用户名: 密码: 验证码:
三叶草对干旱胁迫的反应及适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三叶草属植物根系发达,茎叶茂密、花色鲜艳,适应性较强,是半干旱地区重要的草坪和牧草,被世界各地广泛应用。在绿化美化城市,道路护坡、保护江河湖泊的堤坝方面显示出独有的作用。三叶草应用最多的是白三叶(Trifolium repens L.)、红三叶(Trifolium pratenseL.)、杂三叶(Trifolium hybridum L.)等几个种。本试验选用海法(Haifa)、瑞文德(Rivendel)、普通红三叶(Common red clover)和杂三叶(Alsike clover)为研究对象,通过盆栽控水,形成5个干旱梯度,在此干旱梯度的基础上,测定几种三叶草的形态指标、生理指标的动态变化规律,用PEG6000模拟干旱处理植株,测定RT2抗旱基因的表达差异,并比较干旱胁迫下4个草种抗旱性的强弱,旨在为选育抗旱性强的三叶草,在北方的大面积种植和干旱半干旱地区节水型草坪品种的选育提供重要的理论依据。测定指标包括:土壤相对含水量、叶片相对含水量、水势、离体叶片失水速度、游离脯氨酸含量、可溶性蛋白质含量、可溶性糖含量、过氧化物酶活性、叶绿素含量和相对电导率;气孔面积、气孔密度、气孔开关比和气孔导度;RT2基因的克隆和表达。研究结果及创新点如下:
     1水分状况方面
     随着土壤干旱时间的延长叶片相对含水量、叶水势和离体叶片失水速率都呈下降的趋势。并且在相同的水分梯度下,草种间的差异性不同。普红(Cr)的抗旱能力最强,海法(Hf)最弱,其它2个草种介于之间。4个草种的叶片相对含水量、叶水势,离体叶片失水速率与十壤相对含水量都呈极显著的正相关关系,草种不同相关性表现不同。说明土壤水分是引起三叶草植株水分变化的主要环境因子之一,当土壤水分降低时,植株中的水分会受到直接的影响。抗旱性强的草种水分变化小,保水能力强,弱的的草种则相反。
     2渗透物质调节方面
     随着土壤干旱时间的延长,三叶草叶片游离脯氨酸含量、可溶性蛋白质含量和可溶性糖含量都呈现出明显增加的趋势,在增加的过程中因草种不同和水分胁迫程度的不同而有所波动,草种间表现差异不同。但在处理期间三种物质总体的变化规律均是普红(Cr)和瑞文德(Rd)优于杂三叶(Ac)和海法(Hf)。试验结果说明:当土壤含水量降低时三种可溶性物质的含量都会增加。增加幅度越大的品种抗旱能力越强。
     三种渗透调节物质与叶片相对含水量、叶水势呈负相关关系,各渗透调节物质之间呈正相关关系。说明:4种三叶草在水分胁迫下,均会调节增加体内的三种渗透调节物质的含量,以维持细胞内低的基础渗透式,来保证细胞吸水,进行正常的生命活动。调节能力的大小能在一定程度上表示植物抗旱能力的大小。渗透调节物质之间的相关性也说明三种物质在水分胁迫时的的渗透调节作用关系比较复杂,应该是协同的、综合的,各物质之间的相关性需做更深入的探讨。
     3叶绿素、过氧化物酶活性和细胞质膜透性变化方面
     随着干旱程度的加重叶片叶绿素的含量变化整体表现出慢-快-慢增加,最后减小的趋势。叶绿素含量与叶片含水量0-8d呈负相关关系,第8-16d表现正相关关系,各草种表现相关显著和极显著。试验结果显示:植物在水分胁迫时,叶绿素含量增加,轻度胁迫变化较快,中度胁迫变化较慢,而重度胁迫下,叶绿体遭到了破坏,叶绿素增加的速度明显减慢或低于开始处理水平。说明干旱前期叶片含水量相对较高,叶绿素仍处于合成状态,随着叶片含水量的减少,则呈现出了合成受阻而使合成的量减少。
     4个草种POD活性整体呈现出先增加后减少的变化趋势。由此表明:4种三叶草在水分胁迫下,POD表现了很高的活性,轻度胁迫表现明显,中重度胁迫活性减小。叶片POD活性与叶片相对含水量、叶片水势0-8d呈负相关关系,处理8-16d呈正相关关系。
     随着干旱程度的加重,4个草种的电导率都在不同程度上显著增加,前期较慢,后期较快。叶片电导率与叶片相对含水量、叶片水势呈负相关关系,与过氧化物酶活性呈止相关关系,并且均表现相关显著和极显著。从这一指标比较草种的抗旱顺序:普红(Cr)>瑞文德(Rd)>杂三叶(Ac)>海法(Hf)。
     4气孔因素方面
     干旱胁迫使三叶草气孔面积、开关比和导度减小,气孔密度增大。气孔面积轻度和中度干旱胁迫下降缓慢,重度胁迫下降较快,总体变化平缓;气孔密度增大速度平缓。开关比干旱前后期下降较快,中期缓慢;气孔导度干旱前期下降缓慢,后期迅速。气孔密度与叶片相对含水量和叶水势呈负相关;气孔开关比、气孔面积与叶水势、含水量呈正相关关系。气孔导度与叶片水势和土壤水分含量呈正相关关系。
     5抗旱基因RT2的表达
     干旱胁迫下普红(Cr)RT2基因的时间表达结果显示干旱胁迫可诱导三叶草RT2基因的表达,暗示三叶草的抗旱性可能和活性氧清除系统的相关基因的诱导表达存在密切关系。
     在干旱处理24h时,不同草种间三叶草RT2基因的表达差异显著,在4个草种中,普红(Cr)和瑞文德(Rd)RT2基因的表达量显著高于海法(Hf)和杂三叶(Ac)。其中,普红(Cr)的RT2基因表达量分别是海法(Hf)和杂三叶(Ac)的2.5倍和2.8倍。结果表明,RT2基因在不同草种间的基因表达存在明显差异,耐旱性强的草种的RT2基因的表达量相对较高。显示了普红(Cr)和瑞文德(Rd)较海法(Hf)和杂三叶(Ac)具有较强的抗旱能力。
     6品种间抗旱性比较
     4种三叶草的抗旱顺序是普通红三叶(Cr)>瑞文德(Rd)>杂三叶(Ac)>海法(Hf)
     7研究的创新点
     1)对气孔动态变化与叶片水分状况在干旱胁迫下的相互关系进行综合研究,在三叶草上尚属首次。
     2)对叶片水分状况、土壤水分状况变化与细胞渗透调节物质、细胞膜透性,保护酶活性,及其之间关系进行综合分析,在三叶草抗旱研究上非常全面。
     3)首次在干旱条件下克隆了三叶草抗旱基因RT2,并比较其在草种间的表达情况,揭示了三叶草的抗旱性与细胞活性氧清除系统相关基因表达的密切关系。
Clovers with developed roots, dense stems and leaves, bright-coloured flowers, are the most important turf and forage grass species of the temperate regions, used around the world widely. Which show unique role in beautifying cities, roads, mixly protecting dams of rivers and lakes, ect. Especially for the cultivars of Trifolium repens L. Trifolium pratense L. Trifolium hybridum L. In this study, Haifa, Rivendel, Common red clover, Alsike clover as materials to be researched under drought conditions. Potted, with5water gradients, on the basis of drought gradient, measured the dynamic changes of morphological and physiological indexes of the clover. PEG6000treated plants, determined the expression difference of RT2drought-resistant, compared drought-resistant ability of different cultivars under drought stress. The purpose of this study is to provide important theoretical basis on selecting drought tolerance cultivars and cultivating clovers in large areas and in the arid and semi-arid areas. Measurements include: relative water content of soil, leaf relative water content, leaf water potential, leaf free proline content, leaf leaf soluble protein content, leaf soluble sugar content, leaf peroxidase activities, leaf chlorophyll content and leaf relative conductivity rate, stomatal areas、stomatal densities、stomatal opening and closing ratio、stomatal conductance, the cloning and expression of RT2. The results and the innovation were as follows:
