用户名: 密码: 验证码:
干湿交替环境下混凝土的氯离子侵蚀与耐久性防护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯离子侵蚀引起的钢筋锈蚀,是导致海洋环境下混凝土结构耐久性破坏的主要原因。浪溅区、潮汐区的混凝土因遭受干湿交替作用下的氯离子侵蚀,耐久性劣化情况更为严重。首先,针对干湿交替环境下混凝土结构的氯离子侵蚀,对氯离子在混凝土结构中的传输机理进行了系统分析,构建了氯离子的对流—扩散传输模型,并通过干湿交替循环试验进行验证。然后,利用线性极化法进行了钢筋锈蚀状态的检测,测定了干湿交替环境下混凝土结构临界氯离子浓度值。接下来,考虑收缩和荷载作用,深入探讨了损伤混凝土中的氯离子传输规律,建议使用硅烷或工程用水泥基复合材料(ECC)作为混凝土结构表层防护材料。最后,基于可靠度理论提出了满足目标可靠指标的耐久性概率设计方法,为干湿交替环境下混凝土结构耐久性设计提供参考依据。主要研究内容和成果如下:
     (1)干湿交替环境下混凝土的氯离子传输机理
     氯离子主要通过毛细吸收和扩散等方式对混凝土造成侵蚀。首先,根据干湿交替环境下混凝土的工程实际情况,建立了氯离子的对流—扩散传输模型,并且采用有限差分格式进行了方程求解,进行了氯离子干湿交替侵蚀混凝土的试验。试验中所测定的氯离子含量分布与数值模拟的结果吻合。这表明,对流—扩散传输模型较好反映出了干湿交替环境下混凝土结构的氯离子传输规律。数值模拟和试验结果都说明干燥—润湿时间比是氯离子峰值和渗透深度的关键影响因素,随着干燥—润湿时间比例增加,氯离子峰值呈现出增大的趋势,渗透深度也在变大。
     (2)干湿交替环境下的临界氯离子浓度
     氯离子临界浓度是影响海洋环境下混凝土结构服役寿命的一个关键参数。制备了四种不同水胶比的混凝土试件,使用5%的NaCl溶液,在60%的相对湿度下,进行了干湿循环试验。试验中,依据钢筋腐蚀电流密度对锈蚀状况进行定时检测,测定了锈蚀发生时混凝土不同深度处的氯离子含量。最后,确定了具有90%保证率的干湿交替环境下不同混凝土的临界氯离子浓度值。考虑碳化程度进行氯离子含量的测定和临界氯离子浓度值的统计分析,使得试验更接近工程实际,提高了试验结果的科学性和适用性,也为进一步进行干湿交替环境下混凝土结构的试验研究提供了参考。
     (3)表层防护后混凝土中的氯离子传输
     由混凝土的外部荷载、早期收缩而产生的裂缝,为氯离子的渗入提供了便利通道,加速了钢筋锈蚀,降低了混凝土结构的耐久性能。通过混凝土加载和约束收缩条件下的氯离子侵蚀试验,研究了损伤混凝土中的氯离子传输规律。混凝土中氯离子扩散系数随拉应力的增加而增加,70%应力水平后急剧增大;氯离子侵蚀量随混凝土裂缝宽度增加而增加;在同样加载和约束收缩条件下,经硅烷或ECC表面防护的混凝土比普通混凝土具有更好的抗侵蚀性能。
     (4)表层防护后混凝土的耐久性设计
     依据氯离子对流—扩散传输模型的数值模拟与试验测得的临界氯离子浓度值,基于可靠度理论,考虑荷载和早期收缩产生的损伤因素,提供了具体的概率计算方法,以解决干湿交替环境下混凝土表层防护的耐久性设计问题。对于采用硅烷或ECC作为表面防护材料的混凝土结构,以氯离子扩散系数和保护层厚度作为主要设计参数,对混凝土结构进行了表层防护的耐久性设计,以满足设计使用年限内的目标可靠指标。
Chloride induced corrosion has been the top durability issue of reinforced concretestructures in marine environment, especially the drying–wetting cycles in splash andtidal zones severely deteriorates concrete durability. Aiming at the issue of chlorideingress under drying-wetting cycles, a series of lab experiments, exposing experimentsand cores drilling from concrete after long-time exposing were performed. To beginwith, a convection-diffusion model of chloride transport was established, incombination with the experimental results the mechanism of chloride transport inconcrete was systematically studied. Secondly, the chloride transport in damagedconcrete caused by either load or shrinkage was further explored based on theexperimental study. Thirdly, the chloride threshold value under drying-wetting cyclesstatistically determined after experiments. Lastly, according to the reliability theory, anew probabilistic method of the durability design or redesign was provided for silaneimpregnation concrete and Engineered Cementitious Composites (ECC) concrete underdrying-wetting cycles. The main content and conclusions are listed as follows:
     (1) Chloride transport in concrete under drying–wetting cycles. Chlorideingress occurs mostly by means of diffusion and capillary suction. Considering theengineering practice of concrete under the drying-wetting cycles, theconvection-diffusion model of chloride transport was established, and the finitedifference method could be applied to solve this partial differential equation. And thenseveral specimens including common concrete are used respectively to carry out a seriesof experiments on chloride ingress in concrete under the drying-wetting cycles, thenumerical computing results of chloride profile in concrete agreed well withexperiments results, which showed the efficiency of the convection-diffusion model to preferably reflect the mechanism of chloride transport in concrete under drying-wettingcycles. Both numerical results and experimental results indicated that the ratio of dryingtime to wetting time determines the peak value and penetration depth of chloride, withthe increase of the ratio of drying time to wetting time, chloride’s peak value rises, andchloride’s penetration depth presents a trend of increase.
