用户名: 密码: 验证码:
氯盐环境下聚丙烯纤维混凝土耐久性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯纤维混凝土作为对普通混凝土的改良,以其优良的阻裂和抵抗变形的能力广泛应用于重大工程中,聚丙烯纤维混凝土在服役过程中同样会经受各种腐蚀介质的侵蚀,其耐久性失效的问题同样无法忽视。氯盐环境中氯离子侵蚀与钢筋锈蚀是混凝土结构耐久性的主要研究内容,其中氯离子侵蚀引起的钢筋锈蚀是海工混凝土耐久性失效的重要原因,研究氯离子在聚丙烯纤维混凝土中的传输规律,对进一步研究聚丙烯纤维混凝土结构的耐久性及寿命预测具有非常重要的意义。
     本文通过试验研究了海洋水下区、海洋潮汐区、海洋盐冻环境、严寒地区海洋潮汐区四种氯盐环境下聚丙烯纤维混凝土的耐久性能,分析了混凝土中氯离子的输运机制,并建立了相应的氯离子扩散模型,具体内容如下:
     利用干燥失水法和扫描电镜试验研究了聚丙烯纤维混凝土的微观结构,结果表明,当聚丙烯纤维掺量从0增加到0.1%,混凝土内部结构越来越来致密,有效孔隙率逐渐降低;当聚丙烯纤维掺量从0.1%增加到0.5%,混凝土内部结构逐渐疏松,有效孔隙率逐渐增加。根据理论分析与试验结果,建立了聚丙烯纤维混凝土孔隙率的计算方法,为建立聚丙烯纤维混凝土中氯离子输运模型奠定基础。
     采用长期浸泡和干湿交替方式分别模拟海洋水下区与海洋潮汐区环境,研究了纤维掺量对聚丙烯纤维混凝土中氯离子扩散性能的影响,结果表明,适量的聚丙烯纤维可降低侵入混凝土内部的氯离子含量;干湿交替作用下混凝土中氯离子峰值含量与长期浸泡作用下的峰值含量接近;长期浸泡作用下混凝土中氯离子峰值出现于混凝土表面;由于对流作用以及孔隙类似“墨水瓶-束管”微结构的存在,干湿交替作用下氯离子在距离混凝土表面一定深度处存在峰值。根据试验结果与理论分析,分别建立了聚丙烯纤维混凝土中峰值氯离子含量与氯离子扩散系数随纤维掺量变化的数学模型。
     采用在氯盐溶液中冻融循环的方式模拟海洋盐冻环境,结果表明,聚丙烯纤维抑制了混凝土表层剥蚀和内部微裂缝的扩展,有效降低了混凝土的质量损失率、相对动弹性模量以及抗折强度损失率。由于对流作用和脱盐作用的存在,氯离子在距离混凝土表面一定深度处存在峰值,氯离子扩散系数随盐冻循环次数逐步减小,且随纤维掺量的增大而增大;基于混凝土盐冻损伤方程,分别建立聚丙烯纤维混凝土中峰值氯离子含量与氯离子扩散系数随盐冻损伤度变化的数学模型。
     采用干湿-盐冻复合试验方式模拟严寒地区海洋潮汐环境,研究了循环次数和纤维掺量对混凝土内部损伤和氯离子输运性能的影响,并与干湿交替和盐冻循环作用下的混凝土中氯离子分布进行对比分析。研究表明,盐冻循环与干湿交替共同加速了混凝土表层氯离子的沉积,氯离子在距离混凝土表面一定深度处存在峰值,分别建立了聚丙烯纤维混凝土中峰值氯离子含量和氯离子扩散系数随损伤度变化的数学模型。
     基于Fick第二定律,考虑纤维掺量和盐冻损伤对聚丙烯纤维混凝土氯离子扩散性能的影响,针对不同的氯盐侵蚀环境分别建立聚丙烯纤维混凝土的氯离子扩散模型,并对模型进行了试验验证,结果吻合较好,模型的建立为氯盐环境下聚丙烯纤维混凝土结构耐久性设计与寿命预测奠定了基础。
As the improvement to ordinary concrete, Polypropylene fiber reinforced concrete wasused widely in major projects with its excellent crack resistance and resistance to deformationcapacity. PPF concrete will also withstand the erosion of various corrosive media as thecommon concrete in its service process, so its durability failure cannot be avoided. Chlorideion penetration and steel corrosion are the main aspects to the durability of concrete structurein chloride environment.Steel corrosion due to chloride ion penetration is the importantreason to cause the durability of concrete failure. To study the durability of PPF concrete, thetransportation model of chloride into PPF concrete under the different chloride environmenthas a very important significance.