     1Moisture aspects:With the lengthening of stress durations, the trends of the RWC, water potential of leaves, lost water rate of cutting leaves decreased, and appeared differences among clovers in the same moisture gradient. Common red clover was strongest and Haifa was weakest in drought resistance, the others were between them. The correlation was very significant positive between3moisture indexes and soil relative water content of4clovers. The correlation was different among clovers. Showed:soil moisture was a main environmental factor, which caused water changes of clovers. When the soil moisture decreased, plant moisture would be directly affected. The clovers of drought-resistance changed alittle in moisture.
     2Osmoregulation aspects:with the lengthening of stress duration, free proline contents, soluble protein contents and soluble sugar contents of leaves were presenting obvious trend of increase. They were of different fluctuation due to the different clovers and the degree of water stress during the process. Differences were significant among clovers. But The whole changes rules of three substances were Common red clover> Rivendel> Alsike clover> Haifa during the process. The test results showed:when the soil moisture reducing, the contents of three kinds of soluble substances increased, the more increased, more stronger in drought-resistance.
     From correlationship between osmoregulation substances and RWC, water potential analysis, three kinds of substances were negatively correlated between RWC and water potential, positive correlativity among three substances in the whole process. T he results showed:4kinds of clovers would increased three osmoregulation substances contents under water stress to ensure to maintain lowly basic penetration of cells, water absorption, and activities of cells, that related to the cultivars drought-resistant ability of a plant. The correlationship amang osmoregulation substances in different cultivars showed the relationship was coordinated and integrated.
     3The contents of chlorophyll, POD and cytoplasmic membrane permeability: With the increasing of drought stress, chlorophyll contents of leaves increased by slow-fast-slow tendency first, decreased at last. The chlorophyll contents and the relative water contents of leaves negatively correlated in the0d-8d, positive correlation in the8d-16d.
     The activities of POD in4clovers increased first and then decreaced at last during the treatment process. POD showed high activity in4clovers under water stress, the performance was obvious under mild stress, but the activities decreaced from moderate to severe stress. Activities of PODwere negatively correlated between RWC and water potential in the0d-8d, positive correlation in the8d-16d. The activities of POD in clovers were regulated by the changes of leaf water contents greatly, increased in the early stage of drought, with the increased stress, the activities decreased. The protecting cell membrane abilities of POD were limited, when clovers were under drought stress.
