用户名: 密码: 验证码:
TAT-LBD-Ngn2对脑缺血损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中风是世界第二位、我国第一位的致死性疾病,更是成年人致残的首要病因。而中风后神经元坏死和凋亡导致的神经元缺失(loss of neuron)以及突触功能异常则为中风后神经功能障碍的最根本原因。目前除了再灌注治疗(t-PA,血管再通术)可临床应用、造福患者,抗兴奋性毒性、抗氧化、抗凋亡、抗炎等新治疗措施均在临床实验中因为效果不佳或毒副作用而失败。因此,寻找能够有效减轻脑缺血后神经元损伤、抑制神经元凋亡,促进神经发生并重建神经环路的新治疗靶点或药物,成为了中风治疗的重点和难点。
     成年哺乳动物神经发生(neurogenesis)的发现,为中风后神经功能康复带来了曙光。而神经源素2(Ngn2)作为bHLH转录因子家族的成员,在成年哺乳动物神经发生的调节中发挥着极为重要的作用。研究发现,Ngn2不仅是启动神经发生的重要因子,还参与调节神经元的终末分化,调控神经前体细胞的迁移与成熟,影响轴突投射和树突形成。不仅如此,单纯应用Ngn2就可诱导胚胎干细胞、星形胶质细胞和少突胶质细胞前体细胞分化为具有相应结构和功能的成熟谷氨酸能神经元;而转染Ngn2还可促进移植后神经前体细胞的存活、分化、迁移与成熟,参与损伤神经环路和网络的修复与重建,提示Ngn2可能成为中风治疗尤其是康复治疗的重要作用靶点。然而,Ngn2因分子量过大,难以通过血脑屏障,限制了其在中枢神经系统疾病中的应用。而我们前期合成的具有血脑屏障通透性和损伤区域靶向性的TAT-LBD-Ngn2融合蛋白,为进一步明确Ngn2对缺血性脑中风的治疗作用及其机制提供了研究基础。
     因此,本课题以原代培养的海马神经元氧糖剥夺(OGD)模型和小鼠全脑缺血(GCI)模型为对象,应用神经行为学、免疫组织化学和western blot等技术,观察TAT-LBD-Ngn2对缺血性脑损伤的短期和长期神经保护作用,明确其对神经发生的促进作用,并初步阐明TAT-LBD-Ngn2神经保护作用的机制,旨在为缺血性脑中风治疗提供新的干预靶点和治疗药物,并为Ngn2神经保护作用的机制研究提供新的思路。
     实验一TAT-LBD-Ngn2对氧糖剥夺原代神经元的保护作用及其机制研究
     目的:通过离体研究,明确TAT-LBD-Ngn2对氧糖剥夺的原代培养神经元是否具有保护作用,并初步探讨其机制。
     方法:采用原代培养的小鼠海马神经元,以125μg/L浓度的Ngn2、TAT-LBD、TAT-LBD-Ngn2分别孵育神经元6h,通过免疫细胞化学观察各药物对细胞膜的通透性,并进一步明确各药物对原代培养海马神经元神经突生长的影响。再分为5组:Control组、OGD组、OGD+TAT-LBD-Ngn2(62.5μg/L)组、OGD+TAT-LBD-Ngn2(125μg/L)组和OGD+TAT-LBD-Ngn2(250μg/L)组。OGD复氧后24h后,应用MTT比色法检测神经元细胞活力,应用LDH释放试验检测神经元损伤程度,应用TUNEL染色观察神经元的凋亡情况,并进一步应用Elisa和Western Blot检测凋亡相关蛋白Caspase-3、Bcl-2和Bax的表达水平。
     结果:125μg/L的TAT-Ngn2和TAT-LBD-Ngn2均可通过细胞膜,并促进原代培养海马神经元的神经突生长(P<0.05)。OGD模型24h后,TAT-LBD-Ngn2组的细胞活力显著提高(P<0.01),LDH释放减少(P<0.01),并且细胞活力的改善与TAT-LBD-Ngn2的药物浓度呈剂量依赖关系,250μg/L的TAT-LBD-Ngn2具有最大的神经保护作用。同时,TAT-LBD-Ngn2组TUNEL阳性神经元的数量明显减少(P<0.05);促凋亡蛋白Caspase-3和Bax的表达明显受到抑制(P<0.01),而抗凋亡蛋白Bcl-2水平显著增高(P<0.01),TAT-LBD-Ngn2的抗凋亡作用同样具有剂量依赖性,于250μg/L时达到最大保护效果。
     结论:TAT-LBD-Ngn2可透过神经元细胞膜,促进神经突生长;还可通过抑制内源性和外源性的凋亡通路,减少神经元凋亡,减轻缺血再灌注损伤。
     实验二TAT-LBD-Ngn2对脑缺血损伤短期保护作用及其机制的研究
     目的:通过在体研究,明确TAT-LBD-Ngn2对小鼠全脑缺血损伤是否具有保护作用,并初步探讨其神经保护作用的机制。
     方法:采用C57BL/6小鼠,行双侧颈总动脉结扎(BCCAO)术建立GCI模型,随机分为Control组(PBS200μL, qd ip, n=30)和TAT-LBD-Ngn2组(TAT-LBD-Ngn2250μg/kg, qd ip, n=30),再灌注即刻首次给药,此后每天进行药物腹腔注射。首次药物注射24h后通过免疫组织化学和Western Blot观察药物通过血脑屏障和细胞膜的情况。通过1d、2d和3d的总体运动评分(TMS)观察BCCAO小鼠术后的神经行为能力。应用TUNEL染色观察并计数BCCAO后3d神经元的凋亡情况;并应用免疫组织化学观察神经营养因子(BDNF,NGF)在海马和皮层的表达情况。
     结果:在成功建立的全脑缺血模型小鼠中,TAT-LBD-Ngn2可通过血脑屏障进入脑组织,并表达于海马和皮层的神经元和其他神经细胞。同时,TAT-LBD-Ngn2因对层粘连蛋白的亲和力和靶向性,在脑内尤其是海马区域的表达显著高于TAT-Ngn2(P<0.01);TAT-LBD-Ngn2治疗可改善BCCAO术后1d、2d和3d小鼠的TMS评分(P<0.05)。TAT-LBD-Ngn2治疗还可显著减少BCCAO术后3d海马CA1区TUNEL阳性神经元数目(P<0.05);诱导皮层神经元BDNF的表达,但对NGF的表达则无明显影响。
     结论:TAT-LBD-Ngn2可透过血脑屏障,聚集于损伤区域;还可通过促进BDNF表达,抑制神经元凋亡,减轻脑缺血再灌注损伤,改善运动功能。
     实验三TAT-LBD-Ngn2对脑缺血损伤长期保护作用及其机制研究
     目的:观察TAT-LBD-Ngn2对小鼠全脑缺血损伤后神经功能恢复的影响,并初步探讨神经发生在其中发挥的作用。
     方法:采用C57BL/6小鼠,行BCCAO术建立GCI模型,随机分为Control组(PBS200μL, qd ip, n=30)和TAT-LBD-Ngn2组(TAT-LBD-Ngn2250μg/kg, qd ip,n=30),于再灌注时开始给药,持续14或28d。于BCCAO后14、28d通过旷场试验观察小鼠的运动功能,通过Morris水迷宫检测TAT-LBD-Ngn2对小鼠空间学习和记忆功能的影响。通过免疫组织化学,观察并计数BCCAO后14、28d海马CA1区神经元数量;观察海马齿状回双皮质素(DCX)和溴脱氧尿苷(BrdU)阳性的新生神经元数目;检测突触素(SYN)在脑内的表达情况以明确新生神经元是否建立了功能性突触。
     结果:两组间小鼠的运动功能无统计学差异。但Morris水迷宫结果显示,TAT-LBD-Ngn2组小鼠在14d和28d的逃避潜伏期显著缩短(P<0.05),空间探索试验中的穿台次数和目标象限停留时间也明显优于Control组(P<0.05),具有较好的空间学习和记忆功能。免疫组织化学结果显示250μg/kg TAT-LBD-Ngn2可显著提高海马CA1区神经元的数量(P<0.05);并增加海马齿状回BrdU和DCX阳性神经元的数目(P<0.05),这些新生神经元主要位于海马齿状回的颗粒下层;此外,TAT-LBD-Ngn2还增加了皮层和海马SYN的表达。
     结论:TAT-LBD-Ngn2治疗可促进缺血易损区海马CA1区神经元的存活,显著改善BCCAO小鼠的空间学习和记忆功能,其作用可能是通过促进神经发生,促进突触结构和功能的重建实现的。
     小结:通过上述研究证实,TAT-LBD-Ngn2可透过血脑屏障和细胞膜,富集于损伤区神经元内;TAT-LBD-Ngn2可通过诱导BDNF的表达,抑制神经元凋亡,减轻脑缺血早期损伤;TAT-LBD-Ngn2还可通过促进神经发生、重建突触结构和功能,促进脑缺血性损伤后神经功能的恢复,提示TAT-LBD-Ngn2可能开发为临床治疗脑中风的候选药物。本研究不仅为大分子多肽治疗脑损伤开辟了新方向,也为临床中风药物的研发提供了新的作用靶点和研究基础,有望从短期减轻损伤,长期促进功能恢复两个方面双管齐下造福脑中风患者。
Stroke is the second fatal disease in the world and the leading cause of death inChina. Moreover, stroke remains to be the most important cause of adult disability.The damage of synapses and the loss of neurons are the crucial reasons ofneurological dysfunction after stroke. Up to now, there is no safety and effectivetreatment for stroke, except for reperfusion therapy (t-PA, vascular recanalization).And new strategies including anti-excitatory toxicity, anti-oxidant, anti-apoptosis andanti-inflammion treatments were all failed in clinical translation because ofineffectiveness or side effects. Thus, development of novel treatment strategies forstroke, especially in suppression apoptosis, prompting neurogenesis and rebuildingneural circuits, is in high priority.