     (2) The critical chloride content of concrete under drying–wetting cycles. Thecritical chloride content influences greatly on the service life of concrete structuresexposed to marine environments. In order to obtain the critical chloride content ofconcrete under drying-wetting cycles, the reinforced concrete specimens of threedifferent water-binder ratios, three different mineral admixtures contents, and threedifferent carbonation degree were prepared and were subsequently exposed to NaCl(5.0%) solution with drying–wetting cycles (H.R.=60%). During the experiments,according to the potential and the current density of reinforcement corrosion, once thecorrosions normatively appear, the chloride profiles for each sample would be measured.Then the chloride threshold values for various concretes were statistically determinedwith the probability of90%under drying–wetting cycles. Taking the carbonation intoexperiments is suitable to the engineering practice and will provide a favorablereference for further durability design.
     (3) Chloride transport in cover protected concrete. Chloride could easilypenetrate the reinforcement through the cracks induced by mechanical load or shrinkage,which accelerate the initiation of corrosion in concrete and reduce the durability ofconcrete structure. Chloride transport in damaged concrete was discussed throughexperiments conducted respectively under tensile load and restrained shrinkage.Experiments revealed that chloride diffusion coefficient increased along with the tensilestress, characteristic of exponential growth mode. Even simultaneously exposed to saltysolution with the same load or restriction condition, silane impregnation concrete andECC had better performance on the resistance to deterioration than common concrete.
     (4) Durability design of cover protected concrete structures. According to theconvection-diffusion transport model mentioned above, and the chloride threshold valuestatically determined above, a new probabilistic method of the durability design forconcrete under drying-wetting cycles was provided based on the theory of reliability.For the concrete protected with silane or ECC, in order to meet the target reliabilityindex within the design working life, both durability design of new concrete anddurability redesign of damaged concrete were provided with chloride diffusivitycoefficient and cover thickness as the main parameters.
引文
[1.1] Gj rv, O.E.(2006) The Durability of Concrete Structures in the Marine Environment[C].∥C.W. Yu and J.W. Bull. Durability of Materials and Structures in Building and CivilEngineering. Dunbeath, Whittles Publishing,2006.
    [1.2]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990
    [1.3]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998
    [1.4]潘德强.我国海港工程混凝土结构耐久性现状及对策[C].北京:工程科技论坛——土建工程的安全性与耐久性,2001,11
    [1.5]冯乃谦,蔡军旺.山东沿海钢筋混凝土公路桥的劣化破坏及其对策的研究[J],混凝土,2003(1):3-12
    [1.6]王新友,蒋正武,高相东,等.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报,2002,5(1):66-71.
    [1.7] H. W. Reinhardt, M. Aufrecht. Simultaneous Transport of an Organic Liquid and Gas inConcrete[J]. Materials and Structures,1995,28,43-51
    [1.8] Massimo Sosoro. Transport of Organic Fluids through Concrete[J]. Materials and Structures,1998,31,162-169
    [1.9] Hanzic L, Ilic R. Relationship between liquid and capillary in concrete [J]. Cement andConcrete Research,2003,33(9):1385-1388.
    [1.10]Christopher Hall. Barrier Performance of Concrete: A Review of Fluid Transport Theory.Materials and Structures,1994,27,291-306
    [1.11]Hobbs, D., Matthews, J. Minimum requirements for concrete to resist deterioration due tochloride-induced corrosion[C], in D.W. Hobbs (ed.) Minimum Requirements for DurableConcrete, Crowthorne, British Cement Association,1998:43~89
    [1.12]Arya C. Effect of cement type on chloride binding and corrosion of steel in concrete [J].Cement and Concrete Research,1995,25(4):893-902
    [1.13]Page C L. The influence of different cements on chloride-induced corrosion of reinforcingsteel [J]. Cement and Concrete Research,1986,16(1):79-86
    [1.14]徐丽萍,吴学礼,黄士元. Cl-在水泥砂浆中的扩散系数[J].上海建材学院学报,1990(4):14-18
    [1.15]Byung Hwan Oh, Seung Yup Jang. Effect s of material and environmental parameters onchloride penetration profiles in concrete structures [J]. Cement and Concrete Research,2007(37):47-53.
    [1.16]Sang-Hun Han. Influence of diffusion coefficient on chloride ion penetration of concretestructure [J]. Construction and Building Materials,2007(21):370-378.
    [1.17]Martin-Perez B, Zibara H, Hooton R D. A study of the effect of chloride binding on servicelife predictions [J]. Cement and Concrete Research,2000(30):1215-1223.