     With the increasing degree of drought stress, the conductivity of4clovers increased significantly, increased slowly in the mild stress, and fast at the late stage, and showed negative correlation between the RWC, water potential of leaves, positive correlated between the activities of POD, and related significant and a very significant. The drought resistant orders:Common red clover> Rivendel> Alsike clover> Haifa.
     4Stomatal factors:Stomatal area, opening and closing ratio and stomatal conductance decreased under drought stress, but stotnata density increased. Stomatal area declined slowly in the mild and moderate drought stress, declined fast in the severe stress. Stomatal density increased gently. Stomatal opening and closing ratio declined faster in the first and last stage s, slowly in the interim; Stomatal conductance declined slowly in the first stage, but rapidly in the later stage. Stomata density showed negative correlation between the RWC, water potential of leaves. Stomatal areas, opening and closing ratio correlated positively between the RWC, water potential of leaves. Stomatal conductance correlated positively between water potential of leavesN Relative water contents of soil.
     5Drought-resistant gene RT2expression:analyzed the changes of RT2expression in Common red clover with the stressed point. The results showed that drought stress could induce the gene RT2expression of Common red clover, that suggested:the drought resistance of clovers might associate with the gene induction and expression of scavenging system of active oxygen.
     With24h of drought stress, the RT2expression was significant difference among4clovers. RT2expression of Common red clover and Rivendel were significantly higher than those of Alsike clover and Haifa. The results showed that the RT2expression was different among different clovers, the aboundances of RT2expression were relatively higher in stronger drought-resistant clovers. Common red clover and Rivendel displayed stronger tolerance to drought than Alsike clover and Haifa.
     6Drought resistance comparison in different cultivars:comparatively analyzed the changes of drought-resistant indexes in clovers under drought stress, the drought-resistance orders:Common red clover> Rivendel> Alsike clover> Haifa.
     7Innovation points of research:
     1) It was the first that researched comprehensivly stomatal dynamic changes and leaf water status under drought stress in the relationship in the clovers
     2) It was very comprehensive research on leaf water status, soil moisture status change, cell osmotic regulation substances, cell membrane permeability, protective enzyme activity, and the relationship among them analysised comprehensivly in clover drought resistance
     3) For the first time, cloned clover RT2under drought condition and compared their expression, revealsed:the close relationship between the drought resistance in clovers and the expression of active oxygen removal system geneof cells
引文
[1]ASHRAF M, FOOLAD M R. Roles of glycine betaine and praline in improving plant abioticstress resistance [J]. Environmental and Experimental Botany,2007,59(2):206-216.
    [2]GLOMBITZA S,DUBUIS P H,THULKE O,etal.Grosstalk and different response to abiotic and biotic stressonsw reflected at the transcriptional lvvel of effector genes from secondary metabolism[J]. Plant Mmolecular Biology,2004,54(6):817-835.
    [3]李磊,贾志清,朱雅娟,綦艳林.我国干旱区植物抗旱机理研究进展.中国沙漠,2010,30(5):1053-1057.
    [4]郭慧,吕长平,郑智,刘飞,丁丁.园林植物抗旱性研究进展.安徽农学通报,2009,15(7):53-55.
    [5]冯玉龙,姜淑梅.番茄对高根温引起的[J].生态学报,2001,21(5):747-750.
    [6]洪晓晓,于晓英。园林地被植物抗旱机制研究进展.山乐农业科学,2009,(5):62-66.
    [7]HuangBR, FryJD. Root anatomieal, physiological, and morphological reponses to drought tress for tall fescue cultivars [J]. Crop Seienee,1998 (38).
    [8]万开军,武高林,史晓霞,等.草坪草对干旱胁迫的反应与调节研究进展[J].草业科学,2006,23(8):97-102.
    [9]赵宇,蒋明义,张阿英,等.水分胁迫诱导玉米Zmrboh基因表达及ABA在其中的作用[J].南京农业大学学报,2008,31(3):26-30.
    [10]黄颜梅,张健,罗承德.树木杭旱性研究综述[J].四川农业大学学报,1997(1):49-54.
    [11]何玉惠.两种驼绒藜属植物抗旱性生理生化指标研究[D].甘肃:甘肃农业大学,2005.
    [12]杨成一,刘丛强,宋照亮,等.贵州喀斯特山区植物叶片碳同位素组成研究[J].地球与环境,2007,35(1):33-38.
    [13]朱旗, 徐吉臣。 植物抗旱分子机制研究进展.安徽农业科学,2010,38(26):14198-14202,14205.
    [14]张继澍.植物生理学[M].北京:高等教育出版社2006.
    [15]汤章城.植物对水分胁迫的反应和适应性[1].植物对干旱的反应和适应性[J].植物生理学通讯,1983(4):1-7.
    [16]NOBEL PS, Adaption of Plant to water and high temperature stress[M].NewYork:John Wiley & sons,1980,43-45.
    [17]关义新,戴俊英,陈军,等.士壤干旱下玉米叶片游离脯酸的积累与抗旱性关系[J].玉米科学,1996,4(1):43-45.
    [18]廖建雄,王根轩.谷子叶片光合速率日变化及水分利用率[J].植物生理学报,1999,25:362-368.
    [19]KURSAR T A, COLEY P D. Convergence in defensesyndromes of young leaves in tropical rainforests[J]. Biochemical Systematics and Ecology,2003,31:929-949.