     The scientific discovery of neurogenesis in adult mammalian is believed to be amilestone in improving neurological recovery after stroke. And as a member of bHLH family, Ngn2plays an important role in neurogenesis of adult mammalian.Many studies have demonstrated that Ngn2is not only the initiation factor ofneurogenesis, but also the regulator of neuronal differentiation, subtype specification,axons projection, dendrites formation, maturation and integration in various regionsof brain. Moreover, latest researches have found that Ngn2is sufficient to stimulateembryonic stem cells, astrocytes, and oligodendrocytes precursor cells differentiationinto glutamate neurons. Meanwhile, Ngn2promotes the translated neural precursorcells to survive, differentiate, migrate and mature. These results indicate that Ngn2may be an attractive candidate for the treatment of stroke, especially in rehabilitationtreatment. However, as a macromolecular peptide, Ngn2can not cross the bloodbrain barrier (BBB), that limits the use of Ngn2in the treatment of central nervoussystem diseases. In the past, we have fused Ngn2, protein transduction domain (PTD)of TAT protein and LBD (laminin binding domain from the first135amino acids ofagrin) to TAT-LBD-Ngn2protein, which may cross the cell membrane and BBB, toaggregate at lesion regions. Moreover, the TAT-LBD-Ngn2fusion protein provides afoundation for the further study on the neuroprotective effect on ischemic stroke.
     Cultured hippocampal neurons exposed to oxygen-glucose deprivation(OGD),mice global cerebral ischemia model, neurological behavior, immunohistochemistry,and western blot techniques were used in this study to investigate the short-term andlong term neuroprotective effects of TAT-LBD-Ngn2, to confirm the effect ofTAT-LBD-Ngn2on neurogenesis, and to clarify the underlying mechanisms. Thepresent study is aimed to represent a promising therapeutic target and candidate drugfor treatment of ischemic stroke, and provide novel evidence and insights on theneuroprotective effect of Ngn2.
     Experiment1The protective effect of TAT-LBD-Ngn2againstOGD damage in cultured neurons
     Purpose: To investigate the neuroprotective effects of TAT-LBD-Ngn2onprimary neurons exposed to OGD, and to preliminarily clarify the mechanisms in vitro.
     Methods: The primary cultured hippocampal neurons were respectivelycultured in the presence of TAT-Ngn2, TAT-LBD and TAT-LBD-Ngn2, at aconcentration of125μg/L. Six hours later, the transduction ability and neurite growthwere investigated by immunofluoresence analysis. Then the neurons were dividedinto5groups: Control group, OGD group, OGD+TAT-LBD-Ngn2(62.5μg/L) group,OGD+TAT-LBD-Ngn2(125μg/L) group and OGD+TAT-LBD-Ngn2(250μg/L)group. At24h after OGD, the cell viability was assessed by MTT assay, and neuralinjury was evaluated by LDH release. To determine whether TAT-LBD-Ngn2canreduce neural apoptosis induced by OGD, TUNEL staining was performed. At thesame time, Elisa and western blot were conducted to investigate the expression ofapoptosis-related proteins, such as Caspase-3, Bcl-2and Bax.
     Results: We found that both TAT-LBD-Ngn2and TAT-Ngn2could cross the cellmembrane into hippocampal neurons, and promote neurite growth (P<0.05) in vitro.At24h after reperfusion, the cell viability significantly increased (P<0.01), and theLDH release decreased (P<0.01) in TAT-LBD-Ngn2group, which showed adose-dependent effect. TAT-LBD-Ngn2also statistically reduced the number ofTUNEL labeling-positive neurons (P<0.05). Meanwhile, the expression ofpro-apoptotic protein(Caspase-3and Bax) decrease (P<0.01), and the expression ofanti-apoptotic protein Bcl-2increased(P<0.01) in TAT-LBD-Ngn2groups. Theanti-apoptotic effect of TAT-LBD-Ngn2was also strengthened with the increasedosage.
     Conclusion: TAT-LBD-Ngn2could cross the cell membrane, and promoteneurite growth. In addition, TAT-LBD-Ngn2could reduce neurons apoptosis andalleviate ischemia reperfusion injury by suppressing the intrinsic and extrinsicapoptotic pathways.
     Experiment2The neuroprotective effects of TAT-LBD-Ngn2oncerebral ischemic injury in vivo
     Purpose: To investigate the neuroprotective effect of TAT-LBD-Ngn2onglobal cerebral ischemia injury, and to preliminarily clarify the anti-apoptoticmechanisms in vivo.
