用户名: 密码: 验证码:
高性能管桩混凝土材料设计与节能制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力高强混凝土管桩(prestressed high-strength concrete pipe pile,简称PHC管桩)是现阶段最常用于建筑基础的混凝土构件,其具有高强度、高密实性、高承载力等优点,被广泛地应用于工业与民用建筑、公路与铁路交通、港口与码头等各类工程建设。目前的PHC管桩生产主要采用先常压蒸汽养护后高温高压蒸养的养护工艺,生产过程中养护能耗高。与此同时,随着经济社会的迅速发展,资源短缺与环境污染日趋严重,节能减排成为建筑行业乃至整个社会关注的焦点。另外,随着混凝土工程环境的复杂化,传统的PHC管桩能否适用于海洋、盐碱、寒冷等恶劣环境下的土建工程,有待深入系统的研究。
     鉴于此,本文针对PHC管桩养护能耗高、耐久性不足等问题,开展高强高性能管桩混凝土节能制备技术研究。作者对PHC管桩混凝土材料体系进行了优化设计,探索适用于该体系的免压蒸节能养护工艺,并系统研究了蒸汽养护条件下高强管桩混凝土的凝结硬化性能,揭示了蒸养条件下混凝土耐久性形成机理,掌握了高强高性能管桩混凝土节能制备的关键技术。
     论文进行的主要工作和取得的主要成果如下:
     (1)研究了偏高岭土对混凝土凝结硬化性能的影响,结果认为偏高岭土能缩短混凝土凝结时间,显著提高混凝土早期和后期强度,其合理掺量为10%~15%,偏高岭土的应用会增加混凝土的用水量,因此不宜作为唯一矿物掺合料进行高强管桩混凝土的制备。
     (2)分别采用胶凝材料复合化和颗粒密实堆积模型两种手段进行高强高性能管桩混凝土胶凝材料体系设计,结果表明以水泥和偏高岭土、矿粉、粉煤灰、石粉等矿物掺合料组成的多元胶凝体系具有良好的火山灰活性和密实作用,凝结硬化性能良好,满足高性能管桩混凝土工作性及高、早强力学性能要求。
     (3)系统研究了静停时间、升温速率、养护温度、保温时间等工艺参数对蒸养高强混凝土凝结硬化性能的影响:延长静停时间、降低升温速率、控制合理的养护温度和保温时间能有效提高蒸养混凝土抗压强度,其中静停时间和升温速率对混凝土强度影响较为显著,养护温度和保温时间次之。通过以上研究,掌握了满足高强高性能管桩混凝土免压蒸生产的蒸汽养护工艺。
     (4)对高强高性能管桩混凝土整体材料体系进行了设计,探索了适用于节能养护工艺的高强管桩混凝土配合比参数和混凝土制备工艺,掌握了满足PHC管桩性能要求的高强高性能管桩混凝土节能制备新技术。
     (5)分别对蒸汽养护和标准养护条件下高强混凝土耐久性进行了对比研究,探明了胶凝体系组成和养护条件对高强混凝土耐久性的影响规律:蒸汽养护对高强混凝土耐久性有不良影响,表现为增加混凝土渗透性,降低混凝土抗冻和耐侵蚀性能等。采用多元复合胶凝体系能显著改善高强混凝土的各项耐久性能,所制备的高强高性能管桩混凝土耐久性良好。
     (6)系统研究了蒸汽养护条件下高强混凝土的显微结构特征,揭示了多元复合胶凝材料体系对蒸养高强管桩混凝土显微结构的影响规律,揭示了高强管桩混凝土强度和耐久性形成机理:复合矿物掺合料促进了蒸养条件下混凝土早期水化进程,改善了水化产物的物相组成和结构特征;优化了混凝土的孔结构,细化了孔径,降低了蒸汽养护对混凝土孔结构造成的热致损伤;改善了蒸养高强混凝土的界面过渡区性能,提高了界面区结构的完整性,优化了浆体与集料的结合状态,降低了高强混凝土界面孔隙率。
     (7)将所研究的高强高性能管桩混凝土节能制备技术应用到实际生产中,中试结果表明:该节能制备技术工艺流畅,所生产的产品外观质量良好,满足PHC管桩力学性能要求,理论计算表明,可降低PHC管桩养护能耗70%以上,具有较好的推广应用前景。
Prestressed high-strength concrete (PHC) pipe piles are the most widely used concrete members in building foundations nowadays. They are widely used in all kinds of engineering projects, such as industry and civil buildings, highway and railway, port and wharf constructions, due to the advantages of high strength, high density and high bearing capacity. In traditional manufacturing process, the curing condition of PHC piles is consist of steam curing and autoclaved curing, which requires large amount of energy. At the same time, the resources shortage and environmental pollution are more and more serious due to the development of economy and society. Energy conservation and pollution reduction become the focus of the construction industry and society. In addition, the concrete engineering environment is becoming more and more complex. Further investigation is needed about whether PHC piles can be applied to some harsh environmental conditions, such as sea water, saline-alkali and cold.