    [20]吴永美,吕炯章,王书建,李润植.植物抗旱生理生态特性研究进展.杂粮作物,2008,28(2):90-93.
    [21]刘晓松.三叶草在干旱胁迫下的生理反应研究。山东师范大学,2009.
    [22]裴冬,张喜英,王竣.高粱、谷子根系发育及其抗旱性研究[J].中国生态农业学报,2002,10(4):28-30.
    [23]孙强等.草地早熟禾草坪土壤水分动态与根系生长分布.生态学报,2005,25(6):1307.
    [24]梁银丽,陈培元.旱地小麦品种的特征、特性[A]见:山伦、陈培元主编旱地农业生理生态基础。科学出版社,1998,259-264.
    [25]韩建秋,王秀峰,张志国.土壤水分梯度对白三叶(Trifolium repens)光合作用和根系分布的影响.生态学报,2008,28(2):493-499.
    [26]O'TOOLEJC,WL BLAND. Genotypic variation in crop plan root system[J].Adr.Agron,1997 (41):91-145.
    [27]SHARP RE, WJ DAVIES. Regulation by roots and shoots of water stressd maize Planta[J] Planta,1989(147):43-49.
    [28]HUCK MG, BL KLEPPER, HM Taylor. Diurna lvariations in root diameter[J]. Plant Physiology,1970(45):529-530.
    [29]Carrow RN. Drought avoidance eharaeteristies of diverse tall fescue cultivars [J]Crop Science,1996 (36):371-377.
    [30]Deans JD. Fluetuation of the soil environment and fine root growth in a yong sitka sprucePlantation[J]. PlantSoil,1979(52):195-208.
    [31]HuangBR, Hong WenGao. Root physiological characteristics associated with drought resistance in tall fescue cultivars[J].CropSeienee,2000(40):196-203.
    [32]HUANG BR, RR DUNEAN, RN CARROW. Drought resistance mechanism of seven warm season turfgrass under surface soil drying:Ishoot response [J]. Crop Seience,1997(38): 1558-1863.
    [33]SHARP RE, WJ DAVIES. Root growth and water uptake maize plants in drying soil[J]. Exp Bot,1985(36):1441-1456.
    [34]SHEFFER KM, JH DUNN, DD MINNER. Summer drought response and rooting depth of threecool-season turfgrass[J]. HortSeience,1987(22):296-297.
    [35]黄升谋.干旱对植物的伤害及植物的抗旱机制.安徽农业科学,2009,37(22):10370-10372.
    [36]王小彬,蔡典雄,高绪科.作物的缺水反应及其抗旱生理适应性的调节.土壤,1997(1):6-12.
    [37]杨昌建,乔纳圣威尔斯,朱庆森,等。水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响.作物学报,1995,21(5):533-537.
    [38]刘自学等。6种草坪草叶片的气孔特征与气孔传导力.草业科学,2005,22(8):71-75.
    [39]韦海建,杨惠敏,赵亮。遮荫环境对白三叶草气孔和光合特性的影响.草业科学,2007,24(10):94-97.
    [40]赵相勇,吴佳海,杨菲,喀斯特山区混播草地草本植物的光合特性.贵州农业科学,2011, 39(3):46-49.
    [41]周兴元,曹福亮,陈国华.两种暖季型草坪禾草对土壤持续干旱胁迫的生理反应[J].草业学报,2004,13(1):84-88.
    [42]卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氦酸含量和抗氧化酶活性的反应[J].园艺学报,2003,30(3):303-306.
    [43]殷秀杰,王明玖,石凤翎,崔国文.三种三叶草幼苗期抗旱性差异的研究.中国草地学报,2008,30(2):68-72.
    [44]E1HafidR, SmithDH, KarrouM, etal. Physiological responses of spring durum wheat cultivars to early season drought in a mediter ranean environment[J]. Annals of Botany, 1998,81(2).
    [45]WINTER SR. Evaluation of screening techniques for breeding drought-resistance Winter Wheat[J]. Crop Seience,1998,28(3):512-516.
    [46]户连荣,郎南军,郑科.植物抗旱性研究进展及发展趋势[J].安徽农业科学,2008,36(7).
    [47]邵艳军,山仑,李广敏.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究[J].中国生态农业学报,2006,14(1):68-70.
    [48]韩建民.抗早性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报,1990(1):17-21。
    [49]李德全,等.植物渗透调节研究进展[J].山东农业大学,1991(1):86-90.
    [50]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[s].植物生理学报,1990(1):49-56.
    [51]BOWNTON. Adaptation to water deficits in grape by osmoregulation [J]. PlantSei.,1983 (30):137-143.
    [52]BINGRU HUANG, JACK FRY, B1NWANG. Water relations and canopy charaeteristics of all fescue cultivars during an after drought stress. Hort Science.,1998(33):837-840.
    [53]LIN WANHUANG,HOFMANN, RAINER, STILWELL STEPHEN.Physiological responses of five species of trifolium to drought stress. Chin J Appl Environ Biol(应用与环境生物学报)2011,17(4):580-583.
    [54]高宁,高辉远,石定燧,等.16种(品种)寒地型草坪草抗旱性及评定方法初探[J].八一农学院学报,1995(1):68-71.