     This thesis carried out the study on durability of polypropylene fiber reinforced concretein four chloride environment, which contain marine underwater zone, marine tidal zone,marine cold zone, marine tidal zone in cold region. The transport processes of chloride intoPPF concrete were discussed, and the diffusion models of chloride in PPF concrete wereestablished. The content includes:
     The drying method and SEM test were carried out to study the microstructure of PPFconcrete. The test showed that the pore structure of PPF concrete turn to be better with theeffective porosity reduced when the Polypropylene fiber was from0to0.1%, but when thecontent increased from0.1%to0.5%, the pore structure of concrete turn to be worse.According to the theoretical analysis and experimental results, the calculation method of theporosity of PPF concrete was established which lay the foundations for the predicting modelof chloride diffusion.
     The diffusion properties of chloride in different volume of PPF concrete wereinvestigated by using long-term immersion method and alternation of wet-dry method to simulate marine underwater region and marine tidal region respectively. Due to the presenceof convection and pore like "ink tank-tube" micro-structure, there is a peak of chloride ion inthe distance from the specimen surface. Compared with the long-term immersion, bothchloride properties have the same peak concentration.
     Accelerated frost-salt test was used to simulate marine cold zone. The results showedthat the PP fiber can reduce the mass loss while increase the relative dynamic elastic modulus,relative splitting tensile strength. Due to the presence of convection and desalination, there isa peak of chloride ion in the distance from the specimen surface. The chloride diffusioncoefficient decayed with salt-freeze cycles, and increased with the volume of fiber. Therelationship between the peak chloride content and freeze-thaw damage was established byintroducing the concrete freeze-thaw damage variable, and also established the relationshipbetween chloride diffusion coefficient and freeze-thaw damage.
     The experiment of dry-wet cycles and salt-freeze cycles working together was used tosimulate marine tidal zone in cold region. Compared with the dry-wet cycles and salt-freezecycles, both environments accelerated the deposition of peak chloride ions, there is a peak ofchloride ion in the distance from the specimen surface. The chloride diffusion coefficientdecayed with the number of combined cycle, and increased with the volume of fiber.
     Finally, based on Fick’s second law and the analysis for the fiber volume andfreeze-thaw damage, the chloride diffusion models under different chloride environment wereestablished respectively according to test data. The model is reasonable according toexperimental verification, which provides theory basis for durability life prediction of PPFconcrete structures in chloride corrosion environment.
引文
[1]赵国藩,彭少民,黄承逵编著.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999
    [2]徐至钧.纤维混凝土技术及应用[M].中国建筑工业出版社,2003
    [3]纤维混凝土结构技术规程(CECS38:2004).大连理工大学.北京,2004
    [4]水泥混凝土和砂浆用合成纤维(GB/T21120-2007).北京:中国建筑工业出版社,2007
    [5] Kejin wang, Surendra P. Plastic shrinkage cracking in Concrete Materials-Influence of Fly Ash andFibers. ACI Materials Journal,2001,98(6):455-464
    [6] Parviz Soroushian. Secondary Reinforced-Adding Cellulose Fibers. Concrete International,1997(6):28-34
    [7]张佚伦,詹树林,钱晓倩,孟涛,钱匡亮.聚丙烯纤维混凝土早期收缩性能试验研究[J].新型建筑材料,2006(1):25-28
