用户名: 密码: 验证码:
高氮无镍奥氏体不锈钢耐腐蚀性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的奥氏体不锈钢相比,高氮无镍奥氏体不锈钢保持了高塑性、韧性、无磁性的性能特点,主要是强度明显提高,同时还具有良好的生物相容性及优良的耐腐蚀性能,并且节约了贵重的镍资源,降低了不锈钢生产的成本,因此成为世界各国竞争和研发的焦点。目前国际上普遍采用高压冶金的方法生产高氮无镍奥氏体不锈钢,该方法生产成本高,安全隐患大,不宜进行大规模生产,因此寻求一种常压下冶炼高氮无镍奥氏体不锈钢的方法成为材料科学研究的重点。常压下氮在钢中的溶解度很低,与高压冶金相比,常压下冶炼的高氮无镍奥氏体不锈钢的铸态组织中存在大量的氮气孔,氮元素分布不均,但是在随后的锻造过程中氮气孔会焊合,经固溶处理后氮元素分布均匀,组织为单相奥氏体,在此状态下,试验用钢是否具有优异的抗腐蚀性能是常压冶炼和生产的高氮无镍奥氏体不锈钢能否实际应用的关键。
     本文以一种常压下冶炼的高氮无镍奥氏体不锈钢Cr18Mn18Mo2NbN0.6为材料,利用扫描电子显微镜、光学显微镜等对铸态、锻造态和固溶处理态进行了显微组织分析;在酸性介质(10%H2SO4和10%HNO3)中对固溶处理后的高氮无镍奥氏体不锈钢和1Cr18Ni9Ti进行了酸浸试验和极化曲线测试;在中性介质(3.5%NaCl)中对其进行了盐雾试验和极化曲线测试;对固溶态、氮化物析出后及压缩变形量分别为10%、20%、30%和40%的试验钢进行了显微组织分析、三氯化铁浸泡试验和极化曲线测试。实验结果表明,高氮无镍奥氏体不锈钢的铸态组织为等轴枝晶,枝晶间存在未溶的片状氮化物和氮气孔,氮气孔在锻造过程中可以焊合。试验钢锻造后的组织为明显的层状组织,基体为奥氏体,氮化物以层片状分布在层状组织界面以及层与层之间。固溶处理后其组织为单相奥氏体,组织中存在大量的退火孪晶,奥氏体晶粒细小;高氮无镍奥氏体不锈钢在10%H2SO4和10%HNO3中的腐蚀速率小于1Cr18Ni9Ti,其自腐蚀电位、点蚀电位较高、钝化区较宽,这是氮元素提高了耐蚀性的结果;高氮无镍奥氏体不锈钢在3.5%NaCl中的盐雾腐蚀速度小于1Cr18Ni9Ti,1Cr18Ni9Ti出现严重的晶间腐蚀,而高氮无镍奥氏体不锈钢表面仅有少量的较小的点蚀坑,高氮无镍奥氏体不锈钢自腐蚀电位较高,钝态电流密度较小,因此,高氮无镍奥氏体不锈钢比1Cr18Ni9Ti有较强的抗Cl-腐蚀的能力;不同冷变形量的试验钢自腐蚀电位、点蚀电位与固溶态近似相等,但变形量越大,点蚀坑的数目越多,蚀坑平均尺寸越大,氮化物析出后,试验钢的点蚀电位明显降低,并出现大面积的点蚀坑。
Nickel free high nitrogen austenitic stainless steels keep high plasticity and toughness and without magnetic compared with the traditional austenitic stainless steels. But the strength improves obviously. At the same time they have excellent biocompatibility and corrosion resistance. They become the focus of competition and development in the world because they can save the precious resources of nickel and reduce the costs of production. At present, the production of nickel free high nitrogen austenitic stainless steels adopts high pressure metallurgy method in the world. This method has high production costs and high danger, so it is not suitable for mass production. Thus seeking a way of smelting nickel free high nitrogen austenitic stainless steels at atmospheric pressure is the key of material scientific research. The solubility of nitrogen in steels is very low at atmospheric pressure, so compared with high pressure metallurgy, there are lots of nitrogen porosities in the organization of high nitrogen austenitic stainless steels smelted at atmospheric pressure and the distribution of nitrogen is uneven. But the nitrogen porosities will be welded in subsequent rolling process. The distribution of nitrogen is uniform after solution treatment and the organization is full austenite. In this state, the tested steels smelted at atmospheric pressure have excellent corrosion resistance or not is the key of whether they can be applied in practice.
