用户名: 密码: 验证码:
影响LNG储存容器蒸发率因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LNG(Liquefied Natural Gas的简写)就是将矿场生产的天然气经过净化、制冷、液化等措施后,在常压、-160℃下成为液态的天然气。LNG是一种多组分混合物,其温度和组分的变化都会引发诸多问题,如储罐中LNG分层和翻滚问题、蒸发问题等。为了解决这些问题,就需要了解LNG分层和翻滚的演变规律,弄清楚LNG储罐内温度场分布、压力及蒸发变化规律。
     利用储罐的静态日蒸发率和保温层导热系数表达的修正格拉晓夫数Gr*,在国内首次建立了LNG在储罐内自然对流流态的判别准则,并用实例进行计算,判别结果和实测结果一致。用该判别准则对不同类型的LNG储罐进行计算,结果表明LNG在储罐内的自然对流流态可能为层流,也可能为紊流。
     基于双扩散理论和粘性流体方程,建立了紊流态LNG分层和翻滚演变的数学模型,借助于改进的FLUENT软件对紊流态LNG分层和翻滚演变模型进行求解,可以直观地看到LNG分层和翻滚的演变过程分为:固定分界面阶段、移动分层界面阶段、分层界面加速移动阶段和翻滚阶段四个阶段,这与国外文献中的模拟试验结果一致。通过分析计算结果,作者认为LNG分层和储罐内LNG的热边界层流动是产生翻滚的根本原因,中心射流的冲击和卷携作用及热边界层流动是破坏LNG分层界面的主要因素。利用紊流态LNG分层与翻滚演变模型对影响LNG分层与翻滚演变过程的各种因素进行分析发现,当液体分为两层时,上重下轻分层在环境的漏热作用下会发生分层位置的自发调整现象,且发生翻滚的时间(508min)比下重上轻分层发生翻滚需要的时间(445min)长;当储罐内液体的分层数趋于无穷多,相邻分层间密度差趋于零时,分层发生翻滚的时间将趋于无穷大,即混合均匀的LNG不会发生翻滚。
     在国内首次以LNG为试验介质、以密闭LNG储罐为对象进行了储罐的压力、日蒸发气体量及蒸发率试验,结果证明:(1)密闭LNG储罐内的温度场是非均匀的,即气相部分温度高于气液分界面处温度、气液分界面处液体温度高于液相主体的温度;(2)存在临界初始充满率,当初始充满率小于临界充满率时,某一充满率下的日蒸发气体量和蒸发率随时间增加而增大;当初始充满率大于临界充满率时,某一充满率下的日蒸发气体量和蒸发率先随着时间增加而增大,后又随着时间的增加而减小。
     基于试验结果和质量守恒及能量守恒原理,建立了密闭LNG储罐三分相蒸发率模型,用C语言编制了计算程序,并进行了实例验证。结果证明三分相蒸发率模型的计算结果与试验结果基本一致,且比HYSYS软件的计算结果更接近试验值。
     利用三分相蒸发率模型分析了各种影响密闭LNG储罐的压力和蒸发率的因素,结果显示在计算的压力范围(0.35MPa~0.75MPa)内:(1)密闭LNG储罐存在一“最佳初始充满率(本论文计算: ? ic = 0.805)”,当初始充满率小于最佳初始充满率时,储罐的安全储存时间随着初始充满率增大而增大;初始充满率大于最佳初始充满率时,储罐的安全储存时间随初始充满率增大而减小;充满率等于最佳初始充满率时密闭LNG储罐的安全储存时间最大(本论文计算t max = 23.77天)。(2)储罐保温层导热系数越大,储罐内压力上升得越快,安全储存时间就越短。(3)LNG含氮量越高,储罐的日蒸发气体量越多,压力上升的越快,安全储存时间越短。
Liquefied Natural Gas is obtained by natural gas at the atmosphere pressure and at the temperature of -160℃, after a series of treatments such as purification, refrigeration, liquefaction and so on. It is a multi-component mixture, and the change of temperature or component will cause many problems. For example, the stratification and rollover phenomena,the evaporation problems in LNG tank, etc. In order to solve these problems during the storage and transportation processes, it is necessary to know the developing law of the stratification and rollover phenomena, and understand the distribution of temperature field and the evaporation rate in LNG tank.