    [8] Cheon-Goo Han, Yin-Seong Hwang, Seong-Hwan Yang. Performance of spalling resistance of highperformance concrete with polypropylene fiber contents and lateral confinement. Cement and ConcreteResearch.2005(35):1747-1753
    [9] D J.汉南特著.纤维水泥与纤维混凝土[M].陆建业译.北京:中国建筑工业出版社,1986
    [11]王罡,潘江津,张胜利等.国家大剧院工程C30P60纤维混凝土的研制与应用[J].建筑技术,2004,5(2):116-118
    [12]吉姆·匹斯克曼,哈里斯·斯科特:纤维混凝土铺覆超薄市区道路. USA,Transportation Research,1997(7)
    [13]王彬,黄云,关忠林.聚丙烯纤维混凝土首次在新疆桥梁施工中的应用[J].混凝土,2003(11):63-64
    [14]马华堂,管新建等.聚丙烯纤维混凝土的力学特性及路面工程应用[J].河南科学,2002,20(6):734-735
    [15]朱江.聚丙烯纤维混凝土在路面工程中的应用研究[J].混凝土,2000(9):8-10
    [16]王黎明.聚丙烯纤维混凝土研究及其在桥面连续及伸缩缝处的应用[J].黑龙江交通科技,2004(2):47-48
    [17]单俊鸿,周明凯,李北星.聚丙烯纤维混凝土在桥面铺装中的应用与施工[J].施工技术,2005(34):78-80
    [18]徐至钧.聚丙烯纤维在路桥工程中的应用[J].特种结构,2002,19(2):65-66
    [19]危加阳.改性聚丙烯纤维混凝土的性能及其在水利工程中的应用[J].甘肃水利水电技术,2006,42(2):143-146
    [20]陈攀,李志乾,王伟.聚丙烯纤维混凝土在巴家咀水库除险加固工程中的应用[J].水利水电工程技术,2009,28(3):17-18
    [21]祖福兴,钟明全,李洪英等.聚丙烯纤维混凝土在船闸输水廊道中的应用[J].水运工程,2006(2):53-54
    [22]李敏,符振辉.聚丙烯纤维混凝土在乐滩水电站的应用[J].红水河,2006,25(3):58-60
    [23]于喜三,吕宜成.聚丙烯纤维混凝土组合防渗新技术在水利工程建设中的应用[J].吉林水利,2004(9):9-12
    [24]刘克亮.聚丙烯纤维混凝土在预应力水处理构筑物中的应用[J].黑龙江科技信息,2010(8):294-295
    [25]劳俭翁,郭荣卿.聚丙烯纤维混凝土在白溪水库Ⅱ期面板上的应用[J].水利水电技术,2003,34(2):40-43
    [26]金伟良.混凝土结构耐久性[M].北京:科学出版社,2002
    [27]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003
    [28]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998
    [29] Dan F. Adkins, Gary P. Merkley, Gertrudys Brito. Mathematics of concrete scaling, Journal ofMaterials in Civil Engineering,1993,5(2):280-288
    [30]潘德强,洪定海,郑恩惠等.华南海港钢筋混凝土码头锈蚀破坏调查报告.四航科研所、南京水利科学研究所等,1981
    [31] Mehta P K. Concrete durability-fifty years progress. Proc. On Concrete Durability. ACISP126-1.1991:1-31
    [32]洪乃丰.混凝土中钢筋腐蚀与防护技术—钢筋腐蚀危害与对混凝土的破坏作用[J].工业建筑,1999,29(8):66-68
    [33] Montemor M F, Simoes A M P, Ferreira M G S. Chloride-induced corrosion on reinforcing steel:fromthe fundamentals to the monitoring techniques[J]. Cement and Concrete Composites,2003,25:491-502
    [34] Dehwah H A F, Austin S A, Maslehuddin M. Chloride-induced reinforcement corrosion in blendedcement concrete exposed to chloride-sulphate environment[J]. Magazine of Concrete Research,2002,54(5):355-364
    [35] Ampadu K O, Torii K. Chloride ingress and steel corrosion in cement mortars incorporatinglow-quality fly ashes[J]. Cement and Concrete Research,2002,32(6):893-901
    [36] Bildcrbcck Lr D W, Durability of structures in marine environment recent Butch research[J]. IndianConcrete Journal,1998,62(2)
    [37] Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration,(T259-80), AmericanAssociation of State Highway and Transportation Officials, Washington, D.C., USA,1994
    [38] Standard method for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials,(T260-94), American Association of State Highway and Transportation Officials, Washington, D C,USA,1994
    [39] Electrical Indication of Concrete’s Ability to Resist Chloride,(T277-93), American Association ofState Highway and Transportation Officials, Washington, D C, USA,1983
    [40] Nordtest Method: Accelerated Chloride Penetration into Hardened Concrete, Nordtest, Espoo, Finland,Proj.11,54-94,1995
    [41] El-Belbol S M and Buenfeld N R, Accelerated Chloride Ion Diffusion Test, Material Research SocietySymposium proceedings, Vol.137:203-208,1989
    [42] Whiting D. Rapid Measurement of the Chloride Permeability of Concrete, Public Roads, Vol45, No3:101-112,1981
    [43] Tang L. Electrically accelerated methods for determining chloride diffusivity in concrete[J].Magazineof Concrete Research,1996,48(176:173~179)