     Methods: BCCAO was used as a model of global cerebral ischemia (GCI).Male C57BL/6mice were randomly divided into two groups: control group (PBS200μL, qd ip, n=30) and TAT-LBD-Ngn2(TAT-LBD-Ngn2250μg/kg, qd ip, n=30).At24h after injection of medicines, fluorescent staining and western blot wereperformed to investigate whether TAT-LBD-Ngn2could cross BBB and cellmembrane. The total motor score (TMS)(9possible points) was calculated to detectmotor deficits at1,2,3d after BCCAO. In addition, TUNEL staining was conductedto determine the neuron apoptosis at3d after BCCAO. At the same time, theexpression of neurotrophic factors including BDNF and NGF were investigated byimmunohistochemistry.
     Results: The model of GCI was successfully established. We found thatTAT-LBD-Ngn2could cross the BBB and transduce into hippocampal and corticalneurons. Moreover, Ngn2distributed much more in hippocampus and cortex inTAT-LBD-Ngn2group(P<0.01), due to the laminin binding domains which inducedNgn2aggregation in the cerebral lesion regions. TAT-LBD-Ngn2treatmentsignificantly improved TMS scores (P<0.05) after GCI injury. Meanwhile,TAT-LBD-Ngn2could attenuate the number of TUNEL labeling-positive cells(P<0.05) in the hippocampal CA1subregion, and improve the expression of BDNFrather than NGF in cortex.
     Conclusion: TAT-LBD-Ngn2could cross BBB and aggregated at lesion regions.Moreover, TAT-LBD-Ngn2could alleviate neuron I/R injury and improveneurological function by increasing BDNF expression and suppressing neuronapoptosis.
     Experiment3The effect of TAT-LBD-Ngn2on neurogenesis aftercerebral ischemia
     Purpose: To investigate the long-term neuroprotective effect ofTAT-LBD-Ngn2, especially the recovery of neurological function. Moreover, topreliminary discuss the effect of neurogenesis in the neuroprotection..
     Methods: BCCAO was used as a model of GCI. Male C57BL/6mice wererandomly divided into two groups: control group (PBS200μL, qd ip, n=30) andTAT-LBD-Ngn2(TAT-LBD-Ngn2250μg/kg, qd ip, n=30). At14,28d after BCCAO,Morris water maze was conducted to determine the spatial learning and memoryfunction. Fluorescent staining was performed to investigate the number andmorphology of neurons in hippocampal CA1subregion, the new born neurons werelabeled by BrdU and DCX in DG, and functional synaptic connections were labeledby SYN.
     Results: The escape latency got shortened (P<0.05), and the number ofplatform-site crossover and time spent in target quandrant increased (P<0.05) inTAT-LBD-Ngn2group at14and28d after BCCAO, indicating a better spatial learningand memory functions. In addition, TAT-LBD-Ngn2, at a concentration of250μg/kg,could significantly increase the number of neuron in hippocampal CA1subregion(P<0.05), the numbers of BrdU and DCX labeling-positive neuron in DG (P<0.05).Meanwhile, the expression of SYN increased in TAT-LBD-Ngn2group compared withControl group in cortex and hippocampus.
     Conclusion: TAT-LBD-Ngn2could promote the survival of neurons inhippocampal CA1subregion. TAT-LBD-Ngn2also improves spatial learning andmemory functions after I/R injury by promoting neurogenesis and rebuilding thesynaptic structure.
     Summary: According to these results, TAT-LBD-Ngn2could cross blood brainbarrier and cell membrane, and gather into the neurons in the lesion regions.Moreover, TAT-LBD-Ngn2could increase the expression of BDNF, suppress theneuron apoptosis to alleviate early stage ischemic cerebral injury. TAT-LBD-Ngn2also enhances neurogenesis, and rebuilds synaptic structure to promote neurologicalrecovery after ischemic cerebral injury.
     All these results indicate that TAT-LBD-Ngn2can be a candidate drug for clinicalstroke treatment, which could alleviate cerebral injury in short-term, and promoteneurological recovery in long-term. The present study not only develops a newdirection of macromolecular peptides treatment for stroke, but also provides a newdrug target and research basis in drugs development of stroke.
引文
1. Roger VL, Go AS, American Heart Association Statistics Committee andStroke Statistics Subcommittee, et al. Heart disease and stroke statistics--2012update: areport from the American Heart Association. Circulation.2012;125(1):e2-e220.
    2. Bonita R, Mendis S, Yatsu F, et al. The global stroke initiative. Lancet Neurol2004;3:391-93.
    3. Liu M, Wu B, Kong LZ, et al. Stroke in China: epidemiology, prevention, andmanagement strategies. Lancet Neurol.2007;6(5):456-64.
    4.中国卫生部:《2010中国卫生统计年鉴》.
    5. Adamson J, Beswick A, Ebrahim S. Is stroke the most common cause ofdisability? J Stroke Cerebrovasc Dis2004;13(4):171-7.
    6. Andersson EK, Irvin DK, Ahlsio J, Parmar M. Ngn2and Nurr1act in synergyto induce midbrain dopaminergic neurons from expanded neural stem and progenitorcells. Exp Cell Res2007;313(6):1172-1180.
    7. Shaker T, Dennis D, Kurrasch DM, Schuurmans C. Neurog1and Neurog2coordinately regulate development of the olfactory system. Neural Dev2012;7:28.
    8. Hand R, Polleux F. Neurogenin2regulates the initial axon guidance of corticalpyramidal neurons projecting medially to the corpus callosum. Neural Dev.2011;6:30.
    9. Shimada T, Yaginuma H, Sato N, Homma S. Neurogenin2expression togetherwith NeuroM regulates GDNF family neurotrophic factor receptor alpha1(GFRalpha1)expression in the embryonic spinal cord. Dev Biol2012;370(2):250-263.
    10. Perrin FE, Boniface G, Prieto M, et al. Grafted human embryonic progenitorsexpressing neurogenin-2stimulate axonal sprouting and improve motor recovery aftersevere spinal cord injury. PLoS One2010;5(12):e15914.
    11. Hu Z, Wei D, Johansson CB, Holmstrom N, Duan M, Frisen J, et al. Survivaland neural differentiation of adult neural stem cells transplanted into the mature innerear. Exp Cell Res2005;302(1):40-47.
    12. Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, et al. Neurogenin2regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis incerebellar development. Development2012;139(13):2308-2320.
    13. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A.Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell1999;97:703-16.
    14. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: areview of population-based studies of incidence, prevalence, and case-fatality in the late20th century. Lancet Neurol2003;2:43-53.
    15. Alberts MJ, Naidech AM. tPA and warfarin: Time to move forward.Neurology2013;80:514-5.
    16. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: Anintegrated view. Trends Neurosci.1999;22:391-397.
    17. Voogd TE, Vansterkenburg EL, Wilting J, Janssen LH. Recent research on thebiological activity of suramin. Pharmacol Rev.1993;45(2):177-203.
    18. Kharlamov A, Jones SC, Kim DK. Suramin reduces infarct volume in a modelof focal brain ischemia in rats. Exp Brain Res.2002;147(3):353-359.
    19. Kawabata S, Kohara A, Okada M, et al. Diversity of calcium signaling bymetabotropic glutamate receptors. J Biol Chem.1998;273(28):17381-17385.
    20. Kohara A, Takahashi M, Okada M, et al. Neuroprotective effects of theselective type1metabotropic glutamate receptor antagonist YM-202074in rat strokemodels. Brain Res.2008;1191:168-179.
    21. Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anestheticagents. J Anesth.2005;19(2):150-156.
    22. Wei L, Yu SP, Choi DW, et al. Potassium channel blockers attenuate hypoxia-and ischemia-induced neuronal death in vitro and in vivo. Stroke.2003;34(5):1281-
    1286.