     The flow pattern decision criterion of natural convection is established. It is proven by example calculation that the flow pattern of LNG in the storage tank can be decided through this method.
     Based on the equation of viscous fluid, the mathematical model of LNG stratification and rollover under the condition of disturbed flow is established. Fluent, a software calculating flow and heat transfer of the fluid, is improved to fit the stratification and rollover model of disturbed flow condition, Through analog, it can be seen visually that the developing processes of LNG stratification and rollover can be divided into four states: the state of fixed stratification interface, the state of shifting stratification interface, the state of accelerated shifting stratification interface, and the state of rollover. Through analyses, it can be determined that the stratification of LNG and the flow of thermal boundary layer inside the LNG tank are the basic reason for the rollover of the LNG stratification, and the impact and entrainment effect of central jet stream and the flow of thermal boundary layer around the tank wall are the dominant factors for the damage of the LNG stratification interface. The analog results agree well with the analog modeling results of foreign literature. By virtue of the disturbed flow model, various factors which affect the rollover phenomenon are analyzed, and the measures of preventing LNG stratification are proposed.
     At home, the pressure and evaporation rate experiment whose test medium is LNG is first done, and its object is closed LNG production tank. The results show that, there exist a non homogeneous temperature field and critical initial fill rate, that is, the temperature of gas phase is higher than the temperature of gas-liquid interface, and the temperature of gas-liquid interface is higher than the host temperature of liquid phase. When the initial fill rate is lower than the critical fill rate, the evaporation rate of a fill rate increases with time. When the initial fill rate is higher than the critical fill rate, the evaporation rate of a fill rate firstly increases with time, and then decreases with time.
     Based on the experimental results, combined with mass conservation principle and energy conservation principle, the evaporation rate model of three-phase in the closed LNG tank is established. Through example calculation, it can be indicated that this model can be used to predict the variation trend of pressure and evaporation rate in the closed LNG tank .
     Finally, the model of three-phase is used to analyze various factors which affect evaporation rate of the closed LNG tank. The results show that: there exists a critical initial fill rate within the range of the maximum pressure limited by the storage tank, and there exists an“optimum initial fill rate”in the closed LNG tank. The safety storage time is longest with the optimum initial fill rate. The higher the environment temperature is, and the bigger the thermal conductivity of the LNG tank insulation is, the pressure of the closed LNG tank will increase more quickly, and the safety storage time will become shorter. The higher the nitrogen content is, the higher the evaporation rate will be. These conclusions can provide theoretic criterion for the safety storage and transportation of LNG..
引文
[1]程劲松、白兰君,世界液化天然气发展综述,天然气工业,2000年5月,(5):1~5。
    [2]程栋,顾安忠。液化天然气的贮存分层现象[J].深冷技术, 1997,(1):13~15。
    [3]覃朝辉,顾安忠,液化天然气涡旋的模拟研究[J]。上海交通大学学报, 1999,33(8):954~958。
    [4]李品友,顾安忠。LNG涡旋及其预防措施[J].低温与特气, 1998,(2):54~57。
    [5]李品友,顾安忠。液化天然气贮存非稳性的理论研究[J].中国学术期刊文摘(科学快报)。1999,5(2);170~172。
    [6]李品友,顾安忠。液化天然气涡旋的理论研究[C].水动力学研究与进展(A辑),2000,15(2):182~190,170~172。
    [7] Sarten, LNG Stratification and Rollover, Pipe and Gas J. Vol. 199, 1972
    [8] Bellus, Reveilland, Bonnawe & Chevaliver, Essais au terminal de fos surle comportment du LNG dans les grands reservoirs, LNG Conference Paper 5, 1977
    [9] BAKER N, GREED M. Straification and rollover in liquefied natural gas storage tanks [C]. Institution of Chemical Engineers Symposium Series, 1995. (139): 621 ~ 634.
    [10] BAKER N, GREED M. Stratification and rollover in liquefied natural gas storage tanks [J]. Process Safety and Environmental Protection,1996, 74 (B1) :25~30。
    [11] CHATTERJEE N, GEIST J M. The effect of stratification on boil-off rate in LNG tanks [J]. Pipeline Gas Journal, 1972, 199(11) : 40~45.
    [12] CHATTERJEE N, GEIST J M. Spontaneous stratification in LNG tanks containing nitrogen [C]. ASME Winter Annual Meeting, 1976:76.