    [44] Tang L. Chloride transport in concrete-measurement and prediction[D]. Doctoral thesis, PublicationP-96:6, Dept. of building Materials, Chalmers Universities of Technology, Gothenburg, Sweden,1996
    [45]赵铁军.混凝土渗透性[M].北京:科学出版社,2006
    [46]路新瀛,张华新,王晓睿.混凝土渗透性电测方法评述[J].混凝土与水泥制品,2003(4):7-9
    [47]王晓冬,张鹏,赵铁军.混凝土氯离子渗透性试验方法综述[J].工业设计与建设,2005,37(5):25-29
    [48] Tang L. Concentration dependence of diffusion and migration of chloride ions Part1. Theoreticalconsiderations. Cement and Concrete Research,1999,29(9):1463-1468
    [49] Orellan, Herrera J.C, Escadeillas G, Arliguie G, Electro-chemical shloride extraction: Influence of CAof the cement on treatment efficiency, Cement and Concrete Research2006,36:1936-1946
    [50] Toumi A, Francois R, Alvarado O, Experimental and numerical study of electrochemical chlorideremoval from brick and concrete specimens. Cement and Concrete Research2007,37(1):54-62
    [51]邝生鲁等编著,应用化学,华中理工大学出版社[M],武汉:1994.9
    [52] A.J.巴德, L.R.福克纳著,谷林瑛,吕鸣祥,宋诗哲等译,电化学方法[M],北京:化学工业出版社,1984
    [53]罗睿,蔡路波,王昌义,黄晓明.磨细矿渣抗氯离子侵蚀性能的机理研究[J].土木工程学报,2002,35(6):101-104
    [54] Smolczyk H G. Chemical Reactions of Strong Chloride-Solutions with Concrete. In: proceedings of5th International Symposium on Chemistry of Cement. Tokyo,1969, Supplementary paper Ⅲ(31):274-280
    [55] Traetteberg A. The Mechanism of Chloride Penetration in Concrete. SINTEF Report STF65A77070,1977-12-30.51
    [56] Markova O A. Physiochemical Study of Calcium Hydroxide Chlorides. Zh. Fiz. Khim,1973,47(4):1065
    [57] Diamond S. Chloride concentrations in concrete pore solutions resulting from calcium and sodiumchloride admixtures. Cement, Concrete and Aggregates,1986,8(2):97-102
    [58] Rasheeduzzafar H S, Al-Saadoun S S. Effect of Tricalcium Aluminate Conten of Cement on ChlorideBinding and Corrosion of Reinforcing Steel in Concrete. ACI Material Journal,1993,89(1):3-12
    [59] Tang L, Nilsson L O. Chloride Binding Capacity and Binding Isotherms of OPC pastes and Mortars.Cement and Concrete Research,1993,23(2):247-253
    [60] Blunk G, Gunkel P, Smolczyk H G. On the Distribution of Chloride between the Hardening Cementpaste and Its Pore Solution. In:8thInternational Congress on the Chemistry of Cement,1986.85-90
    [61] Wowra O, Setzer M J. Sorption of chlorides on hydrated cements and C3S pastes. In: Frost Resistanceof Concrete. Setzer M J, Auberg R, eds. London: E&FN Spon,1997.147-153
    [62] Ramachandran V S. Possible States of Chloride in the Hydration of Tricalcium Silicate in the Presenceof Calcium Chloride. Mater Constr Mater Struct,1971,4(19):3-12
    [63]元强.水泥基材料中氯离子传输试验方法的基础研究[D].中南大学博士学位论文,2009
    [64]何富强.硝酸银显色法测量水泥基材料中氯离子迁移[D].中南大学博士学位论文,2010
    [65] Jin Weiliang, Zhang Yi. Fire’s effect on chloride ingress related durability of concrete structure[J].Journal of Zhejiang University SCIENCE A,2007,8(5):675-681
    [66] Page C L, Short N R, EI Tarras A. Diffusion of chloride ions in hardened cement pastes. Cement andConcrete Research,1981,11(3):395-406
    [67] Dhir R K, Jones M R, Elghaly A E. PFA Concrete: Exposure temperature effects on chloride diffusion.Cement and Concrete Research,1993,23(5):1105-1114
    [68] Care S. Effect of temperature on porosity and on chloride diffusion in cement pastes. Construction andBuilding Materials,2008,22(7):1560-1573
    [69] Nielsen E P, Geiker M R. Chloride diffusion in partially saturated cementitious material. Cement andConcrete Research,2003,33(1):133-138
    [70] Climent M A, Vera G, Lopez J F, et al. A test method for measuring chloride diffusion coefficientsthrough nansaturated concrete-Part Ⅰ: The instantaneous plane source diffusion case. Cement andConcrete Research,2002,32(7):1113-1123