    23. Khansari PS, Halliwell RF. Evidence for neuroprotection by the fenamateNSAID, mefenamic acid. Neurochem Int.2009;55(7):683-688.
    24. Zhang WH, Wang H, Friedlander RM, et al. Nortriptyline protectsmitochondria and reduces cerebral ischemia/hypoxia injury. Stroke.2008;39(2):455-462.
    25. Babu CS, Ramanathan M. Pre-ischemic treatment with memantine reversed theneurochemical and behavioural parameters but not energy metabolites in middlecerebral artery occluded rats. Pharmacol Biochem Behav.2009;92(3):424-432.
    26. Miettinen S, Fusco FR, Koistinaho J, et al. Spreading depression and focalbrain ischemia induce cyclooxygenase-2in cortical neurons throughNmethyl-D-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci USA.1997;94(12):6500-6505.
    27. Ahmad M, Zhang Y, Liu H, Rose ME, Graham SH. Prolonged opportunity forneuroprotection in experimental stroke with selective blockade of cyclooxygenase-2activity. Brain Res.2009;1279:168-173.
    28. Shuaib A, Waqaar T, Howlett W, et al. Neuroprotection with felbamate: a7-and28-day study in transient forebrain ischemia in gerbils. Brain Res.1996;727(1-2):65-70.
    29. Alicke B, Schwartz-Bloom RD. Rapid down-regulation of GABAA receptorsin the gerbil hippocampus following transient cerebral ischemia. J Neurochem.1995;65(6):2808-2811.
    30. Colbourne F, Corbett D. Delayed and prolonged post-ischemic hypothermia isneuroprotective in the gerbil. Brain Res.1994;654(2):265-272.
    31. Corbett D, Larsen J, Langdon KD. Diazepam delays the death of hippocampalCA1neurons following global ischemia. Exp Neurol.2008;214(2):309-314.
    32. Kumar V, Naik RS, Hillert M, Klein J. Effects of chloride flux modulators inan in vitro model of brain edema formation. Brain Res.2006;1122(1):222-229.
    33. Evenson KR, Rosamond WD, Morris DL. Prehospital and in-hospital delays inacute stroke care. Neuroepidemiology.2001;20:65-76.
    34. Callaway JK, Knight MJ, Watkins DJ, Beart PM, Jarrott B. Delayed treatmentwith AM-36, a novel neuroprotective agent, reduces neuronal damage afterendothelin-1-induced middle cerebral artery occlusion in conscious rats. Stroke.1999;30(12):2704-2712. discussion2712.Yamaguchi T, Sano K, Takakura K,
    35. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, YasuharaH. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial.Ebselen Study Group. Stroke.1998;29(1):12-17.
    36. Aizenman E, Lipton SA, Loring RH. Selective modulation of NMDAresponses by reduction and oxidation. Neuron.1989;2(3):1257-1263.
    37. Pellegrini-Giampietro DE, Moroni F, et al. Excitatory amino acid release andfree radical formation may cooperate in the genesis of ischemia-induced neuronaldamage. J Neurosci.1990;10(3):1035-1041.
    38. Yue TL, McKenna PJ, Ruffolo RR Jr. Feuerstein G. Carvedilol, a newbeta-adrenoceptor antagonist and vasodilator antihypertensive drug, inhibits superoxiderelease from human neutrophils. Eur J Pharmacol.1992;214(2-3):277-280.
    39. Yoshikawa T. Free radicals and their scavengers in Parkinson's disease. EurNeurol.1993;33(Suppl1):60-68.
    40. Liu XH, Kato H, Chen T, Kato K, Itoyama Y. Bromocriptine protects againstdelayed neuronal death of hippocampal neurons following cerebral ischemia in thegerbil. J Neurol Sci.1995;129(1):9-14.
    41. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R,Miranda-Merchak A, Feuerhake W. Oxidative Stress and Pathophysiology of IschemicStroke: Novel Therapeutic Opportunities. CNS Neurol Disord Drug Targets.2013Feb
    27.[Epub ahead of print]
    42. Ferrer I, Planas AM. Signaling of cell death and cell survival following focalcerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol.2003;62(4):329-339.
    43. Koh PO. Melatonin attenuates the focal cerebral ischemic injury by inhibitingthe dissociation of pBad from14-3-3. J Pineal Res.2008;44(1):101-106.
    44. Koh PO. Melatonin prevents the injury-induced decline of Akt/fork headtranscription factors phosphorylation. J Pineal Res.2008;45(2):199-203.
    45. Kilic U, Kilic E, Reiter RJ, Bassetti CL, Hermann DM. Signal transductionpathways involved in melatonin-induced neuroprotection after focal cerebral ischemiain mice. J Pineal Res.2005;38(1):67-71.
    46. Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL,Kristal BS, Friedlander RM. Methazolamide and melatonin inhibit mitochondrialcytochrome C release and are neuroprotective in experimental models of ischemicinjury. Stroke.2009;40(5):1877-1885.
    47. Hashimoto Y, Niikura T, Nishimoto I, et al. A rescue factor abolishing neuronalcell death by a wide spectrum of familial Alzheimer's disease genes and A beta. ProcNatl Acad Sci USA.2001;98(11):6336-6341.
    48. Xu X, Chua CC, Chua BH, et al. Neuroprotective effect of humanin oncerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res.2008;1227(28):12-18.
    49. Xu X, Chua CC, Gao J, Hamdy RC, Chua BH. Humanin is a novelneuroprotective agent against stroke. Stroke.2006;37(10):2613-2619.
    50. Konishi Y, Chui DH, Hirose H, Kunishita T, Tabira T. Trophic effect oferythropoietin and other hematopoietic factors on central cholinergic neurons in vitroand in vivo. Brain Res.1993;609(1-2):29-35.
    51. Zhang F, Signore AP, Zhou Z, Wang S, Cao G, Chen J. Erythropoietin protectsCA1neurons against global cerebral ischemia in rat: potential signaling mechanisms. JNeurosci Res.2006;83(7):1241-1251.
    52. Tripathy D, Grammas P. Acetaminophen inhibits neuronal inflammation andprotects neurons from oxidative stress. J Neuroinflammation.2009;6:10.
    53. Bisaglia M, Venezia V, Piccioli P, Stanzione S, Porcile C, Russo C, Mancini F,Milanese C, Schettini G. Acetaminophen protects hippocampal neurons and PC12cultures from amyloid beta peptides induced oxidative stress and reduces NF-kappaBactivation. Neurochem Int.2002;41(1):43-54.
    54. Maharaj H, Maharaj DS, Daya S. Acetylsalicylic acid and acetaminophenprotect against oxidative neurotoxicity. Metab Brain Dis.2006;21(2-3):189-199.
    55. Baliga SS, Jaques-Robinson KM, Hadzimichalis NM, Golfetti R, Merrill GF.Acetaminophen reduces mitochondrial dysfunction during early cerebral postischemicreperfusion in rats. Brain Res.2010;1319:142-154.
    56. Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J. Neuroprotection by baicalein inischemic brain injury involves PTEN/AKT pathway. J Neurochem.2010;112(6):1500-1512.
    57. Sun M, Zhao Y, Gu Y, Xu C. Neuroprotective actions of aminoguanidineinvolve reduced the activation of calpain and caspase-3in a rat model of stroke.Neurochem Int.2010;56(4):634-641.