    [55]籍越,孔德政,杨芳绒,等.不同品种草坪草抗旱性的初步研究[J].河南科学,2000,18(4):412-414。
    [56]杨特武,鲍健寅.干旱胁迫下白三叶器官生理特征变化及其SOD在抗旱中的作用[J].中国草地,1997,19(4):55-61.
    [57]杨国伟,张秀清,苏东海,等。水分胁迫下几种冷季型草坪草抗旱性研究[J].河南农业科学,2004,(2):38-42。
    [58]许兴,郑国琦,邓西平,等.水分和盐分胁迫下春小麦幼苗渗透调节物质积累的比较研究[J].干旱地区农业研究,2002,20(1):52-56.
    [59]HOEKSTRAFA, GOLOVINAEA, BUITINK J.Mechanism of plantdesic cation tolerance[J].Treads Plant Sci,2001,6:431-438.
    [60]焦蓉,刘好宝,刘贯山,等.论脯氨酸积累与植物抗渗透胁迫[J].中国农学通报,2011,27(7):216-221.
    [61]陈亚鹏,陈亚宁,李卫红,等.干旱胁迫下胡杨脯氨酸积累特点分析[J].干旱地区地理,2003,26(4):420-424.
    [62]AROCA R,VERNIERI P,RUIZ-LOZANO J M.Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrnizotion in TOMATO and an ABA-deficient mutant (sitiens) microb [J].Ecol,2008,56:704-719.
    [63]金忠民,沙伟.白三叶抗旱生理的研究.北方园艺,2010(18):50-52.
    [64]徐云刚,詹亚光.植物抗旱机理及相关基因研究进展.生物技术通报,2009(2):11-17.
    [65]马原松,王启明,吴诗光,等.干旱胁迫下大豆生理生化指标的研究.安徽农业科学,2005,33(6):974-976.
    [66]王琼,宋桂龙,韩烈保,等.5种野生护坡植物的抗旱综合性评价[J].福建农林大学学报:自然科学版,2008,37(2).
    [67]夏尚光,张金池,梁淑英,等.水分胁迫下3种榆树幼苗生理变化与旱性的关系[J].南京林业大学学报:自然科学版,2008,32(3):131-134.
    [68]周瑞莲.应用生物化学技术进行牧草抗逆性鉴定的原理和方法[J].中国草地,1991,(3):56-59.
    [69]李贵全,杜维俊,孔照胜,程舜华,郭显荣.不同大豆品种抗旱生理生态的研究[J].山西农业大学学报,2000,20(3):197-200.
    [70]王贺正,马均,李旭毅等.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学,2007,40(7):1379-1387.
    [71]卢少云,等.钙提高水稻幼苗抗旱性的研究[J].中国水稻科学,1999(13):161-164.
    [72]FU J,HUANG B.Involvement of antioxidants and lipid peroxidation in the adaptation Of two cool-eason grasses to localized drought stress[J].Environ ExpBot,2001,45(2):105-114.
    [73]韩建秋.水分胁迫对白三叶叶片脂质过氧化作用及保护酶活性的影响.安徽农业科学,2010,38(23):12325-12327.
    [74]张永强,毛学森,孙宏勇,等.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002(4):13-15.
    [75]韩建秋.水分胁迫对白三叶光合特性的影响.上海应用技术学院学报,2009,9(2):106-109.
    [76]GAOX P,WANGX F, LUY F,etal.Jasmonic acod is involved in the water-stress-induced Betaine accumulation in pear leaves[J]. PlantCell and Environment2004 (27):497-507.
    [77]董桃杏,蔡昆争,张景欣,等.茉莉酸甲酯(MeJA)对水稻幼苗的抗旱生理效应[J].生态环境,2007,16(4):1261-1265.
    [78]VAN ASCH M, VISSER M E. Phenology of forestcaterpillars and their host trees:The importance ofsynchrony [J]. Annual Review of Entomology,2007(52):37-55.
    [79]李俊庆,等.水分胁迫对不同抗早型花生生长发育及生理特性的影响.中国农业气象, 1996,17(1):11-13.
    [80]蒲光兰.土壤干旱胁迫对3个杏树品种生理生化特性的影响.四川农业大学学报,2005.
    [81]赵哈林,赵学勇,张铜会.沙漠化过程中植物的适应对策及植被稳定性机理[M].北京:海洋出版社,2004.
    [82]茹广欣,郝绍菊,茹桃勤,等.干旱梯度下刺槐无性系生理指标的变化与品种抗旱性关系的研究[J].河南科技学院学报(白然科学版),2006,34(1):37-40.
    [83]张怡,罗晓芳,沈应柏。土壤逐渐干旱过程中刺槐新品种苗木抗氧化系统的动态变化[J].浙江林学院学报,2005,22(2):166-169.
    [84]JIANG Y, HUANG B.Drought and heat stress injury to two coolseason turfgrasses inrelation to antioxidant metabolism and lipid peroxidation[J]. Crop Sci.2001 (41):436-442.
    [85]Streetto,Bolend,Rose G D. Amolecularmechanism foros- molyte-induced protein stability[J]. Proc Natl Acad Sci,2006,103(38):13997-14002.
    [86]姚觉,于晓英,邱收,等.植物抗旱机理研究进展[J].华北农学报,2007,22(S1):51-56.