    [13] Turner. J S. The coupled turbulent transports of salt and heat across a sharp density interface [J]. Journal of Heat and Mass Transfer, 1965,8.
    [14] GERMELES A E. A model for LNG tank rollover [J]. Advances in cryogenic Engineering. 1975, (21):326~336.
    [15] TAKAO S, NARUSAWA A, An experimental study of heat and mass transfer across a diffuse interface [J]. International Journal of Heat and Mass Transfer, 1980, 23:1283~1285。
    [16] HEESATAND J, SHIPMAN C W, MEADER J W. A predictive model for rollover in stratified LNG tanks [J]. AICHE Journal. 1983,29(2): 199~207
    [17] CHATTERJEE N. Improved computer program to predict rollover in LNG with and without nitrogen [C]. Cryogenic Processes and Equipment, AICHE Symposium Series. 1982:38~45.
    [18] Kamiya et al, An Experimental Study On LNG Rollover Phenomena, ASME 85-HT-4,1985;
    [19] Mikio Moriaka, Natural Convection of Density Stratified in a vessel, Heat Transfer Japanese Research. No.3,1983.
    [20] J.Q. Shi, C. Beduz, and R.G. Scurlock, Numerical Modelling and Flow Visualization of Mixing of Stratified Layers and Rollover in LNG, Cryogenics, 1993,3(12),Vol.33, No.12,pp.1116~1124.
    [21] Hyo Kim and Sei Yun Kim, Prediction of Rollover Phenomena in Pyeong Taeg LNG Receiving Terminal, Poster A-2,pp 1-3,1994.
    [22] Bates and D.S.Morrison, LNG Rollover-Computational Mathematical Aspects, Poster C-6, pp.1-3, 1994
    [23] BATES S, MORRISON D S. LNG rollover-computational and mathematical aspects[C]. Proceedings of 11th LNG Conferences, Birmingham, 1995, C-6.
    [24] Gaz de France, Shell Research Ltd, Osaka Gas, Tokyo Gas and CFP-Total, Experimental Study of LNG performed at Nants Cryogenic Testing Station. 1987 to 1990.
    [25] BATES S, MORRISON D S. Modeling the behavior of stratified liquid natural gas in storage tanks: a study of the rollover phenomenon [J]. International Journal of Heat and Mass Transfer, 1997, 40 (R): 1875 ~ 1884.
    [26] MLNAKATA, TANASAWAL. Numerical study on effects of initial concentration difference on onset of rollover [C]. Proceeding of 10th International Heat Transfer Conference, 1994, 7:333~338.
    [27] MUNAKATA T, LIOR N, TANASAWAL. Study of double diffusive rollover in cylindrical enclosures [C]. ASMEHTD, 1995, (317-1):279~291.
    [28]游立新,液化天然气的分层及涡旋的传热传质研究,上海交通大学硕士论文,1990年2月
    [30] M.Muro et al, Experimental and Analytical Study of the Rollover Phenomenon using LNG, Proc. ICEC-11,1986.
    [31] Beduz et al, Thermal Overfill and the surface Vaporation of Cryogenic Liquids under Storage Conditions, Advances in Cryogenic Engineering, Vol.29, 1983. pp795-803.
    [32] NAKAND, SUGAWARA, YAMAGATA, An experimental study on the mixing of stratified liquefied freon [C]. Proceedings of Gastech Conference, 1982: 287-299.
    [33] Graffis, K.A. et al, Convection Patterens in Stratified LNG Tanks, Conf. On Natural Gas Research and technology, Session Paper 4, 1974.
    [34] SUGAWARA Y. Rollover test in LNG tank and simulation model [J]. Advances in Cryogenic Engineering, 1983, (29):805~811.
    [35] MORIOKIA M, ENYA S. Natural convection of density-stratified layers in a vessel [J]. Refrigeration, 1981: 56: 529~537.
    [36] T. Agbabi, Rollover and Interfacial Study in LNG Mixtures, PD. Thesis, Univ. of Southampton ,England,1988.
    [37] T. Agbabi, et al, Convection Process during Heat and Mass Transfer across Liquid/Liquid Interfaces in Cryogenic System, Proc, IcEC-11,1986.
    [38] MARCEL O. Measurement of the velocity of natural convection movement in an LNG storage tank [C]. Proceeding of Gastech Conference, Amsterdam, 1990:345~312.