    [1.18]Reddy B, Glass G K, Lim P J. On the corrosion risk presented by chloride bound in concrete[J]. Cement and Concrete Composites,2002(24):1-5.
    [1.19]Guillem de Vera, Miguel A Climent, Estanislao Viqueira. A test method for measuring chloridediffusion coefficients through partially saturated concrete. Part II: The instantaneous planesource diffusion case with chloride binding consideration [J]. Cement and Concrete Research,2007(37):714-724.
    [1.20]Dhir R K, Ei-Mohr M A K, Dyer T D. Developing chloride resisting concrete using PFA [J].Cement and Concrete Research,1997,27(11):1633-1639.
    [1.21]余红发,翁智财,孙伟等.矿渣掺量对混凝土氯离子结合能力的影响[J].硅酸盐学报,2007,35(6):801-806.
    [1.22]Mohammed T U, Hamada H. Relationship between free chloride and total chloride content sin concrete[J].Cement and Concrete Research,2003(33):1487-1490.
    [1.23]刘芳,金伟良,张奕.实际混凝土结构中氯离子结合理论对比分析[J].新型建筑材料,2007(6):13-16.
    [1.24]A.V.Saetta, R.V.Scotta, R.V.Vitaliani, Analysis of chloride diffusion into partially saturatedconcrete [J], ACI Material Journal.199390(47),441-451
    [1.25]Dhir, R., Jones, M. and Elghaly, A. PFA concrete: exposure temperature effects on chloride8diffusion [J]. Cement and Concrete Research,199323(5):1105~1114
    [1.26]Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concrete marinestructure: an environment methodology [J]. ACI material journal,1998,95(1):27-36
    [1.27]Thomas. M D A, Bam forth P B. Modeling chloride diffusion in concrete effect of fly ash andslag [J]. Cement and Concrete Research,1999,29(4):487-495.
    [1.28]刘志勇,孙伟,吕永高.含氯盐混凝土碳化过程钢筋锈蚀阀值与使用寿命预测[j].工业建筑,2005,35(1O):5054.
    [1.29]张鹏,赵铁军,郭平功.冻融和碳化作用对混凝土氯离子侵蚀的影响[J].东南大学学报:自然科学版,2006,36(增刊I1):238—242.
    [1.30]金祖权,孙伟,李秋义.碳化对混凝土中氯离子扩散的影响[J].北京科技大学学报,2008,30(8):921-925.
    [1.31]Chindaprasirt P,Rukzon S,Sirivivatnanon V.Effect of carbon dioxide on chloride penetrationand chloride ion diffusion coefficient of blended portland cement mortar [J]. Construction andBuilding Materials,2008,22(8):1701-1707.
    [1.32]Puatatsananon,Saouma V E.Nonlinear coupling of carbonation and chloride diffusion inconcrete[J], Journal of Materials in Civil Engineering,2005,17(3):264-275.
    [1.33]郑永来,郑洁琼,张梅.碳化程度对混凝土中氯离子扩散系数的影响[J].同济大学学报,2010,38(3):412-416
    [1.34]赵尚传.海洋环境中氯离子侵蚀与混凝土碳化诱发钢筋锈蚀失效概率的对比分析[J].公路,2008(4):163-166
    [1.35]Suryavansh A K,Narayan Swamy.Stability of Froebel’s salt in carbonated concrete structuralelements[J].Cement and Concrete Research,1996,26(5):729741.
    [1.36]许晨,王传坤,金伟良.混凝土中氯离子侵蚀与碳化的相互影响[J].建筑材料学报,2011,14(3):376-380
    [1.37]范宏,赵铁军,田砾等.暴露26年后的混凝土的碳化和氯离子分布[J].工业建筑,2006,36(8):50-53.
    [1.38]DuraCrete (2000) General Guidelines for Durability Design and Redesign[S]. The EuropeanUnion: Brite EuRam Ⅲ, Research Project No. BE95-1347Probabilistic Performance BasedDurability Design of Concrete Structures, Document R15
    [1.39]Boddy A,Bentz E,Thomas M D A and Hooton R D. An overview and sensitivity study of amultimechanistic chloride transport model [J].Cement and Concrete Research,1999(29):827-837.
    [1.40]M.Maage,St.Helland,J.E.Carlsen.Chloride Penetration in High Performance ConcreteExposed to Marine Environment [C].Proceedings on High Performance Concrete in SevereEnvironments,ACI SP-140,1993:194-204
    [1.41]陈伟,许宏发.考虑干湿交替影响的氯离子侵入混凝土模型[J].哈尔滨工业大学学报2006,38(12):2191-2194.
    [1.42]林刚,蒋应华.干湿交替下混凝土氯离子运输模拟[J].武汉工业学院学报,2009,28(3):68-71.
    [1.43]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J].硅酸盐学报,2008,36(10):1363-1369.
    [1.44]李春秋,李克非.干湿交替下表层混凝土中氯离子传输:原理、试验和模拟[J].硅酸盐学报2010,38(4):582-589.