    58. Becker KJ. Inflammation and acute stroke. Curr Opin Neurol.1998;11(1):45-49.
    59. Catania A, Gatti S, Colombo G, Lipton JM. Targeting melanocortin receptorsas a novel strategy to control inflammation. Pharmacol Rev.2004;56(1):1-29.
    60. Getting SJ. Melanocortin peptides and their receptors: new targets foranti-inflammatory therapy. Trends Pharmacol Sci.2002;23(10):447-449.
    61. Mountjoy KG, Guan J, Elia CJ, Sirimanne ES, Williams CE. Melanocortin-4receptor messenger RNA expression is up-regulated in the non-damaged striatumfollowing unilateral hypoxic ischaemic brain injury. Neuroscience.1999;89(1):183-190.
    62. Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE,Schepers J, Vos IM, Dijkstra CD, Kappelle LJ, Nicolay K, Bar PR. Interferon-betablocks infiltration of inflammatory cells and reduces infarct volume after ischemicstroke in the rat. J Cereb Blood Flow Metab.2003;23(9):1029-1039.
    63. Floris S, Ruuls SR, Wierinckx A, van der Pol SM, Dopp E, van der Meide PH,Dijkstra CD, De Vries HE. Interferon-beta directly influences monocyte infiltration intothe central nervous system. J Neuroimmunol.2002;127(1-2):69-79.
    64. Chang CZ, Kwan AL, Howng SL.6-Mercaptopurine exerts animmunomodulatory and neuroprotective effect on permanent focal cerebral occlusion inrats. Acta Neurochir (Wien).2010;152(8):1383-1390. discussion1390.
    65. Gross G. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci.2000,1:67-73.
    66. Lemaire V, Tronel S,MontaronMF, Fabre A, Dugast E, Abrous DN.Long-lasting plasticity of hippocampal adult-born neurons. JNeurosci.2012;32(9):3101-3108.
    67. Aimone JB, Deng W, Gage FH. Adult neurogenesis: integrating theories andseparating functions. Trends Cogn Sci.2010;14(7):325-337.
    68. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis:From precursors tonetwork and physiology. Physiol Rev.2005;85(2):523-569.
    69. Deng W, Aimone JB, Gage FH. New neurons and new memories: how doesadult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci.2010;11(5):339-350.
    70. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis inthe adult is involved in the formation of trace memories. Nature.2001;410(6826):372-376.
    71. Shors TJ, Anderson ML, Curlik DM2nd, Nokia MS. Use it or lose it: howneurogenesis keeps the brain fit for learning. Behav Brain Res.2012;227(2):450-458.
    72. Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetineadministration increases cell proliferation in hippocampus and prefrontal cortex of adultrat. Biol Psychiatry.2004;56(8):570-580.
    73. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortexof adult primates. Science.1999;286(5439):548-552.
    74. Goncalves L, Silva R, Almeida A, et al. Neuropathic pain is associated withdepressive behaviour and induces neuroplasticity in the amygdala of the rat. ExpNeurol.2008;213(1):48-56.
    75. Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A. Newly generatedneurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad SciUSA.2002;99(17):11464-11469.
    76. Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice:potential role in energy balance. Science.2005;310(5748):679-683.
    77. Fowler CD, Liu Y, Ouimet C, Wang Z. The effects of social environment onadult neurogenesis in the female prairie vole. J Neurobiol.2002;51(2):115-128.
    78. Bedard A, Gravel C, Parent A. Chemical characterization of newly generatedneurons in the striatum of adult primates. Exp Brain Res.2006;170(4):501-512.
    79. Yoshimi K, Ren YR, Mochizuki H, et al. Possibility for neurogenesis insubstantia nigra of parkinsonian brain. Ann Neurol.2005;58(1):31-40.
    80. von Bohlen und Halbach O. Immunohistological markers for proliferativeevents, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res.2011;345(1):1-19.
    81. Ehninger D, Kempermann G. Regional effects of wheel running andenvironmental enrichment on cell genesis and microglia proliferation in the adultmurine neocortex. Cereb Cortex.2003;13(8):845-851.
    82. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviralbrain-derived neurotrophic factor induces both neostriatal and olfactory neuronalrecruitment from endogenous progenitor cells in the adult forebrain. J Neurosci.2001;21(17):6718-6731.
    83. Clelland CD, Choi M, Romberg C, et a1. A functional role for adulthippocampal neurogenesis in spatial pattern separation. Science.2009;325:210-213.
    84. Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, Haas CA,Kempermann G, Taylor V, Giachino C. Quiescent and active hippocampal neural stemcells with distinct morphologies respond selectively to physiological and pathologicalstimuli and aging. Cell Stem Cell.2010;6(5):445-456.
    85. Hodge RD, Kahoud RJ, Hevner RF. Transcriptional control of glutamatergicdifferentiation during adult neurogenesis. Cell Mol Life Sci.2012;69(13):2125-34.
    86. Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functionalimplications, and contribution to disease pathology. Neurosci Biobehav Rev.2009;33(3):232-252.
    87. Nokia MS, Sisti HM, Choksi MR, Shors TJ. Learning to learn: thetaoscillations predict new learning, which enhances related learning and neurogenesis.PLoS One.2012;7(2):e31375.
    88. Biebl M, Cooper CM, Winkler J, Kuhn HG. Analysis of neurogenesis andprogrammed cell death reveals a self-renewing capacity in the adult rat brain. NeurosciLett.2000;291(1):17-20.
    89. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Earlydetermination and long-term persistence of adult generated new neurons in thehippocampus of mice. Development.2003;130(2):391-399.
    90. Chesnokova V, Pechnick RN. Antidepressants and Cdk inhibitors: releasing thebrake on neurogenesis? Cell Cycle.2008;7(15):2321-2326.
    91. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentategyrus aftert transient global ischemia in gerbils. J Neurosci.1998;18:7768-78.
    92. Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O.Long-term neuroblast migration along blood vessels in an area with transientangiogenesis and increased vascularization after stroke. Stroke.2007;38(11):3032-9.
    93. Shimada IS, Peterson BM, Spees JL. Isolation of locally derivedstem/progenitor cells from the peri-infarct area that do not migrate from the lateralventricle after cortical stroke.Stroke.2010;41: e552-e560.
    94. Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, et al. Irradiationattenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol.2004;55:381-9.
    95. Saino O, Taguchi A, Nakagomi T, Nakano-Doi A, Kashiwamura S, Doe N, et al.Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhancesneurogenesis in the cerebral cortex after stroke. J Neurosci Res.2010;88:2385-97.
    96. Komitova M, Mattsson B, Johansson BB, Eriksson PS. Enriched environ-mentincreases neural stem/progenitor cell proliferation and neurogenesis in thesubventricular zone of stroke-lesioned adult rats. Stroke.2005;36:1278-82.
    97. Kilic E, Kilic U, Bacigaluppi M, Guo Z, Abdallah NB, Wolfer DP, et al.Delayed melatonin administration promotes neuronal survival, neurogenesis and motorrecovery, and attenuates hyperactivity and anxiety after mild focal cere-bral ischemia inmice. J Pineal Res.2008;45:142-8.
    98. Luo CX, Jiang J, Zhou QG, Zhu XJ, Wang W, Zhang ZJ, et al. Voluntaryexercise-induced neurogenesis in the postischemic dentate gyrus is associated withspatial memory recovery from stroke. J Neurosci Res.2007;85:1637-46.