    [71] Vera G, Climent M A, Viqueira E, et al. A test method for measuring chloride diffusion coefficientsthrough partially saturated sonsrete. Part Ⅱ: The instantaneous plane source diffusion case withchloride binding consideration. Cement and Concrete Research,2007,37(5):714-724
    [72] Mangat P S, Gurusamy K. Chloride diffusion in steel fibre reinforced concrete containing PFA.Cement and Concrete Research,1987,17(3):385-396
    [73] Konin a, Francois R, Arliguie G. Penetration of chloride in relation to the microcrackong state intoreinforced ordinary and high strength concrete. Materials and Structures,1998,31(209):310-316
    [74]王培铭,陈更新,李纹纹.长期盐水浸渍的水泥砂浆中的氯离子渗透[J],1998,26(2):227-230
    [75]吴庆令,余红发,梁丽敏,王甲春,刘连新.海工混凝土的氯离子扩散性与寿命预测[J].建筑材料学报,2009,,12(6):712-715
    [76]张鹏,赵铁军,郭平功,Wittmann Folker H.冻融和碳化作用对混凝土氯离子侵蚀的影响[J].东南大学学报,2006(36)增刊Ⅱ:239-242
    [77]洪雷,唐晓东.冻融循环及龄期对混凝土氯离子渗透性的影响[J],2011,14(2):255-262
    [78]陈浩宇,余红发,刘连新,翁智财,蒋宏伟,李美丹.混凝土在海洋环境和除冰盐条件下的氯离子扩散行为[J],华中科技大学学报,22(3):49-52
    [79]余红发.盐湖地区高性能混凝土的耐久性-机理与使用寿命预测方法[D].博士学位论文.东南大学.2004年
    [80]赵铁军,万小梅.一种预测混凝土氯离子扩散系数的方法[J].工业建筑,2001(12):40-42
    [81]滕海文,舒正昌,黄颖,霍达.多因素作用下钢筋混凝土构件氯离子扩散系数模型[J].土木建筑与环境工程,2011,33(1):13-16
    [82]付传清,金贤玉,田野,金南国,顾祥林.多场耦合作用下氯离子分布场的数值模拟[J].东南大学学报,2010(11):120-125
    [83]杨绿峰,陈正,王燚,孟玮,宋立峰,冯庆革.混凝土中氯离子二维扩散分析的边界元法,硅酸盐学报,2009,37(7):1111-1117
    [84]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1):58-61
    [85]王立成,王吉忠.混凝土中氯离子扩散过程的细观数值模拟研究[J],建筑结构学报,2008增刊:192-196
    [86]曾庆海,马中军,王艺霖.引入混沌理论的混凝土中氯离子传输机理研究[J],四川建筑科学研究,2007,33(1):154-156
    [87]王仁超,朱琳,李振富.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工业大学学报,2004,36(6):824-828
    [88]刘荣桂,陆春华.海工预应力混凝土氯离子侵蚀模型及耐久性[J].江苏大学学报(自然科学版),2005,26(6):525-528
    [89]吴相豪,李丽.海港码头混凝土构件氯离子浓度预测模型[J].上海海事大学学报,2006,27(1):17-20
    [90]余红发,孙伟,麻海燕等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247
    [91]陈妤,刘荣桂,付凯.冻融循环下海工预应力混凝土结构的耐久性[J].建筑材料学报,2009,12(1):17-21
    [92] Xi, Y., and Ba ant, Z.(1999).“Modeling chloride penetration in saturated concrete.” J. Mater. Civ.Eng.11(1):58–65
    [93] Saetta A V, Scotta R V, Vitaliani R V. Analysis of chloride diffusion into partially saturated concrete.ACI Materials Journal,1993,90(5):441-451
    [94] Ababneh A, Benboudjema F, Xi Y. Chloride penetration in nansaturated concrete. Journal ofMaterials in Civil Engineering, ASCE,2003,15(2):183-191
    [95] Tetsuya Ishida, Prince O'Neill Iqbal, Ho Thi Lan Anh. Modeling of chloride diffusivity coupled withnon-linear binding capacity in sound and cracked concrete, Cement and Concrete Research39(2009)913–923
    [96] Hong K, Hooton R D. Effects of cyclic chloride exposure on penetration of concrete cover. Cementand Concrete Research,1999,29(9):1379-1386
    [97] Svend Engelund, John D. Sorensen. A probabilistic model for chloride-ingress and initiation ofcorrosion in reinforced concrete structures, Structural Safety20(1998)69-89
    [98] Yu Wanga,_, Long-yuan Lib, C.L. Page. Modelling of chloride ingress into concrete from a salineenvironment, Building and Environment40(2005)1573–1582
    [99]戴建国,宋玉普,赵国藩.低弹性模量纤维混凝土剩余弯曲强度的力学意义[J].混凝土与水泥制品,1999(1):35-38
    [100]姚武,李杰,周钟鸣.聚丙烯纤维对混凝土抗拉强度的影响[J],混凝土,2001(10):40-42
    [101]李学英,马新伟,韩兆祥,赵晶.聚丙烯纤维混凝土的工作性与力学性能[J].武汉理工大学学报,2009,31(5):10-12
    [102]孙玉龙.聚丙烯纤维对混凝土干缩性影响的试验研究[J].黄河水利职业技术学院学报,2009,21(2):40-42
    [103]张鹏,郭平功,赵铁军.聚丙烯纤维混凝土的收缩抗裂性能[J].低温建筑技术,2008(1):4-6
    [104]卢安琪,李克亮,祝烨然,胡智农.聚丙烯纤维混凝土抗冲耐磨试验研究[J].水利水电技术,2002,33(4):37-39
    [105]柳献,袁勇,叶光,Geert De Schutter.聚丙烯纤维高温阻裂机理[J].同济大学学报,2007,35(7):960-964
    [106]马成畅,张文华,叶青等.预压荷载下聚丙烯纤维混凝土的抗氯离子渗透性能研究[J].新型建筑材料,2007(5):14-15.