    [1.45]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003:34(6),454-454
    [1.46]刘庆宽,王楠,王海龙.钢筋混凝土结构耐久性及裂缝问题研究的现状[J].石家庄铁道学院学报,2002,15(3):9-13
    [1.47]Loland K E, Continuous damage model for load-responds estimation of concrete[J].Cementand concrete research,1980,Vo1.10:395-402.
    [1.48]Mazars, J. Applieation de la meeanique de lendnnag emment an comportememt non lineairede structure [J].These de doetorat detat Univ.Paris,ENEET,Mai.1984
    [1.49]Kajcinovic, D. Constitutive equation for damaging platerials[J]. Jounal of AppliedMechanics,1983,50:355-360.
    [1.50]Supartoko F, Sidoroff F.Anisotropic. Damage Modeling for Brittle Elastic Material[J].Symp.of Franco-Poland, l984.
    [1.51]Bazant Z P. Microplane Model for Progressive Fracture of Concrete and Rock[J].Journal ofEngineering Mechanics.1985,111(4):559-582.
    [1.52]李杰.混凝土随机损伤力学的初步研究[[J].同济大学学报,2004,32(10):1270-1277.
    [1.53]Sam-Young Noh, Wilfried B. Kratzig, Konstantin Meskouris. Numerical simulation ofserviceability, damage evolution and failure of reinforced concrete shells[J]. Computer andStructure,2003,81(8-11):843-857.
    [1.54]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002
    [1.55]A. M. Neville著.李国泮,马贞勇译.混凝土的性能[M].北京:中国建筑工业出版社,1983
    [1.56]Mehta P K, Shiessl P, Raupach M.混凝土系统的性能与耐久性[C].第九届国际水泥化学会议综合报告译文集.南京:南京化工学院,1993.240-246
    [1.57]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述与建立[J].硅酸盐学报,2001,29(6):530-534.
    [1.58]万小梅.力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D].博士学位论文.西安建筑科技大学,2011
    [1.59]施锦杰,孙伟.混凝土中钢筋锈蚀研究现状与热点问题分析[J].2010,38(9):1753-1764
    [1.60]Beeby A W. Cracking, cover and corrosion of reinforcement [J]. Concrete International,1983,5(2):35–40.
    [1.61]Burrows R W. The visible and invisible cracking of concrete [R], ACI Monograph. Michigan:American Concrete Institute,1998.
    [1.62]Arya C, Wood L A. The relevance of cracking in concrete to corrosion in reinforcement [R].Technical Report-No44. Berkshire: The Concrete Society,1995:13–15.
    [1.63]Jaffer S J, Hansson C M. The influence of cracks on chloride induced corrosion of steel inordinary Portland cement and high performance concretes subjected to different loadingconditions [J]. Corrosion Science,2008,50(12):3343–3355.
    [1.64]Poursaee A, Hansson C M. The influence of longitudinal cracks on the corrosion protectionafforded reinforcing steel in high performance concrete [J]. Cement and Concrete Research,2008,38(8/9):1098–1105.
    [1.65]Darwin D, Manning D G, Hognestad E, et al. Debate: crack width, cover and corrosion [J].Concrete International,1985,7(5):20–35.
    [1.66]Saito M, Ohta M, Ishimori H. Chloride permeability of concrete subjected to freeze-thawdamage[J]. Cement and Concrete Composites,1994,(16):233-239.
    [1.67]Jacobson S, Marchand J, Boisvert L. Effect of cracking and healing on chloride transport inOPC concrete[J]. Cement and Concrete Research,1996,26(6):869-881.
    [1.68]马丽媛,姚燕,田培,等.国内外混凝土的收缩性能及抗裂性试验方法评述[J].中国建材科技,2001,(1):27-31.
    [1.69]冷发光.荷载作用下混凝土氯离子渗透性及其测试方法研究[D].北京:清华大学博士学位论文,2002
    [1.70]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,34(6),2003:454-454
    [1.71]Thangavel K. Relationship between chloride/hydroxide ratio and corrosion rate of steel inconcrete [J]. Cement and Concrete Composites,1998,20(4):283-289
    [1.72]M F Moutemor, A M P Simoes. Chloride-induced corrosion on reinforcing steel: from thefundamentals to the monitoring techniques [J]. Cement and Concrete Composites,2003,25(4-5):491-502
    [1.73]P. K. C. Chan, W. Jin. Multi-point Strain Measurement of Composite-bonded ConcreteMaterials with a RF-band FMCW Multiplexed FBG Sensor Array[J]. Sensors and Actuators A.2007,87:19-25.
    [1.74]D.A.Hausmann, Steel corrosion in concrete. How does it occur?[J], Matls Protection1967,6(11):19-23
    [1.75]Hausmann D.A. A probability model of steel corrosion in concrete[J]. Materials Performance.1998,37(10):64-68.
    [1.76]Glass G K, Buenfeld N R. The presentation of the chloride threshold level for corrosion ofsteel in concrete[J]. Corrosion Science,1997,39(5):1001–1013.