    99. Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, et al. Chronic treatmentwith minocycline preserves adult new neurons and reduces functional impairment afterfocal cerebral ischemia. Stroke.2007;38:146-52.
    100. Morimoto T, Yasuhara T, Kameda M, Baba T, Kuramoto S, Kondo A, et al.Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats. Cell Transplant.2011;20(7):1049-64.
    101. Li J, Siegel M, Yuan M, Zeng Z, Finnucan L, Persky R, et al. Estrogenenhances neurogenesis and behavioral recovery after stroke. J Cereb Blood Flow Metab.2011;31:413-25.
    102. Guerra-Crespo M, Gleason D, Sistos A, Toosky T, Solaroglu I, Zhang JH, etal. Transforming growth factor-alpha induces neurogenesis and behavioral improvementin a chronic stroke model. Neuroscience.2009;160:470-83.
    103. Plane JM, Whitney JT, Schallert T, Parent JM. Retinoic acid andenvironmental enrichment alter subventricular zone and striatal neurogenesis afterstroke. Exp Neurol.2008;214:125-34.
    104. Luo Y, Kuo CC, Shen H, Chou J, Greig NH, Hoffer BJ, et al. Delayedtreatment with a p53inhibitor enhances recovery in stroke brain. Ann Neurol2009;65:520-30.
    105. Zhao C, Wang J, Zhao S, Nie Y. Constraint-induced movement therapyenhanced neurogenesis and behavioral recovery after stroke in adult rats. Tohoku J ExpMed.2009;218:301-8.
    106. Jin K, Wang X, Xie L, Mao XO, Greenberg DA. Transgenic ablation ofdoublecortin-expressing cells suppresses adult neurogenesis and worsens strokeoutcome in mice. Proc Natl Acad Sci USA.2010;107:7993-8.
    107. Zhang C, Chopp M, Cui Y, Wang L, Zhang R, Zhang L, et al. Cerebrolysinenhances neurogenesis in the ischemic brain and improves functional outcome afterstroke. J Neurosci Res.2010;88:3275-81.
    108. Zhang RL, Zhang Z, Zhang L, Wang Y, Zhang C, Chopp M. Delayedtreatment with sildenafil enhances neurogenesis and improves functional recovery inaged rats after focal cerebral ischemia. J Neurosci Res.2006;83:1213-9.
    109. Wang SH, Zhang ZJ, Guo YJ, Teng GJ, Chen BA. Hippocampal neurogenesisand behavioural studies on adult ischemic rat response to chronic mild stress. BehavBrain Res.2008;189:9-16.
    110. Wang SH, Zhang ZJ, Guo YJ, Sui YX, Sun Y. Involvement of serotonin neu-rotransmission in hippocampal neurogenesis and behavioral responses in a rat model ofpost-stroke depression. Pharmacol Biochem Behav.2010;95:129-37.
    111. Keiner S, Witte OW, Redecker C. Immunocytochemical detection of newlygen-erated neurons in the perilesional area of cortical infarcts after intraventricularapplication of brain-derived neurotrophic factor. J Neuropathol Exp Neurol.2009;68:83-93.
    112. Schabitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C,Schneider A, et al. Intravenous brain-derived neurotrophic factor enhances post-strokesensorimotor recovery and stimulates neurogenesis. Stroke.2007;38:2165-72.
    113. Leasure JL, Grider M. The effect of mild post-stroke exercise on reactiveneurogenesis and recovery of somatosensation in aged rats. Exp Neurol.2010;226:58-67.
    114. Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, et al. Growthfactor-stimulated generation of new cortical tissue and functional recovery after strokedamage to the motor cortex of rats. J Cereb Blood Flow Metab.2007;27:983-97.
    115. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P. Notch regulates cellfate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. ProcNatl Acad Sci USA.2007;18;104(51):20558-63.
    116. Androutsellis-Theotokis A, Leker RR, Soldner F, oeppner DJ, Ravin R, PoserSW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stemcellnumbers in vitro and in vivo. Nature.2006;442(7104):823-6.
    117. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R,Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulatesstem cell numbers in vitro and in vivo. Nature.2006Aug17;442(7104):823-6.
    118. Wang X, Mao X, Xie L, et a1.Involvement of Notch1signaling inneurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. JCereb Blood Flow Metab.2009;29:1644-54.
    119. Piccin D, Morshead CM.Wnt signaling regulates symmetry of division ofneural stem cells in tlle the adult brain and in response to injury. Stem Cells.2011;29:528-38.
    120. Mastroiacovo F, Busceti CL, Biagioni F, Moyanova SG, Meisler MH,Battaglia G, Caricasole A, Bruno V, Nicoletti F. Induction of the Wnt antagonist,Dickkopf-1, contributes to the development of neuronal death in models of brain focalischemia. J Cereb Blood Flow Metab.2009Feb;29(2):264-76.
    121. Sims JR, Lee SW, Topalkara K, Qiu J, Xu J, Zhou Z, Moskowitz MA. Sonichedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke.2009Nov;40(11):3618-26.
    122. Ma Q, Kintner C, Anderson DJ. Identification of neurogenin, a vertebrateneuronal determ ination gene. Cell.1996;87(1):43-52.
    123. Sommer L, Ma Q, Anderson DJ. Neurogenins, a novel family ofatonal—related bHLH transcription factors, are putative mammalian neuronaldetermination genes that reveal progenitor cell heterogeneity in the developing CNSand PNS.Mol Cell Neurosci.1996;8(4):221-241.
    124. Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification ofneural cell types. Nat Rev Neurosci.2002;3:517-30.
    125. Simmons AD, Horton S, Abney AL, Johnson JE. Neurogenin2expression inventral and dorsal spinal neural tube progenitor cells is regulated by distinct enhancers.Dev Biol.2001;229(2):327-39.
    126. Scardigli R, Schuurmans C, Gradwohl G, Guillemot F. Cross regulationbetween Neurogenin2and pathways specifying neuronal identity in the spinal cord.Neuron.2001;31(2):203-17.
    127. Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification ofneural cell types. Nat Rev Neurosci.2002;3(7):517-30.
    128. Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, JohnsonJE.Crossinhibitory activities of Ngn1and Math1allow specification of distinct dorsalinterneurons. Neuron.2001;31(2):219-32.
    129. Nakada Y, Hunsaker TL, Henke RM, Johnson JE. Distinct domains withinMash1and Math1are required for function in neuronal differentiation versus neuronalcell-type specification. Development.2004;131(6):1319-30.
    130. Kele J, Simplicio N, Ferri ALM, Mira H, Guillemot F, Arenas E, Ang SL.Neurogenin2is required for the development of ventral midbrain dopaminergicneurons. Development.2005;133:495-505.
    131. Serre A, Snyder EY, Mallet J, Buchet D. Overexpression of BasicHelix-Loop-Helix Transcription Factors Enhances Neuronal Differentiation of FetalHuman Neural Progenitor Cells in Various Ways. Stem Cells Dev.2012March1;21(4):539-553.
    132. Florio M, Leto K, L Muzio L, Tinterri A, Badaloni A, Croci L, Zordan P,Barili V, Albieri I, Guillemot F, Ross i F, Consalez GG. Neurogenin2regulatesprogenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellardevelopment. Development.2012;39(13):2308-20.