    [87]王忠主编.植物生理学[M)。北京::中国农业出版社,2000.
    [88]郭华军.水分胁迫过程中的渗透调节物质及其研究进展.安徽农业科学,2010,38(]5):7750-7753,7760.
    [89]WU F Q, XIN Q, CAO Z, et al.The magnesium-chelatuse H subunit binds abscisic acid and functions in abscisic acid signaling:new evidence in Arabidopsis[J].Plant Physiology,2009 (150):1940-1954.
    [90]ZHANG A Y, JIANG M Y,ZHANG J H, etal.Nitric oxide inducede by hydrogen peroxide mediates abscisic acid-jinducede activation of the mitogen-adtivated protein kinase cascade in volved in antioxidant defense in maize leaves[J].New Phytologist,2007,175(1):36-50.
    [91]BANDURSKAH, STROINSKIA, JANK.The effectoflasmonate on the accumulation of ABA, proline and its influence onmembrane injury under water deficient in two barley genotypes[J].ACTA Physiologiae Plantarum,2003,25(3):279-285.
    [92]郭安红,李召祥,刘庚山,阳园燕,安顺清.根源信号参与调控气孔行为的机制及其农业节水意义.应用生态学报.2004,15(6):1095-1099.
    [93]DAVIES WJ, ZHANG JH.Annu Rev Plant Physical Mol Biol,1991,42:55-76.
    [94]刘华玲,马欣荣。植物抗旱分子机理研究进展[J].世界科技研究与发展,2006,28(6):33-40.
    [95]姚立新,朱锐,马雯彦,续九如.植物抗旱、抗寒性鉴定与生理生化机理研究进展.安徽农业科学,2009,37(25):11864-11866
    [96]单长卷,刘润强,张胜利.植物水分与抗旱分子生物学的发展及其影响.河南科技学院学报.2011,39(3):10-13.
    [97]韩建秋.干旱胁迫对白三叶光合参数日变化的影响.中国农学通报2010,26(12):143-146
    [98]戴高兴,邓国富,周萌.干旱胁迫对水稻生理生化的影响[J].广西农业科学,2006,37(1):4-6.
    [99]SHEARMAN R C.Perennial ryegrass cultivar evapotranspiration rates[J].Hort Sci.1989,24(5):767-769.
    [100]冯道俊.水分胁迫下气孔因素对玉米幼苗光合作用影响机理的研究[D].山尔:山东师 范大学,2006.
    [101]WETW, ZHANGY, HANL, et al. A novel WRKY transcriptional factor from the aspicae rule scens negatively regulates the osmotic stress tolerance of transgenic to bacco [J]. Plant Cell Report,2008,27(4):795-803.
    [102]PNUELIL, HALLAK-HERRE, ROZENBERGM, etal.Molecularand biochemical mechanisms associated with dormany and drought tolerance in the desert legumeRetama raetam[J].Plant J,2002,31 (3):319-330.
    [103]HUHH,DAIM Q,YAOJ L, etal. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salttol-erance in rice[J]. PNAS,2006,103(35): 12987-12992.
    [104]LUPL, CHENNZ,ANR, etal. A novel drought-inducible gene, AT-AF1, encodes a NAC family protein thatnegatively regulates the expression of stress-responsive genes in Arabidopsis[J].Plant Mol Biol,2007,63(2):289-305.
    [105]ROOSENSNH,BITARFA,LOENDERSK,etal.Overexpressionofornthine-aminotransferase increase sproline biosynthesis and confersosmo tolerance in transgenic plants[J].Molechlar Breeding,2002 (9):73-80.
    [106]葛水莲,薛晶晶,陈建中.植物抗旱基因工程的研究进展[J].河北北方学院学报,2008,24(6):28-31。
    [107]梁峥,马德钦.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报,1997,13(3):236-240.
    [108]SHEN B, JENSENR G. Increased resistance to oxidative stress in the genie plants by targetingmannitol biosynthesis to chloroplasts[J]. Physiol,1997,113(4): 1177-1183.
    [109]ELBEINAD,PANYT,PASTUZAK I, etal.New insights on trehalose:multifunctional molecule[J].Glycobiology,2003,13(4):17-27.
    [110]何宝坤,李德全.植物渗调蛋白的研究进展[J].生物技术通报,2002(2):6-10.
    [111]JOHANSSON I, KARLSSONM, JOHANSONU, etal. The role of aquapor in cellular and whole plant water balance[J].Biochm inicaet Biophysica Acta,2000 (1465):324-342.
    [112]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144-150.
    [113]于凤芝,王晓军,邢珊珊,等.4个三叶草种质材料的抗逆性比较研究.草原与草坪,2010,30(2):86-88
    [114]CHRISTIANSEN P, GIBSON J M, MOORE A, etal.Transgenic Tri-folium repents with foliage accumulating the high sulphurprotein, sunflower seed albumin[J].Transgenic Research,2000,9:103-113.
    [115]HORST W J, SCHENK MK, BURKERT A, et al.Phytate as a sourceof phosphorus for the growth of transgenic Trifoliumsubterra-neum[J].Plant Nutrition,2002 (92) 560-561
    [116]王丹,吴燕民,刘水,吕慧,雷江丽.利用农杆菌浸种法建立白三叶草遗传转化体系的研究. 中国农业科技导报,2009,11(1):96-101.