    [1.77]D.A.Hausmann, Steel corrosion in concrete. How does it occur?[J]. Materials Protection,1967,6(11):19-23
    [1.78]V.K. Gouda, Corrosion and corrosion inhibition of reinforcing steel[J]. British CorrosionJournal,1970,5:204-211
    [1.79]C. Alonso, C.Andrade,M.Castellote. Chloride Threshold Values to Depassivate ReinforcingBars Embedded in a Standardized OPC Mortar[J]. Cement and Concrete Research,30(7), July,2000:1047-1055
    [1.80]吴群,林昌健,杜荣归.氯离子对模拟混凝土孔隙液中钢筋钝性影响的电化学研究[J].金属学报,2008,44(3):346-350
    [1.81]Michael Thomas. Chloride threshold in marine concrete[J].Cement and Concrete Research,1996,26(4):513-519
    [1.82]Glass,G. Buenfeld,N. Chloride threshold levels for corrosion induced deterioration of steel inconcrete[C]. Proceedings of the International RILEM Workshop, October,1995:429-440.
    [1.83]Comite Euro-International du Beton. Durable Concrete Structure Design Guide[S]. ThomasTelford,1989.
    [1.84]D.A.Hausmann, Steel corrosion in concrete. How does it occur?[J].Matls Protection1967,6(11):19-23
    [1.85]Breitenbucher, R. Gehlan, C. Schiessl, P. Service life design for the Western Scheldt Tunnel,CEN TC104/DuraNet Workshop, Design of Durability of Concrete, Berlin,1999:76-87.
    [1.86]Stewart MG. Reliability-based optimisation of concrete durability design specifications andrepair strategies. In:Naus D, editor. Life Prediction and Aging Management of ConcreteStructures. Cannes: PRO16, RILEM,2000:209-218.
    [1.87]Alonso C, Castellote M, Andrade C, et al. Chloride threshold dependence of pitting potentialof reinforcements [J]. Electrochim Acta,2002,47(21):3469–3481.
    [1.88]LI L, SAGUES A A. Chloride corrosion threshold of reinforcing steel in alkalinesolutions-cyclic polarization [J]. Corros,2002,58(4):305–316.
    [1.89]Song H W, Saraswathy V, Muralidharan S, et al. Tolerance limit of chloride for steel inblended cement mortar using the cyclic polarisation technique [J]. J Appl Electrochem,2008,38(4):445–450.
    [1.90]Poupard O, Ait-mokhtar A, Dumagur P. Corrosion by chlorides in reinforced concret:determination of chloride concentration threshold by impedance spectroscopy [J]. Cem ConcrRes,2004,34(6):991–1000.
    [1.91]Durability Design of Concrete Structures[R]. Rilem Report14, Edited by A. Sarja, E.Vesikari,1996
    [2.1]混凝土结构耐久性设计规范(GB/T50476-2008)[S].中华人民共和国国家标准.北京,2008
    [2.2]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.5
    [2.3] Odd E. Gj rv著,赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社,2010
    [2.4] Krijger, The Skin of Concrete; Composition and Properties[J]. Mater. and Struct.1984,17:275-283
    [2.5]战洪燕.有机硅防水处理技术及混凝土表面氯离子隔离层建立[D].青岛:青岛理工大学,硕士学位论文,2004
    [2.6]张鹏,赵铁军, Wittmann F.H等.基于中子成像的水泥基材料毛细吸水动力学研究[J].水力学报,2011,42(1):81-87
    [2.7]李淑红,王立成.多孔建筑材料毛细吸水过程研究进展综述[J].2010,8(6),水利与建筑工程学报,16-20
    [2.8]王立成.建筑材料吸水过程中毛细管系数与吸水率关系的理论分析[J].水利学报,2009,40(9):1085-1090.
    [2.9] Mehta P K著,祝永年译.混凝土的结构、性能与材料[M].上海:同济大学出版社,1991
    [2.10]赵铁军.混凝土渗透性[M].北京:科学出版社,2006
    [2.11] M.Maage,St.Helland,J.E.Carlsen.Chloride Penetration in High Performance ConcreteExposed to Marine Environment [C].Proceedings on High Performance Concrete in SevereEnvironments,ACI SP-140,1993:194-204
    [2.12] Feldman R, Sereda P. A new model for hydrated Portland cement and its practicalimplications[J]. Engineering Journal of Canada,1970,53(8/9):53–59.
    [2.13] Rose D A. Water movement in unsaturated porous materials [J]. RILEM Bulletin,1965,29(Dec):119-124
    [2.14] Powers T C. Physical properties of cement paste[C]. Proceedings of the4th InternationalSymposium on the Chemistry of Cement, Washington D.C,1962.577-613.
    [2.15] Krus M. Determination of the moisture storage characteristics of porous capillary activematerials[J]. Materials and Structures,1998,31(8):522–529.
    [2.16]朱文涛.物理化学[M].北京:清华大学出版社,1995
    [2.17]李春秋.干湿交替下表层混凝土中水分与离子传输过程研究[D].清华大学,博士学位论文,2009
    [2.18] Gummerson R, Hall C, Hoff W. Unsaturated water flow within porous materials observed byNMR imaging[J]. Nature,1979,281:56-57.
    [2.19] Hall C. Water sorptivity of mortars and concretes: A review[J]. Magazine of ConcreteResearch,1989,41(147):51–61.