    [107]程红强,高丹盈.聚丙烯纤维混凝土冻融损伤试验研究[J].东南大学学报,2010(11):198-200.
    [108]王金晶,刘志奇.透水性聚丙烯纤维混凝土的耐久性研究[J].混凝土,2009(11):31-36.
    [109] Zollo R F. Collated fibrillated polypropylene fibers in FRC. Fiber reinforced Concrete InternatioalSymposium, ACI Special Publication (SP81-19),1984, pp.397-409
    [110] litvin A. Properties of concrete containing polypropylene fibers. Report to Wire Reinforce Institute,January(1985)
    [111] Fanella D A, Naaman A E. Stress-strain properties of fiber reinforced mortar in compression, ACIjournal,1985,82(4):475-83
    [112] Al-Tayyib A J, Al-Zahrani M M, Rasheeduzzafar A, Al-Sulaimani G J. Effect of polypropylene fiberreinforcement on the properties of fresh and hardened concrete in Arabian Gulf environment,Cement and Concrete Research,1988,18(4):561-570
    [113] Soroushian P, Mirza F and Alhozaimy A. Plastic shrinkage cracking of polypropylene fiberreinforced concrete, ACI Materials Journal,1995,92(5):553-560
    [114] Grzybowski M and Shah S P. Shrinkage cracking of fiber reinforced concrete, ACI MaterialsJournal,1990,87(2):138-148
    [115] Yue C Y, Cheung W L. Interfacial properties of fiber reinforced composites. J Mater Sci1992,27:3834
    [116] Zebarjad S M, Bagheri R, Lazzeri A. PP/EPR/GF hybrid composites. Part Ⅱ. Fracture mechanism.Plastic Rubber Compos,2003,23:439
    [117] Zebarjad S M, Bagheri R, Seyed Reihani S M, Forunchi M. Investigation of deformation mechanismin PP/GF composite. J Appl Polym Sci2003,87:2171
    [118] Lee N J, Jang J. The use of a mixed coupling agent system to improve the performance of PP/GF.Compos Sci Technol1997,57:1559
    [119] Wu H F, Dwight D W, Huff N T. Effects of silane coupling agent on the inter-phase and performanceof glass fiber reinforced polymer composites. Compos Sci Technol1991,57:975
    [120] Zebarjad S M. The influence of glass fiber on fracture behavior of isotactic polypropylene. MaterDesign2003,24:531
    [121] Bradshaw R D, Fisher F T, Brinson L C. Fiber waviness in nanotube-reinforced polymer composites.PartⅡ. Modeling via numerical approximation of the dilute strain concentration tensor. Compos SciTechnol2003,63:1705
    [122] Walter M E, Ravichandran G, Ortiz M. Computational modeling of damage evolution inunidirectional fiber reinforced ceramic matrix composites. Comput mech1997,20:192
    [123] Oldenbo M, Mattsson D, Varna J, Berglund L A. Global stiffness of a SMC panel consideringprocess induced fiber orientation. J Reinf Plast Compos2004,23:37
    [124] Glenn C. Foster tensile and Flexure strength of unidirectional fiber-reinforced composites: directnumerical simulations and analytic models. MS Project, Blacksburg, Virginia, February,1998
    [125] Sun W, Lin F. Computer modeling and FEA simulation for composite single fiber pull-out. JThermoplastic Compos Mater2001,14:327
    [126] Xu J, Cox B N, McGlockton M A, Carter W C. A binary model of textile composites. The elasticregime. Acta Metallurgica et Materialia1995,43:3511
    [127] Yang Q, Chen h. Self-consistent finite element method for the problems of inclusion and the averageelastic properties of composite materials. Acta Materiae Compositea Sinica1992,9:79
    [128] Yang Q, Chen H. Effective properties of composites with fiber-end crack. Acta Mechanica Sinica1998,2:2
    [129] Chung S T, Kwon T H. Numerical simulation of fiber orientation in injection molding ofshort-fiber-reinforced thermoplastics. Polym Eng Sci1995,35:604
    [130] Bandhopadhya R. Verification of fiber orientation prediction software. M S. Thesis, University ofMassachusetts, Lowell;1992
    [131] Chung D H, Kwon T H. Fiber orientation in the processing of polymer composites. Korea-AustraliaRheol J2002,14:175
    [132]龚益,沈荣熹,李清海.杜拉纤维在土建工程中的应用[M].北京:机械工业出版社,2002
    [133] Law Engineering, Inc, A Materials Engineering Study of Durafiber Concrete, Oct.2,1989.