    [38] ARITA T, KATAVAMA Y, HAYASHI K, etal. Fundamental study on rollover of two-density-stratified layers of liquids[G]. ASME HTD, 1992, (198): 67~72.
    [40] TANASAWA L. Experimental techniques in natural convection[J]. Experimental Thermal and FluidScience, 1995. 10(4): 403~518.
    [41]程栋,液化天然气分层涡旋现象的数值与试验研究,上海交通大学硕士论文,1997年1月
    [42] TAMLRA M, NAKAMURA Y, IWAMOTO H. Prevention of LNG rollover in a LNG tank[C]. Proceedings of 12th LNG Conference, Perth, 1998, A-2.
    [43] Moriyoshi Tamura, Yasuhisa Nakamura, Hiroyuki Iwamoto, Prevention of LNG Roll-Over in an LNG Tank,12th International Conference &Exhibition On Liquefied Natural Gas. Perth, Australia, 4~7, May, 1984.
    [44] Neff, R,“A survey of Stratification in Cryogenic Liquid”, Advances in Cryogenic Engineering, Vol. 5, 1960。
    [45] Swim. R. T.“Temperature distribution in Liquid and Vapour Phases of Helim in Cylindrical Dewars”, Advances in Cryogenic Engineering, Vol. 5, 1960.
    [46] Schmidt, A. F, Purcell, et al.“An experimental Study Concerning the Pressurazation and Stratification of Liquid Hydrogen”, Advances in Cryogenic Engineering, Vol. 5, 1960.
    [47] Scrott, L.E., Robbins, et al.“Temperature Stratification in a Nonventing Liquid Helium Dewar”, Advances in Cryogenic Engineering, Vol. 5, 1960.19~23
    [48] C. Beduz,“Thermal Overfill and the Surface Vaporization of cryogenic Liquids Under Storage Conditions”, Advances in Cryogenic Engineering, Vol.29, 1989, 797~798.
    [49] Yu. A.KIRICHENKO,“Uniform Heatup of Confined Liquefied Gas and Minimization of Venting of built-up”, Gases Heat Transfer Research, Vol.25, No.3, 1993, 430~431.
    [50] A.M.Domashenko,“Heating of Cryogenic Products to the Supercritical State in a Tank With No Gas Vent”, Translated from Khimicheskoe Ineftyanoe Mashinostroeine, Vol.22, 1986, 204~205.
    [51] C.M.Yu,“Transient Free Convection and Thermal Stratification in Uniformly-Heated Partially-Filled Horizontal Cylindrical and Spherical Vessels”, Jouranl of Thermal Sciences, Vo;.1 1992, 115~116.
    [52]徐芳,特种液氧储罐无损储存规律研究,上海交通大学硕士学位论文,2000年2月。
    [53]徐烈等人,低温容器无损储存中的最佳充满率,低温工程,1999年4期
    [54]徐烈等人,温度与充满率对低温容器无损储存性能的影响,化工学报,2001年10期
    [55]汪顺华等人,低温液体容器无损存储传热模型,低温工程,2001年6期
    [56]潘俊兴,“低温液体容器静态憋压时的升压速度”,低温工程,1997年5期。
    [57] S. Guru,“Analysis and Optimization of Thermal Stratification and Self-Pressurization Effects in Liquid Hydrogen Storage Systems.”Journal of Energy Resources Technology, Vol.115, 1993.
    [58] Y. Rotenberg, Numerical simulation of self-pressurization in a small cryogenic tank, Advances in Cryogenic Engineering, 1989, Vol.29, 962-971
    [59]汪荣顺等人,低温容器无损储存规律,低温工程, 1999年4期
    [60] P.Kourneta,“Development of a model for simulating the variability of the physical properties of substance Stored in various storage tanks, in the presence of an external heat source”, Journal of Hazadous Materials, 39, 1994.
    [61] John I. Hochstein,“Prediction of Self-Pressurization Cryogenic Propellant Tank”, J. PropulsionScience, 1995. 10(4): 403~518.
    [41]程栋,液化天然气分层涡旋现象的数值与试验研究,上海交通大学硕士论文,1997年1月
    [42] TAMLRA M, NAKAMURA Y, IWAMOTO H. Prevention of LNG rollover in a LNG tank[C]. Proceedings of 12th LNG Conference, Perth, 1998, A-2.