     Therefore, the paper focuses on the high energy consumption and insufficient durability of PHC piles, and an energy-saving manufacturing technique of high performance piles concrete with high strength is studied. A new concrete materials system and energy-saving curing process of PHC are designed. The setting and hardening performance and durability development of PHC under steam curing condition are investigated. An energy-saving manufacture technique of high performance PHC is obtained.
     The main work and results of the paper may be summarized as follows.
     (1) The influence of metakaolin to the setting and hardening performance of concrete is investigated, and the results indicate that concrete setting time is shortened by metakaolin and the early and latter strength can be enhanced. The appropriate dosage of metakaolin is between10%and15%. In addition, the water demand of concrete is increased by metakaolin and it is not appropriate to use metakaolin as the only mineral admixture in the preparation of high performance PHC.
     (2) Cementitious materials composite technique and particles density packing model are adopted to design the high performance PHC materials system. It is concluded that the complex cementitious material systems, consist of cement, metakaolin, slag, flay ash and limestone powder, may exhibit satisfied pozzolanic activity and filler effect. Concrete with the complex cementitious material systems perform high and early strength. Meanwhile, the workability of the concrete is satisfied.
     (3) Influence of steam curing parameters such as delay time, heating-up rate, thermostatic period and thermostatic temperature on hardening performance of high-strength concrete is studied. The results reveal that concrete strength can be improved with a longer delay time, a lower heating-up rate, an appropriate thermostatic period and thermostatic temperature. Furthermore, it is noted that the influence of delay time and heating-up rate on concrete strength are prominent, followed by thermostatic period and thermostatic temperature. Based on the systematic research, a non-autoclaved energy-saving curing technique for the manufacture of PHC piles is obtained.
     (4) The whole materials system of high performance PHC is designed in the paper. The mixture parameters and preparation process under energy-saving curing condition are researched. Based on the research above, a new energy-saving manufacture technology of high performance PHC is conducted.
     (5) The durability of high-strength concrete subjected to steam curing and standard curing is investigated comparatively. The influence of cementitious system and curing conditions on high-strength concrete durability is studied. It is concluded that permeability resistance, frost resistance and sulphate resistance of concrete is decreased by steam curing. However, the application of complex cementitious materials system can improve the durability of steam cured high-strength concrete and the durability of the PHC prepared with the energy-saving technique is satisfied.
     (6) The microstructure of steam cured high-strength concrete is researched systematically. The influence of the complex cementitious materials system on microstructure of steam cured concrete is investigated. The results show that the complex mineral admixtures promote concrete hydration, improve the composition and structure of hydration products. Pore structure is refined and improved while the damage to pore structure caused by steam curing is eliminated. The ITZ performance is improved and the bong performance of the pate and aggregate is enhanced. Meanwhile, the porosity of interface between paste and aggregate is decreased.
     (7) The energy-saving manufacture technique of high performance PHC was adopted in the practical production. The pilot test shows that the energy-saving manufacture technique can be conducted successfully. The mechanical properties and appearance quality of the energy-saving produced PHC piles are satisfied. The energy consumption in the curing process is decreased by70%, compared with the traditional curing condition. The promotion and application prospect of the new technique is optimistic.
引文
[1]阮起楠.预应力混凝土管桩[M].北京:中国建材工业出版社,2000.
    [2]严志隆,黄绍江,章杰春.掺磨细砂的PHC管桩的有关性能研究[J].水泥与混凝上制品,1996,2(4):26-27.
    [3]阮起楠,曾少霞.预应力混凝上管桩养护问题探讨[J].混凝土与水泥制品,1999,4:24-28.