    [1] GBT50082-2009《普通混凝土长期性能和耐久性试验方法标准》[S]
    [2] GB50081-2002《普通混凝土力学性能试验方法标准》[S]
    [3] JTJ270-98《水运工程混凝土试验规程》[S]
    [4]蔡昊.混凝土抗冻耐久性预测模型[D].清华大学博士学位论文,1998
    [5]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].东南大学博士学位论文,2006
    [6] Vagelis G.papadakis. Experomental investigation and theoretical modeling of silica fume activity inconcrete[J].Cement and Concrete Research,Vol.29,1999:79-86
    [7]蒋学利,张誉,刘亚芹等.混凝土碳化深度的计算与试验研究[J].混凝土,1994(4):12-17
    [8]张奕,姚昌建,金伟良.干湿交替区域混凝土中氯离子分布随高程的变化规律[J].浙江大学学报(工学版),2009,43(2):360-365
    [9] T.U. Mohammed, H. Hamada. Relationship between free chloride and total chloride contents inconcrete, Cement and Concrete Research33(2003)1487–1490
    [10] Xinying Lu, Cuiling Li, Haixia Zhang. Relationship between the free and total chloride diffusivity inconcrete, Cement and Concrete Research32(2002)323–326
    [11]胡蝶,麻海燕,余红发等.矿物掺合料对混凝土氯离子结合能力的影响[J].硅酸盐学报,2009,37(1):129-134
    [12]金伟良,赵羽习.混凝土结构耐久性[M].北京:科技出版社,2002:57-60
    [13] The European Union-Brita Erma BE95-1347General guidelines for durability design and redesign[S].Duarte,2000
    [14] Song ha-won, Lee chang-hong, Ki Yong Ann. Factors inurning chloride transport in concretestructures exposed to marine environments[J]. Cement&Concrete Composites,2008,30(2):113-121
    [15] Collepardi M, Marcialis A, Turrizzani R. The kinetics of penetration of chloride ions into theconcrete[J]. Journal of the American Ceramic Society,1970(4):157-164
    [16] Collepardi M, Marcialis A, Turrizzani R. Penetration of chloride ions into cement pastes andconcretes[J]. Journal of the American Ceramic Society,1972,55:534-535
    [17] SWAMY R N, HAMADA H, LAIW J C. A critical evaluation of chloride penetration into concrete inmarine environment[C]. In Corrosion and Corrosion Protection of Steel in Concrete, Proceedings ofan International Conference, University of Sheffield, England, Jul.1994:404-419
    [18] MUMTAZK, MICHEL G. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cementand Concrete Research,2002,32:139-143
    [19]姬永生,袁迎曙.干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J].工业建筑,2006,36(12):16-19
    [20] STEPHEN L A, DWAYNE A J, MATTHEW A M. Predicting the service life of concrete marinestructures: an environmental methodology[J]. ACI Structural Journal,1998,95(2):205-214
    [21] UJI K, MATSUOKA Y, MARUYA T. Formulation of an equation for surface chloride content ofconcrete due to permeation of chloride[M]. Corrosion of reinforcement in concrete, Elsevier AppliedScience,1990:258-267
    [22] COSTA A, APPLETON J. Chloride penetration into concrete in marine environment-PartⅡ:Prediction of long term chloride penetration[J]. Materials and Structures,1999,32:354-359
    [23] MUMTAZ K, MICHEL G. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cementand Concrete Research,2002,32:139-143
    [24]赵羽习,王传坤,金伟良,许晨.混凝土表面氯离子浓度时变规律研究,2010,32(3):9-13
    [25] Mangat P S, Molloy B T. Prediction of long term chloride concentration in concrete[J]. Mater AndStruct,1994,27:338-346
    [26] Thomas M D A, Bamforth P B, Modelling chloride diffusion in concrete-effect of fly ash and Slag[J].Cem and Concr Res,1999,29(4):487-495
    [1]张奕.氯离子在混凝土中的输运机理研究[D].浙江大学博士学位论文,2008
    [2]李春秋.干湿交替下表层混凝土中水分与离子传输过程研究[D].清华大学博士学位论文,2009
    [3] GBT50082-2009《普通混凝土长期性能和耐久性试验方法标准》[S]
    [1]梅泰P K.混凝土的结构、性能与材料[M].祝永年,等译.上海:同济大学出版社,1991
    [2]李九苏.除冰盐破坏的水泥混凝土路面再生利用研究综述[J].混凝土.2009,(6):53~55
    [3] GBT50082-2009《普通混凝土长期性能和耐久性试验方法标准》[S]
    [4] JTJ270-98《水运工程混凝土试验规程》[S]