    [43] Moriyoshi Tamura, Yasuhisa Nakamura, Hiroyuki Iwamoto, Prevention of LNG Roll-Over in an LNG Tank,12th International Conference &Exhibition On Liquefied Natural Gas. Perth, Australia, 4~7, May, 1984.
    [44] Neff, R,“A survey of Stratification in Cryogenic Liquid”, Advances in Cryogenic Engineering, Vol. 5, 1960。
    [45] Swim. R. T.“Temperature distribution in Liquid and Vapour Phases of Helim in Cylindrical Dewars”, Advances in Cryogenic Engineering, Vol. 5, 1960.
    [46] Schmidt, A. F, Purcell, et al.“An experimental Study Concerning the Pressurazation and Stratification of Liquid Hydrogen”, Advances in Cryogenic Engineering, Vol. 5, 1960.
    [47] Scrott, L.E., Robbins, et al.“Temperature Stratification in a Nonventing Liquid Helium Dewar”, Advances in Cryogenic Engineering, Vol. 5, 1960.19~23
    [48] C. Beduz,“Thermal Overfill and the Surface Vaporization of cryogenic Liquids Under Storage Conditions”, Advances in Cryogenic Engineering, Vol.29, 1989, 797~798.
    [49] Yu. A.KIRICHENKO,“Uniform Heatup of Confined Liquefied Gas and Minimization of Venting of built-up”, Gases Heat Transfer Research, Vol.25, No.3, 1993, 430~431.
    [50] A.M.Domashenko,“Heating of Cryogenic Products to the Supercritical State in a Tank With No Gas Vent”, Translated from Khimicheskoe Ineftyanoe Mashinostroeine, Vol.22, 1986, 204~205.
    [51] C.M.Yu,“Transient Free Convection and Thermal Stratification in Uniformly-Heated Partially-Filled Horizontal Cylindrical and Spherical Vessels”, Jouranl of Thermal Sciences, Vo;.1 1992, 115~116.
    [52]徐芳,特种液氧储罐无损储存规律研究,上海交通大学硕士学位论文,2000年2月。
    [53]徐烈等人,低温容器无损储存中的最佳充满率,低温工程,1999年4期
    [54]徐烈等人,温度与充满率对低温容器无损储存性能的影响,化工学报,2001年10期
    [55]汪顺华等人,低温液体容器无损存储传热模型,低温工程,2001年6期
    [56]潘俊兴,“低温液体容器静态憋压时的升压速度”,低温工程,1997年5期。
    [57] S. Guru,“Analysis and Optimization of Thermal Stratification and Self-Pressurization Effects in Liquid Hydrogen Storage Systems.”Journal of Energy Resources Technology, Vol.115, 1993.
    [58] Y. Rotenberg, Numerical simulation of self-pressurization in a small cryogenic tank, Advances in Cryogenic Engineering, 1989, Vol.29, 962-971
    [59]汪荣顺等人,低温容器无损储存规律,低温工程, 1999年4期
    [60] P.Kourneta,“Development of a model for simulating the variability of the physical properties of substance Stored in various storage tanks, in the presence of an external heat source”, Journal of Hazadous Materials, 39, 1994.
    [61] John I. Hochstein,“Prediction of Self-Pressurization Cryogenic Propellant Tank”, J. PropulsionTransfer,1977,20:1173~1184.
    [89]徐烈等,我国低温绝热与贮运技术的发展与应用,低温工程,2001年第2期。
    [90]汪顺华《液化天然气汽车燃料储存与供气特性研究》,上海交通大学[硕士学位论文],2002.02
    [91]郭天民等编著,《多元气液相平衡和精馏》,石油工业出版社,2002年11月北京第一版。
    [92] GB 18442-2001,低温绝热压力容器[S]
    [93] JB 4780-2002,液化天然气罐式集装箱[S]
    [94] GB/T 18443-2001,低温绝热压力容器实验方法[S]
    [95]尉迟斌等,《使用制冷与空调工程手册》,机械工业出版社出版,2002年1月(第一版)。
    [96]兰书彬等,液化天然气储罐蒸发率试验和计算,石油化工设备,2005年3月。
    [97]冯叔初、郭揆常等编著,《油气集输与矿场加工》,中国石油大学出版社,2006年5月第2版。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700