    [117]贾会丽,王运琦,刘建宁,石永红,吴欣明.三叶草转基因技术研究进展.山西农业科学2010,38(8):99-101,109
    [118]马宗仁,刘荣堂.牧草抗旱生理的基本原理[M].兰州:兰州大学出版社,1993.
    [119]曾汉来等。植物生理学精品课程.华中农业大学植物科学技术学院,2009.http://nhjy.hzau.edu.cn/kech/zwsl/kcjj/index01.asp
    [120]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990.
    [121]REGAN KL.Evaluation of chemical desiccation as a selection technigne for drought resistance in dryland wheat breeding program[J]. Agric Res,1993 (44):1683-1691.
    [122]张宪政等.植物生理学试验技术.辽宁科学技术出版社.1989.
    [123]孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响[J].林业科学,1993(29):2.
    [124]郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004:65-110.
    [125]郝绍菊.干旱梯度下10个刺槐无性系耗水抗旱特性研究.河南农业大学,2006.
    [126]万东石,李红玉,张立新等.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003,23(1):151-157.
    [127]张巨明,解新明,董朝霞.高温胁迫下冷季型草坪草的耐热性评价[J].草业科学,2007,24(2):105-109.
    [128]SULLIVAN M L, AND THOMA S L. Cloning, molecular characterization, and expression analysis of several red clover cDNAs. Can. J. Plant Sci,2006 (86):465-468.
    [129]韩文军,滨村邦夫,杨劫.海水灌溉条件下Salicornia的种植密度对个体间养分积累及土壤盐分的影响[J].草业科学,2008,25(11):36-39.
    [130]韩文军,春亮,侯向阳.过度放牧对羊草杂类草群落种的构成和现存生物量的影响[J].草业科学,2009,26(9):195-199.
    [131]INGRAM D, SANDER K, CLARKE R. CASE CONTROL STUDY OF PHYTOESTROGENS AND BREAST CANCER [J]. LANCET,1997,350:990-997.
    [132]惠康杰,黄凤琴,杨选民,等。白三叶草在茶园中的应用及种植技术研究[J].茶业通报,2010,32(2):54-57.
    [133]郭华军.水分胁迫过程中的渗透调节物质及其研究进展[J].安徽农业科学,2010,38(15):7750-7753,7760.
    [134]山仑,邓西平,苏佩,等.挖掘作物抗旱节水潜力-作物对多变低水环境的适应与调节[J].中国农业科技导报,2000,2(2):66-70.
    [135]林阳,卢国珍,等.辽西地区几种引进树种的抗旱性研究,造林与经营,2012(1):18-20.
    [136]张路,张启翔,王史琴. 干旱胁迫对灰岩皱叶报春生理特性的影响[J].浙江农业学报,2011,23(6):1]29-1133.
    [137]刘景辉,赵海超,任永峰,等.土壤水分胁迫对燕麦叶片渗透调节物质含量的影响[J].西 北植物学报,2009,29(7):1432-1436.
    [138]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究林业科学,2003,39(4):162-166.
    [139]孙国荣,张睿.干旱胁迫下白桦实生苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,2001(21):3.
    [140]朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究[J].土壤通报,2003,34(1):25-29.
    [141]杨鑫光,傅华,牛得草.干旱胁迫下幼苗期霸王的生理响应[J].草业学报,2007,16(5):107-112
    [142]万东石,李红玉,张立新,等.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003,23(1):151-157.
    [143]王玮,李德全,李春香,等.水分胁迫对抗旱性不同的玉米品种根、叶渗透调节能力及渗透调节物质的影响[J].华北农学报,2000(15):8-15.
    [144]张美云,钱吉,郑师章,等.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J].复旦学报:自然科学版,2001,40(5):558-561。
    [145]陈敏,陈亚宁,李卫红,等.塔里木河中游地区3种植物的抗旱机理研究[J].西北植物学报,2007,27(4):747-754.
    [146]张哲,杜桂娟,马凤江,等。遮阴对5种豆科牧草形态和生理指标影响的初探.草业科学,2011,28(7):1296-1300.
    [147]刘弈清,陈泽雄,杨婉晴. 高温和干旱胁迫对尾巨桉幼苗生理特性的影响[J]. 园艺学报,2008,35(5):761-764.
    [148]刘会超,贾文庆。盐胁迫对白三叶幼苗叶片叶绿素含量和细胞膜透性的影响.广尔农业科学,2008(12):58-60.
    [149]葛晋纲,杨士虎,张虎,戴文.植物抗旱剂FA旱地龙在草坪草中的应用研究.安徽农业科学,2004,32(5):973-975.
    [150]周兴元,曹福亮,陈国华。四种暖季型草坪草几种生理指标与抗旱性的关系研究[J].草原与草坪,2003(4):29-32.
    [151]姚有华,谢德庆,叶景秀.PEG胁迫下不同抗旱性春小麦品种的理化性质比较.广东农业科学,2012(1):25-26,31.
    [152]颜丽丽,干旱胁迫下4个野生早熟禾属草种的抗旱性研究。天津农业科学,2011,17(6):25-29
    [153]Donald R O.When there is too much light[J].Pl Physiol,2001,125:29-32.