    [2.20] Leech C, Lockington D, Dux P. Unsaturated diffusivity functions for concrete derived fromNMR images[J]. Materials and Structures,2003,36(6):413-418.
    [2.21] Hall C, Hoff W D, Skeldon M. The sorptivity of brick: dependence on the initial watercontent[J]. Journal of Physics D: Applied Physics,1983,16(10):1875-1880.
    [2.22] Ba ant Z P,Najjar L J. Drying of concrete as a nonlinear diffusion problem[J]. Cement andConcrete Research,1971,1(5):461-473.
    [2.23] Pihlajavaara S E. On the Main Features and Methods of Investigation of Drying and RelatedPhenomena in Concrete[D]. Helsinki:State Institute for Technical Research,1965.
    [2.24] Kasi S S H,Pihlajavaara S E. An Approximate Solution of a Quasi-linear DiffusionProblem[R]. Helsinki:State Institute for Technical Research,No.153,1969.
    [2.25] Mensi R,Acker P,Attolou A. Drying of concrete:analysis and modeling[J]. Materials andStructures,1988,21(1):3-12.
    [2.26] CEB-FIP Mode Code1990Design Code. Bulletin Information,1993.213-214.
    [2.27] Ba ant Z P. Mathematical models for creep and shrinkage of concrete[A]. Creep andshrinkage in concrete structure[C].1982.163-226.
    [2.28]王新友,蒋正武,高相东,等.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报,2002,5(1):66-71.
    [2.29] Kwak H G, Ha S J, Kim J K. Non-structural cracking in RC walls: Part I finite element formulation[J]. Cement and Concrete Research,2006,36(4):749-760.
    [2.30] Pihlajavaara S E. Estimation of drying of concrete at different relative humidity andtemperature of ambient air with special discussion about fundamental features of drying andshrinkage[C]//Creep and Shrinkage in Concrete Structures. New York:John Wiley&Sons,1982:87~108
    [2.31] Ba ant Z P, Kim J K. Consequence of diffusion theory for shrinkage of concret[J]. Materialand Structure,1991,24:346~349
    [2.32] Akita H, Fujiwara T, Ozaka Y. A practical procedure for the analysis of moisture transferwithin concrete due to drying [J]. Magazine of Concrete Research,1997,49(179):129~137
    [2.33] Johannesson B F. Nonlinear transient phenomena in porous media with special regard toconcrete and durability [J]. Advanced Cement Based Material,1997,6(3-4):71-75.
    [2.34]王胜年,黄君哲,张举连,等,华南海港码头混凝土腐蚀情况的调查与结构耐久性分析[J].水运工程,2000(6):8-11.
    [2.35]张奕.氯离子在混凝土中的输运机理研究[D].博士学位论文.杭州:浙江大学,2008
    [2.36] Lu Xinyin. Application of Nernst-Einstein equation to concrete[J]. Cement and ConcreteResearch,1997,27(2):293–302.
    [2.37]郭力,陈堂.非饱和混凝土中氯离子输运问题的边界元算法[J].中国科学:物理学力学天文学Vol.41,2011(3):309~318
    [2.38] DuraCrete. General guidelines for durability design and redesign[S]. European Union-BriteEuram Ⅲ,2000.
    [2.39] Saetta A V, Scotta R V, Vitaliani R V. Analysis of chloride diffusion into partially saturatedconcrete[J]. ACI Materials Journal,1993,90(5):441–451.
    [2.40] Costa A, Appleton J. Chloride penetration into concrete in marine environment-Part II:Prediction of long term chloride penetration [J].MaterStruct,2006,32(5):354–359
    [2.41] Ababneh A, Benboudjema F, Xi Y. Chloride penetration in non-saturated concrete[J]. Journalof Materials in Civil Engineering, ASCE,2003,15(2):183–191.
    [2.42] Suwito, Cai X C, Xi Y P. Parallel finite element method for coupled chloride moisturediffusion in concrete[J]. Int J Numer Anal Mod,2006,3(4):481–503
    [2.43] Boddy A, Bentz E, Thomas M D A, et al. An overview and sensitivity study of amultimechanistic chloride transport model[J]. Cement Concrete Res,1999,29(6):827–837
    [2.44] Martin P B, Zibara H, Hooton R D. A study of the effete of chloride binding on servicelife predictions [J].Cement and Concrete Research,2000,30(8):1215-1223
    [2.45] Nillson L O, Massat M, Tang L. The effete of non-line chloride binding on the prediction ofchloride penetration into concrete structures [C]. MalhotraVM.(Ed.),Durability of Concrete,ACI SP-145,Detroit,1994,469-486.
    [2.46] Stephen L Amey. Prediction the service life of concrete marine structure, An environmentmethodology[J]. ACI Materials Journal,1998,95(2):331-342.
    [2.47] Nguyen T Q. Moédelisations physico-chimiques de la pénétration des ions chlorures danslesmatériaux cimentaires[D]. Paris: Laboratoire Central des Ponts et Chaussées,2007.
    [2.48]水运工程混凝土试验规程(JTJ270-98)[S].中华人民共和国行业标准,1998.