    [4]Yang Q B, Zhang S Q, Huang S Y, et al. Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing[J]. Cement and Concrete Research, 2000,30:1993-1998.
    [5]魏宜岭,李龙.PHC管桩耐久性研究的现状及建议[J].广东建材,2007,5:10-12.
    [6]严志隆,陆酉教,仲以林,等.PHC管桩混凝土耐久性[J].混凝土与水泥制品,2008,6:26-29.
    [7]彭波.蒸养制度对高强混凝土性能的影响[D].武汉:武汉理工大学,2007.
    [8]Kim J K, Moon Y H, Eo S H. Compressive strength development of concrete with different curing time and temperature[J]. Cement and Concrete Research,1998,28(12):1761-1773.
    [9]Cakir O, Akoz F. Effect of curing conditions on the mortars with and without GGBFS[J]. Construction and Building Materials,2008,22:308-314.
    [10]Aldea C M, Young F, Wang K. J, et al. Effects of curing conditions on properties of concrete using slag replacement[J]. Construction and Building Materials,2000,30:465-472.
    [11]Liu B J, Xie Y J, Li J. Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials[J]. Cement and Concrete Research,2005,35: 994-998.
    [12]Reinhardt H, Stegmaier M. Influence of heat curing on the pore structure and compressive strength of self-compacting concrete (SCC)[J]. Cement and Concrete Research,2006,36: 879-885.
    [13]涂波涛,严炳土,李贵民.关于磨细砂、矿渣微粉在PHC管桩混凝上中的双掺研究[J].广东建材,2008,1:33-34.
    [14]魏宏超.磨细矿渣微粉在PHC管桩生产中的应用[J].混凝土与水泥制品,2006,2:33-35.
    [15]阮起楠.混合胶凝材料在PHC管桩生产中的应用[J].混凝土与水泥制品,2001,2:32-34.
    [16]Ho D W S, Chua C W, Tam C T. Steam-curing concrete incorporating mineral admixtures[J]. Cement and Concrete Research,2003,33:595-601.
    [17]何明强.PHC管桩技术研究及产品开发[D].大庆:东北石油大学,2009.
    [18]邓法庚.日本预制混凝土管桩的概括[J].预制混凝土桩,1995,2:4-5.
    [19]龚爱群.预应力混凝上管桩的应用与实际[D].哈尔滨:哈尔滨工程大学,2007.
    [20]JIS A5337-1993先张法预应力高强混凝土管桩[S].日本,1993.
    [21]费康.现浇混凝上薄壁管桩的理论与实践[D].南京:河海大学,2004.
    [22]Klimesch D S, Ray A. Autoclaved cement-quartz pastes:the effects on chemical and physical properties when using ground quartz with different surface areas Part II:results of accelerated carbonation[J]. Cement and Concrete Research,1997,27(7):1073-1083.
    [23]Klimesch D S, Ray A, Sloane B. Autoclaved cement-quartz pastes:the effects on chemical and physical properties when using ground quartz with different surface areas Part I:quartz of wide particle size distribution[J]. Cement and Concrete Research,1996,26(9):1399-1408.
    [24]吴中伟.管桩用压蒸与非压蒸早强、高强砼[J].混凝土与水泥制品,1995,1:21-23.
    [25]Gao P W, Lu X L, Yang C X, et al. Microstructure and pore structure of concrete mixed with superfine phosphorous slag and superplasticizer[J]. Construction and Building Materials, 2008,22:837-840.
    [26]Gao J M, Qian C X, Liu H F, et al. ITZ microstructure of concrete containing GGBS[J]. Cement and Concrete Research,2005,35:1299-1304.
    [27]Babu K G., Kumar V S R. Efficiency of GGBS in concrete[J]. Cement and Concrete Research,2000,20:1031-1036.
    [28]汤小平,李培鹏,孙延庆.免压蒸管桩混凝上原材料的选用[J].混凝上与水泥制品,2009,5:31-32.
    [29]周栋梁,张建纲,毛永琳等.免压蒸管桩混凝上的制备与性能[J].粉煤灰综合利用,2011,6:46-47.
    [30]张华英.C80矿渣高强混凝上的试验研究[D].西安:西北工业大学,2004.
    [31]蒲心诚.超高强混凝土的研究与应用[J].混凝土,1993,5:10-15.