    133. Ma YC, Song MR, Park JP, Henry Ho HY, Hu L, Kurtev MV, Zieg J, Ma Q,Pfaff SL, Greenberg ME. Regulation of motor neuron specification by phosphorylationof neurogenin2. Neuron.2008;58(1):65-77.
    134. Hand R, Polleux F. Neurogenin2regulates the initial axon guidance ofcortical pyramidal neurons projecting medially to the corpus callosum. Neural Dev.2011;6:30.
    135. Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, Guerrier S, Boutt E, PetersE,Barnes AP, Parras C, Schuurmans C, Guillemot F, Polleux F. Phosphorylation ofNeurogenin2specifies the migration properties and the dendritic morphologyofpyramidal neurons in the neocortex. Neuron.2005;48(1):45-62.
    136. Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O,Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F. Neurogenin2controls cortical neuron migration through regulation of Rnd2. Nature.2008;455(7209):114-8.
    137. Thoma EC, Wischmeyer E, Offen N, Maurus K, Sirén AL, Schartl M, WagnerTU. Ectopic expression of neurogenin2alone is sufficient to induce differentiation ofembryonic stem cells into mature neurons. PLoS One.2012;7(6):e38651.
    138. Blum R, Heinrich C, Sánchez R, Lepier A, Gundelfinger ED, Berninger B,G tz M. Neuronal network formation from reprogrammed early postnatal rat corticalglial cells. Cereb Cortex.2011;21(2):413-24.
    139. Chen X, Lepier A, Berninger B, Tolkovsky AM, Herbert J. Culturedsubventricular zone progenitor cells transduced with neurogenin-2become matureglutamatergic neurons and integrate into the dentate gyrus. PLoS One.2012;7(2):e31547.
    140. Yi SH, Jo AY, Park CH, Koh HC, Park RH, Suh-Kim H, Shin I, Lee YS, KimJ, Lee SH. Mash1and neurogenin2enhance survival and differentiation of neuralprecursor cells after transplantation to rat brains via distinct modes of action. Mol Ther.2008;16(11):1873-82.
    141. Green M, Loewenstein PM. Autonomous functional domains of chemicallysynthesized human immunodeficiency virus tat trans-activator protein. Cell.1988;55:1179-1188.
    142. Frankel AD, Pabo CO. Cellular uptake of the tat protein from humanimmunodeficiency virus. Cell;1988,55:1189-1193.
    143. MannDA, Frankel AD. Endocytosis and targeting of exogenous HIV-1TATprotein. EMBO J.1991;10:1733-1739.
    144. Vivès E, Brodin P, Lebleu B. A truncated HIV-1TAT protein basic domainrapidly translocates through the plasma membrane and accumulates in the cell nucleus.J. Biol. Chem.1997;272:160101-16017.
    145. S. Ruben, A. Perkins, R. Purcell, et al.Structural and functionalcharacterization of human immunodeficiency virus tat protein. J Virol.1989;63:1-8.
    146. Hilary Brooks, Bernard Lebleu, Eric Vives. Tat peptide-mediated cellulardelivery: back to basics. Advanced Drug Delivery Reviews.2005;57:559-577.
    147. Eum WS, Choung IS, Li MZ, et al. HIV-1Tat mediated protein transductionof Cu, Zn-superoxide dismutase into pancreatic β cells in vitro and in vivo. Free RadicBiol Med.2004;37:339-349.
    148. Shokolenko IN, Alexeyev MF, LeDoux SP, et al. TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells.DNA Repair.2005;4:511-518.
    149. Ono M, Sawa Y, Ryugo M, Alechine AN, Shimizu S, Sugioka R, Tsujimoto Y,Matsuda H. BH4peptide derivative from Bcl-xL attenuates ischemia/reperfusion injurythorough anti-apoptotic mechanism in rat hearts. Eur J Cardiothorac Surg.2005;27(1):117-21.
    150. Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brainbarrier to protect against experimental brain injury. Proc Natl Acad Sci USA.2000;97(19):10526-10531.
    151. Zhang F, Xing J, Liou AK, Wang S, Gan Y, Luo Y, Ji X, Stetler RA, Chen J,Cao G. Enhanced Delivery of Erythropoietin Across the Blood-Brain Barrier forNeuroprotection against Ischemic Neuronal Injury. Transl Stroke Res.2010;1(2):113-121.
    152. Kilic ü, Kilic E. Intravenous TAT-GDNF Is Protective After Focal CerebralIschemia in Mice. Stork.2003;34:1304-1310.
    153. Kilicü, Kilic E. The TAT Protein Transduction Domain Enhances theNeuroprotective Effect of Glial-Cell-Line-Derived Neurotrophic Factor after OpticNerve Transection. Neurodegenerative Dis.2004;1:44-49.
    154. Dietz GP, Valbuena PC, Dietz B, et al. Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson's disease. Brain Res,2006;1082(1):61-6.
    155. Mi YJ, Hou B. Amino-Nogo-A antagonizes reactive oxygen speciesgeneration and protects immature primary cortical neurons from oxidative toxicity. CellDeath Differ.2012;19(7):1175-86.
    156. Gou X, Wang Q, Yang Q, et a1. TAT-NEPI-40as a novel therapeuticcandidate for axonal regeneration and functional recovery after stroke. J Drug Target.2010;19:86-95.
    157. Wang Q, Gou X, Jin W, et al. TAT-mediated protein transduction of Nogoextracellular peptide1-40and its biological activity. Cell Mol Neurobiol.2009;29(1):97-108.
    158. Wang Q, Gou X, Xiong L, et al. Trans-activator of transcription-mediateddelivery of NEP1-40protein into brain has a neuroprotective effect against focalcerebral ischemic injury via inhibition of neuronal apoptosis. Anesthesiology.2008;108(6):1071-80.
    159. Zhou GY, Zhou SN. Translocation and neuroprotective properties oftransactivator-of-transcription protein-transduction domain-neuroglobin fusion proteinin primary cultured cortical neurons. Biotechnol Appl Biochem.2008;49:25-33.
    160. Cai B, Lin Y. TAT-mediated delivery of neuroglobin protects against focalcerebral ischemia in mice. Experimental Neurology.2011;227:224-231.
    161. Chanalaris A, Sun Y, Latchman DS, et al. SAG attenuates apoptotic cell deathcaused by stimulated ischemia/reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol.2003;35:257-264.
    162. Kim SY, Kim MY, Mo JS, et al. SAG protects human neuroblastomaSH-SY5Y cells against1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicityvia the downregulation of ROS generation and JNK signaling. Neurosci Lett.2007;413:132-136.
    163. Kim DW, Lee SH. Transduced Tat-SAG fusion protein protects againstoxidative stress and brain ischemic insult. Free Radical Biology&Medicine.2010;48:969-77.
    164. Yoo DY, Shin BN. Effects of Sensitive to Apoptosis Gene Protein on CellProliferation, Neuroblast Differentiation, and Oxidative Stress in the Mouse DentateGyrus. Neurochem Res.2012;37:495-502.
    165. Kim DW, Eum WS. Transduced Tat-SOD Fusion Protein Protects AgainstIschemic Brain Injury. Mol Cells.2005;19(1):88-96.
    166. Kilic E, Dietz GP, Hermann DM, et al. Intravenous TAT-Bcl-Xl is protectiveafter middle cerebral artery occlusion in mice. Ann Neurol.2002;52(5):617-22.