    [154]ENGELHARDT P F, RIEDLC R. The effect of an isoflavoneextract from redclover on prostate, micturition, sexual functionand quality of life:A nary study report [J]. European Urology Supplements,2004,3 (2):94-95.
    [155]刘亚。远红外成像技术在植物干旱响应机制研究中的应用.中国农学通报,2012,28(3):17-22.
    [156]刘婧,王宝山,谢先芝.植物气孔发育及其调控研究[J].遗传.2011,33(2):131-137.
    [157]Ribaut J M, Banziger M, Hoisington D.Genetic dissection andplant improvement under abiotic stress conditions:droughttolerance in maize as an example[R].Jircas Working Report,2002.
    [158]刘亚,丁俊强,Subhash C,等.两个玉米自交系苗期叶温的干旱响应研究[J].作物杂志,2008(6):62-65.
    [159]Zhu J K.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Biol, 2002(53):247-273.
    [160]Laury C, Dominique V D S.Imaging techniques in early detectionof plant stress[J].Trends in Plant Science,2000,5(11):495-501.
    [161]Lourtie E, Bonnet M, Bosschaert L.New glyphosate screen ingtechnique by infrared thermometry[M].Fourth InternationalSymposium on Adjuvants for Agrochemicals, Australia,1995:297-302.
    [162]Carosena M, Giovanni M C.Recent advances in the use of infrared thermography[J]. Measurement science and technology,2004(15):27-58.
    [163]Laury C,Dominique V D S.Imaging techniques in early detection of plant stress[J]. Trends in Plant Science,2000,5(11):495-501.
    [164]刘亚,丁俊强,苏巴钱德,等.基于远红外热成像的叶温变化与玉米
    [165]Song Y W, Kang Y L, Song C P, et al.Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses[J].Chinese science bulletin, 2006,51(21):2586-2594.
    [166]Bettina B, Boris P, Mark T.High-throughput shoot imaging to study drought responses[J].Journal of Experimental Botany,2010,61(13):3519-3528.
    [167]Giuseppe R,Shamaila Z,Wolfram S,et al.Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress[J].Computers and Electronics in Agriculture,2011,79(1):67-74.
    [168]刘长利,王文全,崔俊茹,等.干旱胁迫对甘草光合特性与生物量分配的影响[J].中国沙漠,2006,26(1):142-145.
    [169]Wang H et al. Anatomical structures of leaves and taxonomic Values in Iris from the North of China. Bulletin of botanical research,2008,28(1):30-37.
    [170]Richards R A, Rebetzke G J, Condon A G, Van HerwaardenA F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 2002,42:111-121.
    [171]Sobrado M A. Relation of water transport to leaf gas exchange properties in three mangrove species. Trees,2000,14:258-262.
    [172]高鹏.4个葡萄品种对水分胁迫的响应及其抗旱性评价[J].河南农业科学,2009(3):79-81.
    [173]赵祥,董宽虎,张垚,等.不同居群达鸟里胡枝子叶片解剖结构研究[J].草地学报,2009,17(4):445-451.
    [174]宋耀选,周茂先,张小由,等.额济纳绿洲主要植物的势与环境因子的关系[J].中国沙漠,2005,24(4)496-499.
    [175]宋海鹏,刘君,李秀玲,等.干旱胁迫对5种景天属植生理指标的影响[J].草业科学2010,27(1):11-15.
    [176]山中典和.黄土高原的沙漠化对策[M].东京:古今院,2008:214-235.
    [177]韩文军,春亮,王育青.阿拉善荒漠区主要盐生植物水势日变化.草业科学2011,28(1):110-112.
    [178]Zhu L H, Peppel A V D, Li X Y, et al.Changes of leaf water potential and endogenous cytokinins in young apple trees treated with orwpaclobutrazol under drought conditions[J].Scientia Horticulturae,2004,99(2):133-141.
    [179]王海珍,韩路,周正立,等.胡杨、灰叶胡杨水势对不同地下水位的动态响应[J].干旱地区农业研究,2007,25(5):125-129.
    [180]占东霞,庄丽,等.准噶尔盆地南缘干旱条件下胡杨、梭梭和柽柳水势对比研究.新疆农业科学,2011,48(3):544-550.
    [181]郭泉水,谭德远,刘玉军.梭梭对干旱的适应及抗旱机理研究进展[J].林业科学研究,2004,17(6):796-803。
    [182]Wang Z, Huang B. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress[J]. Crop Science,2004,44:1729-1736.
    [183]沈维良,柳建国.作物耐旱性与叶片水势简报[J].中国生态农业学报,2001,4:22-25.
    [184]李明,王树香,高宝嘉.对不同光照条件下三叶草生长发育的研究.湖北农业科学,2011,50(14):2921-2923。
    [185]王丁,张丽琴,薛建辉.林木对干旱胁迫的生理与分子响应研究综述.安徽农业科学,2011,39(25):15426-15431,15445.
    [186]赵桂琴,王锁民,等.白三叶转基因及其生态适应性研究进展.生态学报,2004(3):592-597。
    [187]吴维群,邓菊芬,唐宗英.行距和播量对白三叶生育及种子产量的影响[J].草地学报,2006,14(2):116-119。
    [188]王元素,陈全功,樊晓东。云贵高原山区草地生物改良技术研究[J.草业科学,2004,21(2):30-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700