    [32]西德尼·明德斯,J.弗朗西斯·杨,戴维·达尔文著,吴科如等译.混凝土[M].北京:化学工业出版社,2004.
    [33]李北星,张文生.MDF水泥基复合材料的性能及其应用[J].中国建材科技,2000,1:37-40.
    [34]孙伟.高性能水泥复合材料的新进展[J].港口工程,1995,1:34-40.
    [35]Brichall J D, Howard A J, Kendall K. Flexural strength and porosity of cement[J]. Nature, 1981,289(19):388-390.
    [36]Richard P, Cheyrezy M. Composition of reactive powder concrete[J]. Cement and Concrete Research,1995,25(7):1501-1511.
    [37]Richard P, Cheyrezy M. Reactive powder concrete with high ductility and 200-800 MPa compressive strength[C]. Proceeding of V. M. Maltra symposium on concrete technology: pasr and future, Detroit.1994:507-518.
    [38]Chen B, Liu J Y. Effect of aggregate on the fracture behavior of high strength concrete[J]. Construction and Building Materials,2004,18:585-590.
    [39]Yazici H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures[J]. Building and Environment,2007,42: 2083-2089.
    [40]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社,2004:32-39.
    [41]Mehta P K, Monteiro P J M. Concrete Microstructure, Properties, and Materials[M]. New York,2006.
    [42]Caldarone M A. High-strength Concrete[M]. New York,2009:72-101.
    [43]Taylor M R, Lydon F D, Barr B I G. Mix proportions for high strength concrete[J]. Construction and Building Materials,1996,10(6):445-450.
    [44]王海阳.高强混凝土早期收缩及塑性开裂影响因素研究[D]:重庆,重庆大学,2005.
    [45]徐雪峰.聚羧酸高性能减水剂的合成及构性关系研究[D].南京,南京水利科学研究院,2006.
    [46]李崇智.新型聚羧酸系减水剂的合成及性能研究[D].北京:清华大学,2004.
    [47]童代伟.聚羧酸高性能减水剂的合成[D].重庆:重庆大学,2004.
    [48]王子明.聚羧酸系高性能减水剂:制备·性能与应用[M].北京:中国建筑工业出版社,2009.
    [49]郭延辉,郭京育.聚羧酸系高性能减水剂及其应用技术[M].北京:机械工业出版社,2005.
    [50]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [51]胡曙光.先进水泥基复合材料[M].北京:科学出版社.2009.
    [52]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社.2002.
    [53]黄山.粉煤灰混凝土力学性能研究及早期预测[D].武汉:武汉理工大学,2008.
    [54]丁红霞.大掺量矿渣粉-水泥基胶凝材料和混凝土性能及其优化的研究[D].南京:河海大学,2007.
    [55]刘孔凡,焦利利.硅粉及其在混凝上中的应用[J].河南大学学报,1994,24(4):91-94.
    [56]Xuan D X, Shui Z H, Wu S P. Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete[J]. Construction and Building Materials.2009,23:2631-2635.
    [57]Alexander M G, Magee B J. Durability performance of concrete containing condensed silica fume[J]. Cement and Concrete Research,1999,29:917-922.
    [58]范圆圆.茂名高岭土下脚料的活化及其制备C100高性能混凝土的研究[D].广州:暨南 大学,2008.
    [59]曾俊杰.偏高岭上改性高强混凝土的制备与性能[D].武汉:武汉理工大学,2010.
    [60]Roy D M, Arjunan P, Silsbee M R. Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete[J]. Cement and Concrete Research,2001,31: 1809-1813.
    [61]Badogiannis E, Tsivilis S. Exploitation of poor Greek kaolins:Durability of metakaolin concrete[J]. Cement & Concrete Composites,2009,31:128-133.
    [62]Curcio F, Deangelis B A, Pagliolico S. Metakaolin as a pozzolanic microfiller for high-performance mortars[J]. Cement and Concrete Research,1998,28(6):803-809.
    [63]Kim H S, Lee S H, Moon H Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Construction and Building Materials,2007,21: 1229-1237.
    [64]Poon C S, Kou S C, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials,2006,20:858-865.
    [65]Khatib J M. Metakaolin concrete at a low water to binder ratio[J]. Construction and Building Materials,2008,22:1691-1700.