    167. Doeppner TR, Dietz G P.H. TAT-Bcl-xLimproves survival of neuronalprecursor cells in the lesioned striatum after focal cerebral ischemia. Neurobiology ofDisease.2009;34:87-94.
    168. Doeppner TR, Dietz G P.H. Protection of hippocampal neurogenesis byTAT-Bcl-xLafter cerebral ischemia in mice. Experimental Neurology.2010;223:548-556.
    169. Doeppner TR, Aanbouri ME. Transplantation of TAT-Bcl-xL-transducedneural precursor cells: Long-term neuroprotection after stroke. Neurobiology of Disease.2010;40:265-276.
    170. Martorana F, Brambilla L, Valori CF, et al. The BH4domain of Bcl-X(L)rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulatingintracellular calcium signals. Hum Mol Genet.2012;21(4):826-40.
    171. Doeppner TR, Nagel F. TAT-Hsp70-mediated neuroprotection and increasedsurvival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb BloodFlow Met.2009;29:1187-1196.
    172. Cook DJ, Teves L, Tymianski M. A Translational Paradigm for the PreclinicalEvaluation of the Stroke Neuroprotectant Tat-NR2B9c in Gyrencephalic NonhumanPrimates. Sci Transl Med.2012;4(154):154ra133.
    173. Hill MD, Martin RH, Mikulis D, et al. Safety and efficacy of NA-1inpatients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase2,randomised, double-blind, placebo-controlled trial. Lancet Neurol.2012;11(11):942-50.
    174. Liebkind R, Tatlisumak E, Wiksten M, Tatlisumak T. WITHDRAWN:Temporal and spatial expression patterns of laminins in ischemic adult rat brain.Neurosci.2007;152(2):338-345.
    175. Cao J, Sun C, Zhao H, Xiao Z, Chen B, Gao J, et al. The use of lamininmodified linear ordered collagen scaffolds loaded with laminin-binding ciliaryneurotrophic factor for sciatic nerve regeneration in rats. Biomaterials2011;32(16):3939-3948.
    176. Han Q, Li B, Feng H, Xiao Z, Chen B, Zhao Y, et al. The promotion ofcerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials2011;32(22):5077-5085.
    177. Mascarenhas JB, Ruegg MA, Winzen U, Halfter W, Engel J, Stetefeld J.Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). Embo J2003;22(3):529-536.
    178. Agrawal M, Kumar V, Kashyap MP, Khanna VK, Randhawa GS, Pant AB.Ischemic insult induced apoptotic changes in PC12cells: protection by transresveratrol.Eur J Pharmacol2011;666(1-3):5-11.
    179. Arai M, Sasaki A, Saito N, Nakazato Y. Immunohistochemical analysis ofcleaved caspase-3detects high level of apoptosis frequently in diffuse large B-celllymphomas of the central nervous system. Pathol Int2005;55(3):122-129.
    180. Tang S, Hu J, Meng Q, Dong X, Wang K, Qi Y, et al. Daidzein InducedApoptosis via Down-Regulation of Bcl-2/Bax and Triggering of the MitochondrialPathway in BGC-823Cells. Cell Biochem Biophys2012.
    181. Jin K, Wang X, Xie L, Mao XO, Greenberg DA. Transgenic ablation ofdoublecortin-expressing cells suppresses adult neurogenesis and worsens strokeoutcome in mice. Proc Natl Acad Sci USA2010;107:7993–98.
    182. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, et al. Delayedpost-ischaemic neuroprotection following systemic neural stem cell transplantationinvolves multiple mechanisms. Brain2009;132:2239–51.
    183. Teng H, Zhang ZG, Wang L, et al. Coupling of angiogenesis andneurogenesis in cultured endothelial cells and neural progenitor cells after stroke. JCereb Blood Flow Metab2008;28:764–71.46
    184. Lee ST, Chu K, Jung KH, et al. Antiinfl ammatory mechanism ofintravascular neural stem cell transplantation in haemorrhagic stroke. Brain2008;131:616-29.
    185. Andres RH, Horie N, Slikker W, et al. Human neural stem cells enhancestructural plasticity and axonal transport in the ischaemic brain. Brain2011;134:1777-89.
    186. Courtois ET, Castillo CG, Seiz EG, Ramos M, Bueno C, Liste I,Martínez-Serrano A. In vitro and in vivo enhanced generation of human A9dopamineneurons from neural stem cells by Bcl-XL. J Biol Chem2010;285(13):9881-97.
    187. Seiz EG, Ramos-Gómez M, Courtois ET, T nnesen J, Kokaia M, Liste NoyaI, Martínez-Serrano A. Human midbrain precursors activate the expected developmentalgenetic program and differentiate long-term to functional A9dopamine neurons in vitro.Enhancement by Bcl-X(L). Exp Cell Res.2012;318(19):2446-59.
    188. Sheng H, Laskowitz DT, Mackensen GB, Kudo M, Pearlstein RD, WarnerDS. Apolipoprotein E deficiency worsens outcome from global cerebral ischemia in themouse. Stroke,1999,30(5):1118-1124.
    189. Homi HM, Mixco JM, Sheng H, Grocott HP, Pearlstein RD, Warner DS.Severe hypotension is not essential for isoflurane neuroprotection against forebrainischemia in mice. Anesthesiology,2003,99(5):1145-1151.
    190. Shimada T, Yaginuma H, Sato N, Homma S. Neurogenin2expressiontogether withNeuroM regulates GDNF family neurotrophic factor receptor α1(GFRα1)expression in the embryonic spinal cord. Dev Biol.2012;370(2):250-63.
    191. Pulsinelli WA, Brieley JB.A mw model of bilateral hemispheric ischemia inthe unaesthetized rat.Stroke.1979;10(3):267-272.
    192. Wang Y, Sheen VL, Macklis JD. Cortical interneurons upregulateneurotrophins in vivo in response to targeted apoptotic degeneration of neighboringpyramidal neurons. Exp Neurol.1998;154(2):389-402.
    193.胡跃强,唐农,范立雷,等.大鼠局灶性脑缺血再灌注后BDNF mRNA及其蛋白的表达变化.中风与神经疾病杂志.2011;28(3):220-222.
    194. Sch bitz WR, Schwab S, Spranger M, Hacke W. Intraventricularbrain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia inrats. J Cereb Blood Flow Metab.1997;17(5):500-6.
    195. Sch bitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S.Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulatesBax and Bcl-2expression after temporary focal cerebral ischemia. Stroke.2000;31(9):2212-7.
    196. McDonald HY, Wojtowicz JM. Dynamics of neurogenesis in the dentategyrus of adult rats. Neurosci Lett.2005;385(1):70-5.
    197.张翠玲,刘立,任宇虹,等.脑缺血性损伤后的皮层突触再生与运动功能恢复.第四军医大学学报.2001;22(12):1122-1147.
    198.刘洋,孙建宁,董世芬,刘明,张易,张硕峰.永久性局灶性中动脉阻断脑缺血(pMCAO)模型大鼠脑内突触相关蛋白表达的免疫组织化学观察.中国比较医学杂志.2012;22(8):43-47.
    199.梁燕玲,张苏明,许康.短暂脑缺血再灌注后突触蛋白表达与细胞凋亡.中国临床康复.2005;9(37):54-56.
    200. Dahlqvist P, ROnnback A, BergstrSm SA, et a1. Environmental enrichmentreverses learning impairment in the Morris water maze after focal cerebral ischemia inrats. Europ J Neurosci.2004;19:2288-2298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700