    [3.1]施锦杰,孙伟.混凝土中钢筋锈蚀研究现状与热点问题分析,硅酸盐学报,2010,38(9):1753-1764
    [3.2] Thangavel K. Relationship between chloride/hydroxide ratio and corrosion rate of steel inconcrete [J]. Cement and Concrete Composites,1998,20(4):283-289
    [3.3] M F Moutemor, A M P Simoes. Chloride-induced corrosion on reinforcing steel: from thefundamentals to the monitoring techniques [J]. Cement and Concrete Composites,2003,25(4-5):491-502
    [3.4]范宏.混凝土结构中的氯离子侵入与寿命预测[D].西安建筑科技大学博士学位论文,2009.
    [3.5] L. J. Parrott. Et al. A Study of Carbonation-induced Corrosion. Magazine of ConcreteResearch.1994(46):23-28
    [3.6]鄂飞,叠伟良,张亮.碳化反应区对混凝土碳化规律的影响[J].工业建筑,1999,29(1):12-16
    [3.7]徐善华,牛荻涛,王庆霖.大气环境条件下混凝土中钢筋的锈蚀[J].建筑技术,2003(4):267-269
    [3.8]杨静.混凝土的碳化机理及其影响因素.混凝土.1995(5):23-28
    [3.9]苗吉军,李乌江,刘延春等.沿海某混凝土框架结构钢筋锈蚀原因分析与修复加固对策[J].建筑结构,2010,40(2):81-83
    [3.10]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,1(29):3-7.
    [3.11]温连军.青岛地区混凝土碳化性能研究[D].青岛:青岛理工大学硕士学位论文,2005
    [3.12] Frank. M. Lea.水泥和混凝土化学(第三版)[M].唐明述译.北京:建筑工业出版社,1980
    [3.13] CEB Durable Concrete Structures: Design Guide, Comité Earo-International du Beton-CEB,Bulletin D’Information No.183, Telford, London,1992
    [3.14]余志顽,张梅,余冬荣.混凝土中钢筋腐蚀临界氯离子浓度的研究方法[J].南京师范大学学报,2010,10(4):65-71
    [3.15]丁伟军,程波.钢筋锈蚀的自然电位法检测[J].建材标准化与质量管理.2006,13(4)13-15
    [3.16] Stern M, Geary A L. Electrochemical polarization I—a theoretical analysis o f the shape o fpolarization curves [J]. Journal of the Electrochemical Society,1957,104:56-63.
    [3.17] Alonso C, Andrade C, Gonzalez J A. Relation between resistivity and corrosion rate ofreinforcements in carbonated mortar made with several cement types [J]. Cem Concr Res,1988,18(5):687–698.
    [3.18] Broomfield, J. P., Rodriguez, J., Ortega, L. M. and Garcia, A. M. Corrosion ratemeasurements in reinforced concrete structures by a linear polarization device. In Weyers, R.E.(ed.) philip D. Cady symposium on corrosion of steel in concrete. American ConcreteInstitute, Special Publication1994,151
    [3.19]《普通混凝土长期性能和耐久性能试验方法标准》(GB/T50082-2009)[S].中华人民共和国国家标准,2009
    [4.1] P.Kumar Mehta著.覃维祖王栋民丁建彤译.混凝土微观结构、性能与材料[M].北京:中国电力出版社,2008.9.
    [4.2] Wittmann F H. Creep and shrinkage mechanism [C]//Creep and Shrinkage in ConcreteStructures. New York:John Wiley&Sons,1982:129~161
    [4.3] Alvaredo A M. Drying Shrinkage and Crack Formation [R]. Freiburg:Aedificatio Publishers,1994.
    [4.4] O. M. Jenson, P. F. Hansen. Autogenous Deformation and RH-change in Perspective[J].Cement and Concrete Research.2001,31(12):1859-1864
    [4.5] K van Breugel. Numerical modeling of volume change at early ages-potential, pitfalls andchallenges. Materials and Structure.2001June:293-301
    [4.6] P. Paulini. Reaction Mechanisms of Concrete Admixtures[J]. Cement and Concrete Research.1990,20(6):910~918
    [4.7]马一平,朱蓓蓉,谈慕华.水泥砂浆塑性抗拉强度与收缩开裂的关系[J].建筑材料学报.2003,6(1):20-24
    [4.8]吴中伟,廉惠珍.高性能混凝土[M].北京,中国铁道出版社.1999:267-268
    [4.9] F.H. Wittmann. The structure of hardened cement paste—A basis for a better understandingof the material properties[C]. Proc. Conf. on Hydraulic Cement Pastes: Their Structure andProperties, Slough,1976:96~117
    [4.10] B. Gérard, D. Breysse, A. Ammouche, etc. Cracking and Permeability of Concrete underTension[J]. Material and Structures,1996,29(4):141~151
    [4.11] C. M. Aldea, S. P. Shah, A. Karr. Permeability of Cracked Concrete[J]. Materials andStructures,1999(32):370-376
    [4.12]方永浩,李志清,张亦涛.持续压荷载作用下混凝土的渗透性[J].硅酸盐学报,2005,33(10):1281-1286
    [4.13]赵尚传,贡金鑫,水金锋.弯曲荷载作用下水位变动区域混凝土中氯离子扩散规律试验[J].中国公路学报,2007,21(4):12-15
    [4.14] A. Konin, R. Francois, Arligie. Penetration of Chlorides in Relation to the Micro-crackingState into Reinforced Ordinary and High Strength Concrete[J]. Materials and Structures,1998,31(6):310-316
    [4.15]邢锋,冷发光,冯乃谦,马冬花.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土,2004,175(5):3-8
    [4.16]张德锋.现代预应力混凝土结构耐久性研究[D].南京:东南大学,2001
    [4.17]滕海文,黄颖,黄峰洲,霍达.荷载与环境因素耦合作用下结构耐久性研究进展[J].工程抗震与加固改造,2011,33(1):12-18
    [4.18]孙伟,余红发.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [4.19] Boulfiza M. Prediction of chloride ions ingress in uncracked and cracked concrete[J]. ACIMaterials Journal,2003,100(1):67-74.