    [66]Cassagnabere F, Escadeillas G, Mouret M. Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete[J]. Construction and Building Materials,2009,23:775-784.
    [67]吴中伟,廉慧珍.高性能混凝上[M].北京:中国铁道出版社,1999.
    [68]马丽媛.高强混凝土收缩开裂的研究[D].北京:中国建筑材料科学研究院,2001.
    [69]彭波.高强混凝上开裂机理及裂缝控制研究[D].武汉:武汉理工大学,2002.
    [70]Kaszynska M. Early age properties of high-strength/high-performance concrete[J]. Cement& Concrete Composites,2002,24:253-261.
    [71]Brooks J J, Johari M A M, Mazloom M. Effect of admixtures on the setting times of high-strength concrete[J]. Cement & Concrete Composites,2000,22:293-301.
    [72]Haque M N. Strength Development and Drying Shrinkage of High-strength Concretes[J]. Cement & Concrete Composites,1996,18:333-342.
    [73]Igarashi S I, Watanabe A, Kawamura M. Evaluation of capillary pore size characteristics in high-strength concrete at early ages[J]. Cement and Concrete Research,2005,35:513-519.
    [74]王冲,吴贤文,黄河等.偏高岭石与硅灰制备的高强混凝土性能比较[J].重庆大学学报,2007,30(1):65-69.
    [75]Eldieb A S. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers[J]. Materials and Design,2009,30: 4286-4292.
    [76]沈威.第六届国际水泥化学会议论文集[M].北京:中国建筑工业出版社,1981.
    [77]Soroka I, Jaegermann C H, Bentur A. Short-term steam-curing and concrete later-age strength[J]. Materials and Structures,1978,11(62):93-96.
    [78]Ba M F, Qian C X, Guo X J, et al. Effects of steam curing on strength and porous structure of concrete with low water/binder ratio[J]. Construction and Building Materials,2011,25: 123-128.
    [79]Reinhardt H W, Stegmaier M. Influence of heat curing on the pore structure and compressive strength of self-compacting concrete (SCC)[J]. Cement and Concrete Research,2006,36: 879-885.
    [80]Erdem T K, Turanli L, Erdogan T Y. Setting time:An important criterion to determine the length of the delay period before steam curing of concrete[J]. Cement and Concrete Research, 2003,33:741-745.
    [81]Hooton R D, Titherington M P. Chloride resistance of high-performance concretes subjected to accelerated curing[J]. Cement and Concrete Research,2004,34:1561-1567.
    [82]Toutanji H A, Bayasi Z. Effect of curing procedures on properties of silica fume concrete[J]. Cement and Concrete Research,1999,29:497-501.
    [83]Trtik P, Bartos P J M. Micromechanical properties of cementitious composites[J]. Materials and Structures,1999,32:388-393.
    [84]Hu J, Stroven P. Properties of the interfacial transition zone in model concrete[J]. Interface Science,2004,12:389-397.
    [85]Paulon V A, Molin D D, Monteiro P J M. Statistical Analysis of the Effect of Mineral Admixtures on the Strength of the Interfacial Transition Zone[J]. Interface Science,2004,12: 399-410.
    [86]Cassagnabere F, Mouret M, Escadeillas G. Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties[J]. Cement and Concrete Research,2009,39:1164-1173.
    [87]Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete:A review[J]. Applied Clay Science,2009,43:392-400.
    [88]Melo K A, Carneiro A M P. Effect of Metakaolin's finesses and content in self-consolidating concrete[J]. Construction and Building Materials,2010,24(8):1529-1535.
    [89]Sabir B B, Wild S, Bar J. Metakaolin and calcined clays as pozzolanic for concrete:a review[J]. Cement & Concrete Composites,2001,23:441-454.
    [90]Badogiannis E, Kakali G, Dimopoulou G, et al. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins[J]. Cement & Concrete Composites,2005,27:197-203.
    [91]苏彪,王桂明,水中和等.偏高岭土在PHC管桩中的应用前景浅析[J].混凝土与水泥制品,2010,4:27-29.
    [92]Wild S, Khatib J M, Jones A. Relative strength pozzolanic activity and cement hydration in superplasticised MK concrete[J]. Cement and Concrete Research,1996,26:1537-1544.
    [93]Parande A K, Babu B R, Karthik M A. Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar[J]. Construction and Building Materials, 2008,22:127-134.
