith, and S. Schultz, Science 292,77 (2001).
    [17] A.A. Houck, J.B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90,137401 (2003).
    [18] M. Notomi, Phys. Rev. B 62,10 696 (2000).
    [19] C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, Phys. Rev. B 65, 201104(R) (2002).
    
    [20] X. Zhang and L. Li, Appl. Phys. Lett. 86,121103 (2005).
    [21] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, Nature (London) 423, 604 (2003).
    
    [22] P.V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, Nature (London) 426,404 (2003).
    [23] X. Ao and S. He, Appl. Phys. Lett. 87, 101112 (2005).
    [24] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyle'n, A. Talneau, and S. Anand, Phys. Rev. Lett. 93, 073902 (2004).
    
    [25] I. Bulu, H. Caglayan, and E. Ozbay, Phys. Rev. B 72, 045124 (2005).
    [26] Z. Feng, X. Zhang, Y. Wang, Z.Y. Li, B. Cheng, and D. Z. Zhang, Phys. Rev. Lett. 94,247402 (2005).
    
    [27] X. Ao and S. He, Opt. Lett. 29, 2542 (2004).
    [28] C. R. Rosberg, D.N. Neshev, A.A. Sukhorukov, Y. S. Kivshar, and W. Krolikowski, Opt. Lett. 30,2293 (2005).
    [29] T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, Phys. Rev. Lett. 88, 093901 (2002).
    
    [30] B. Wang and G. P. Wang, Opt. Lett. 29,1992 (2004).
    [31] X. Fan and G. P. Wang, Opt. Lett. 31,1322 (2006).
    [32] S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50,1419, 2003.
    [33] S. Feng and J. Elson, Opt. Express 14, 216,2006.
    [34] D. Schurig and D. R. Smith, New J. Phys. 7, 162,2005.
    [35] P. A. Belov and Y. Hao, Phys. Rev. B 73, 113110,2006.
    [36] C. Wang, D. Gan, Y. Zhao, C. Du and X. Luo, Opt. Express, 16, 5427 (2008)
    [37] Y. Zhao, D. Gan, J. Cui, C. Wang, C. Du and X. Luo, Opt. Express, 16, 5697 (2008)
    [38] S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).
    
    [39] N. Shen, Q. Wang, J. Chen, Y. Fan, J. Ding, H. Wang, Y. Tian, and N. Ming, PHYSICAL REVIEW B 72,153104,2005.
    [1]E.Abbe,Schultzes Arch.Mikr.Anat.9,413(1873).
    [2]M.Bom and E.Wolf,Principles of Optics,7th ed.(Cambridge University Press,Cambridge,1999).
    [3]G.Binning,H.Rohrer,Scanning Tunneling Microscopy,Helv.Phys.Acta,1982,55:726-735
    [4]D.Heinzelmann,D.W.Pohl,Scanning near-field optical microscopy,Appl.Phys.A,1994,59:89-101
    [5]白春礼,扫描隧道显微镜及其应用,上海科学技术出版社,1992
    [6]D.W.Pohl,W.Denk,M.Lanz,Optical stethoscopy:Image recording with resolution λ/20,Appl.Phys.Lett.,1984,44:651-653
    [7]E.Betzig,A.Lewis,A.Harootunian,M.Isaacson and E.Kratschmer,Near Field Scanning Optical Microscopy(NSOM):Development and Biophysical Applications,Biophysical Journal,1986,49:269-279
    [8]J.B.Pendry,Phys.Rev.Lett.85,3966(2000).
    [9]J.B.Pendry,Opt.Express 11,755(2003).
    [10]Z.Jacob,L.V.Alekseyev,E.Narimanov,Opt.Express 14,8247(2006).
    [11]A.Salandrino,N.Engheta,Phys.Rev.B 74,075103(2006).
    [12]Mankei Tsang and Demetri Psaltis,PHYSICAL REVIEW B 77,035122(2008)
    [13]Xianyu Ao and C.T.Chan,PHYSICAL REVIEW E 77,025601(2008)
    [14]Y.Ben-Aryeh,Appl.Phys.B 91,157-165(2008)
    [15]Z.Liu,H.Lee,Y.Xiong,C.Sun,X.Zhang,Science,315,1686(2007)
    [16]P.B.Johnson,R.W.Christy,Phys.Rev.B 6,4370(1972).
    [17]N.Fang,H.Lee,C.Sun and X.Zhang,Science 308,534-537(2005)
    [18]Z.Jacob,L.V.Alekseyev,and E.Narimanov,J.Opt.Soc.Am.A,24,A52(2007)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700