    [4.20]万小梅.力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D].西安:西安建筑科技大学,2011
    [4.21] Lunk, F.H.Wittmann. The Behaviour of Cracks in Water Repellent Concrete Structures withRespect to Capillary Water Transport[C]. F. H. Wittmann, edit. Water Repellent Treatment ofBuilding Materials, Proceedings of Hydrophobe Ⅱ. Zuich,1998,63-76
    [4.22] Yingzi Yang, En-Hua Yang, Victor C. Li. Autogenous healing of engineered cementitiouscomposites at early age [J]. Cement and Concrete Research,2001,41:176-183
    [4.23]毛新奇.PVA纤维掺量对ECC收缩和抗裂性能的影响[D].青岛:青岛理工大学,2005.
    [4.24] Martinola G., and M.F. Bauml, Optimizing ECC in Order to Prevent Shrinkage Cracking [C].Proceedings of the JCI International Workshop on Ductile Fiber Reinforced CementitiousComposites-Application and Evaluation, Takayama, Japan, Oct.2002:143-152
    [4.25] Wang, K., Jansen, D.C., Shah, S., and Karr, A.F. Permeability study of cracked concrete[J].Cement and Concrete Research,1997,27(3):381–394.
    [4.26] Lawler J.S.,Zampini D.,and Shah S.P. Permeability of cracked hybrid fiber reinforced mortarunder load [J]. ACI Materials.2002,99(4):379-385
    [4.27] Kovler K. Testing System for Determining the Mechanical Behavior of Early Age Concreteunder Restrained and Free Uniaxial Shrinkage [J]. Materials and Structures,1994,27(3):324-330
    [4.28] S. P Shah, C. Ouyang, A Method to Predict Shrinkage Cracking of Concrete[J]. ACI MaterialJournal,1998,94(4):339-346
    [5.1]李宗津,孙伟,潘金龙.现代混凝土的研究进展[J].中国材料进展,2009,28(11):1-7
    [5.2]吴瑾,吴胜兴.氯离子环境下钢筋混凝土结构耐久性寿命评估[J].土木工程学报,2000,38(2):59-63
    [5.3] Amey S L, Johnson D A, Miltenberger M A, et al.Prediction of service life of concretemarine structures: an environmental methodology [J].ACI Structural Journal,1998,95(2):205-214
    [5.4] Trevor J.Kirkpatrick.Impact of Specification Changes on Chloride Induced CorrosionService Life of Virginia Bridge Decks[D].Thesis in Civil and EnvironmentalEngineering,Virginia Polytechnic Institute and State University,2001
    [5.5]刘志勇,孙伟,杨鼎宜等.基于氯离子渗透的海工混凝土寿命预测模型进展[J].工业建筑,2004,34(6):61-64
    [5.6]邸小坛,周燕,顾红祥. WD13823的概念与结构耐久性设计方法探讨[C].金伟良,赵羽习编第四届混凝土结构耐久新科技论坛论文集.北京:机械工业出版社.2006.7
    [5.7] Magne Maage, Ervin Poulsen.Service Life Model for Concrete Exposed to MarineEnvironment LIGHTCON.Service Life Models:Instructions on methodology and applicationof models for the prediction of the residual service life for classified environmental loads andtypes of structures in Europe[R].Life Cycle Management of Concrete Infrastructures forImproved Sustainability.2003
    [5.8]马亚丽.基于可靠性分析的钢筋混凝土结构耐久寿命预测[D].北京:北京工业大学博士学位论文,2006
    [5.9] C.Alonso,C.Andrade,M.Castellote,P.Castro.Chloride threshold values of depassivatereinforeing bars embedded in a standardized OPC mortar[J].Cement and ConcreteReseareh,2000,(30):1047-1055
    [5.10] Finn F.Marine chlorides-A probabilistic approach to derive provision for EN206-1[R]//Service Life Design of Concrete Structures-From Theory to Standardization.Norway: the3rd Duranet Workshop,2001
    [5.11] EC Bentz.Probrabilistic modeling of service life for structures subjected to chloride [J].ACIMaterials Journal,2003,100(5):391-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700