    [5]徐港,卫军.氯盐种类及冻融对混凝土氯离子迁移的影响[J].建筑材料学报.2006,6:34-39
    [6] Nader Ghafoori, Richard Mathis, A comparison of freezing and thawing durability of non-air entrainedconcrete pavers under ASTM C67and ASTM C666,ACI Materials Journal,1997,94(6):325~331
    [7] Guoqing Li, Yi Zhao, Suseng Pang, Four-phase sphere modeling of effective bulk modulus of concrete,Cement and Concrete Research,1999,29(6):839-845
    [8] Guoqing Li, Yi Zhao, Suseng Pang,Yongqi Li, Effective Young’s modulus estimation of concrete,Cement and Concrete Research,1999,29(10):1455~1462
    [9]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].东南大学博士学位论文,2000
    [10] Powers T C. A Working hypothesis for further studies of frost resistance of concrete. ACI Journal,Proceedings,1945,16(4):245-272
    [11] Powers TC, Helmuth R A,Theory of volume changes in hardened Portland cement paste duringfreezing, Proceedings, Highway Research Board,1953,32:285-297
    [12] Collions. A.R. The destruction of concrete by frost. Journal of Institution of Civil Engineers,1944,23(l),29-41
    [13] Max J.Setzer. Mechanical Stability Criterion, Triple-Phase Condition, and Pressure Differences ofMatter Condensed in a Porous Matrix. Journal of Colloid and Interface Science.2001,(235):170~182
    [14] Max J.Setzer. Micro-Ice-Lens Formation in Porous Solid. Journal of Colloid and InterfaceScience.2001,(243):193~201
    [15] Max J.Setzer. Mechanisms of Frost Action. Proceedings of an International Workshop on Durability ofReinforced Concrete under Combined Mechanical and Climatic Loads. QingDao,2005:263~274
    [1] Bazant Z P. Mathematical model for freeze-thaw durability of concrete[J], Journal of theAmerican Ceramic Society,1998,71(9):776-783
    [2]蔡昊.混凝土抗冻耐久性预测模型[D].清华大学博士学位论文,1998
    [3]许丽萍,吴学礼,黄士元.抗冻混凝土的设计[J].上海建材学院学报,1993,6(2):112-123
    [4]阿列克谢耶夫著,黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护.北京:中国建筑工业出版社,1983
    [5] Papadakis V G, Vayenas C G, Fardis M N. Physical and chemical characteristics affecting the durabilityof concrete. ACI Materials Journal,1991(88):186-196
    [6]牛荻涛,董振平.预测混凝土碳化深度的随机模型[J].工业建筑,1999,29(9):41-45
    [1] Jens Mejer Frederiksen, Leif Mejlbro, Lars-Olof Nilsson. Fick’s2ndlaw-Complete solutionsfor chloride ingress into concrete. Division of Building Materials.2009:33-35
    [2] Collepardi M, Marcialis A, Turrizzani R. The kinetics of penetration of chloride ions into theconcrete[J]. Ⅱ Cem,1970(4):157-164
    [3] Collepardi M, Marcialis A, Turrizzani R. Penetration of chloride ions into cement pastes andconcretes[J]. J Am Ceram Soc,1972,55:534-535
    [4] Amey S L, Johnson D A, Militenberger M A, et al. Predicting the service life of concrete marinestructures: an environmental methodology. ACI Struct. J,1998,95(1):27-36
    [5] Song H W, Lee C H, Ann K Y. Factors influencing transport in concrete structures exposed to marineenvironments. Cement&Concrete Composites,2008,30(2):113-121
    [6] Kassir M K, Ghosn M. Chloride-induced corrosion of reinforced concrete bridge decks. Cement andConcrete Research,2002,32:139-143
    [7] Weyer R E. Service life model for concrete structures in chloride laden environments. ACI MaterialsJournal,1998,95(4):445-453
    [8]陆金甫,顾丽珍,陈景良.偏微分方程差分方法[M].北京:高等教育出版社,2003
    [9]李春秋,李克非.干湿交替下表层混凝土中氯离子传输:原理、试验和模拟[J].硅酸盐学报,2010,38(4):582-589
    [10]陈伟,许宏发.考虑干湿交替影响的氯离子侵入混凝土模型[J].哈尔滨工业大学学报,2006,38(12):2192-2193
    [11]余红发,孙伟,麻海燕,鄢良慧.混凝土在多重因素作用下的氯离子扩散方程[J],建筑材料学报,2002,5(3):241-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700