    [94]崔巩,刘建忠,姚婷等.基于Dinger-Funk方程的活性粉末混凝土配合比设计[J].东南大学学报,2010,40:15-19.
    [95]李滢,杨静.胶凝材料颗粒级配对水泥凝胶体结构及强度的影响[J].新型建筑材料,2004,3:1-4.
    [96]李辉,王振兴,宋强等.矿物掺合料在水泥颗粒中的填充作用研究[J].混凝土,2009,8:53-56.
    [97]Y Z Peng, S G Hu, Q J Ding. Dense packing properties of mineral admixtures in cementitious material[J]. Particuology,2009,7:399-402.
    [98]牛全林,冯乃谦,杨静.矿物质超细粉在水泥粉体中填充效果的分析[J].硅酸盐学报,2004,32(1):102-106.
    [99]李滢.矿物掺合料的颗粒级配对水泥砂浆性能的影响[J].青海大学学报,2007,25(2):48-51.
    [100]Lange F, Mortel H, Rundert V. Dense packing of cement pastes and resulting consequences on mortar properties[J]. Cement and Concrete Research,1997,27(10):1481-1488.
    [101]Wong H H C, Kwan A K H. Packing density of cementitious materials:part 1-measurement using a wet packing method. Mater Struct,2008,41(4):689-701.
    [102]李论,严志隆.PHC管桩混凝土真实强度与标准试块混凝土强度之差异[J].混凝土与水泥制品,2002,4:22-23.
    [103]赵若鹏,乐贵平,刘元鹤.净浆裹石混凝土的研究[J].混凝土与水泥制品,1985,6:7-10.
    [104]周永祥,冷发光.预应力混凝土管桩的耐久性问题及其工艺原因[C].第七届全国混凝土耐久性学术交流会,宜昌:2008,469-476.
    [105]周茂清,邓浩,杨国龙等.从钢筋大面积锈蚀谈氯离子对混凝土结构耐久性的危害[J].广东土木与建筑,2002,8:56-59.
    [106]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [107]Powers T C, Helmuth R A. Theory of volume changes in hardened cement paste during freezing[C]. Proceeding of the Highway Research Board,1953,32:285-297.
    [108]Powers T C. A work hypothesis for further studies of frost resistance of concrete[J]. ACI Journal,1954,41:245-272.
    [109]李乃珍,金国萱等.高耐蚀、高抗折海水水泥混凝上[J].中国建材科技,1999.
    [110]亢景福.混凝土硫酸盐侵蚀研究中的几个基本问题[J].混凝土,1995.
    [111]Yang C C. On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials[J]. Cement and Concrete Research,2006,36:1304-1311.
    [112]Vejmelkova E, Pavlikova M, Keppert M, et al. High performance concrete with Czech metakaolin:Experimental analysis of strength, toughness and durability characteristics[J]. Construction and Building Materials,2010,24:1404-1411.
    [113]韩宇栋,张君,高原.混凝上抗硫酸盐侵蚀研究评述[J].混凝上,2011,1:52-61.
    [114]金雁南,周双喜.混凝上硫酸盐侵蚀的类型及作用机理[J].华东交通大学学报,2006,23(5):4-8.
    [115]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,1990.
    [116]Ramachandran V S, Beaudoin J J. Handbook of analytical techniques in concrete science and technology[M]. New York:2001.
    [117]Saikia N J, Sengupta P, Gogoi P K, et al. Cementitious properties of metakaolin-normal Portland cement mixture in the presence of petroleum effluent treatment plant sludge[J]. Cement and Concrete Research,2002,32:1717-1724.
    [118]Richardson I G. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C-S-H:applicability to hardened pastes of tricalcium silicate, h-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume[J]. Cement and Concrete Research,2004,34:1733-1777.
    [119]Kayyali O A. Porosity of concrete in relation to the nature of the paste-aggregate interface^]. Materials and Structures,1987,20:19-26.
    [120]王伟.偏高岭土改善混凝土体积稳定性的研究[D].武汉:武汉理工大学.2010.
    [121]付志恒.偏高岭上对混凝土体积稳定性及显微结构的影响[D].武汉:武汉理工大学.2011.
    [122]中华人民共和国国家技术监督局.GB 13476-2009先张法预应力混凝土管桩[S].北京:中国标准出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700