     In this paper, (Cr18Mn18Mo2NbN0.6) nickel free high nitrogen austenitic stainless steel smelted in an atmospheric pressure was studied. The microstructures of casting, rolling state and solid solution treatment state were analyzed through scanning electron microscope, optical microscope etc. Acid pickling and polarization curve testing of nickel free high nitrogen austenitic stainless steel after solid solution treatment and 1Cr18Ni9Ti were done in acidic medium (10%H2SO4 and 10%HNO3); Salt spray corrosion testing and polarization curve testing of tested steel after solid solution treatment and 1Cr18Ni9Ti were done in neutral medium (3.5%NaCl); The microstructure analysis, FeCl3 soak testing and polarization curve testing of tested steel after precipitation of nitrides, cold deformation 10%,20%,30%,40% and rolling state were done. The experimental results show that the cast structure of nickel free high nitrogen austenitic stainless steel was equiaxial dendritic crystals. Undissolved sheet nitrides and nitrogen porosities existed between dendritic crystals. The nitrogen porosities will be welded in subsequent rolling process. The microstructure of rolling state of tested steel was obvious layer structure. The matrix was austenite. Layer nitrides distributed on the interface of layer structure and between layers. The microstructure of the tested steel after solid solution treatment was full austenite. Lots of annealing twins existed in the microstructure. The grains of austenite were very small. The corrosion rate of nickel free high nitrogen austenitic stainless steel was less than 1Cr18Ni9Ti in 10%H2SO4 and 10%HNO3.The natural corrosion potential and pitting corrosion potential of nickel free high nitrogen austenitic stainless steel was higher, the passivation was very wide. This was because nitrogen improved corrosion resistance. The corrosion rate of nickel free high nitrogen austenitic stainless steel was less than 1Cr18Ni9Ti in 3.5%NaCl. 1Cr18Ni9Ti appeared serious intergranular corrosion while the surface of nickel free high nitrogen austenitic stainless steel only appeared a small amount of smaller pitting corrosion pits. The natural corrosion potential of nickel free high nitrogen austenitic stainless steel was higher and the current density of passivity was smaller. Therefore nickel free high nitrogen austenitic stainless steel had stronger ability of resisting Cl- corrosion than 1Cr18Ni9Ti. The natural corrosion potential and pitting corrosion potential of tested steel after different cold deformation approximately equal with rolling state. But when distortion was greater, the number of pitting corrosion pits increased, and pitting corrosion pits deepen. The pitting corrosion potential of tested steel after precipitation of nitrides obviously reduced and the pitting corrosion pits appeared vastly.
引文
[1]金维松.含氮奥氏体不锈钢耐局部腐蚀性能的研究[D].昆明:材料物理与化学,2007.
    [2]师素粉,夏兰廷,李宏战.铸铁材料在水环境中的腐蚀研究现状[J].腐蚀研究,2009,23(2):7.
    [3]陆世英,张廷凯,康喜范,等.不锈钢[M].北京:原子能出版社,1998.
    [4]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].北京:中国科学院金属研究所,2008.
    [5]董延亮.氮在高氮钢熔炼过程中的行为及氮对不锈钢耐腐蚀性能的影响[D].武汉:武汉科技大学材料与冶金学院,2007.
    [6]李晶,黄运华.高氮钢和不锈钢-生产、性能与应用[M].北京:化学工业出版社,2006:141-144.
    [7]姜周华,李花兵等.电渣重熔高氮钢技术的进展[J].钢铁研究学报,2006,18(10):1.
    [8]李光强,董延亮.高氮钢的基础研究及应用进展[J].中国冶金,2007,17(7):5.
    [9]马玉喜,荣凡,周荣等.超高氮奥氏体钢的韧-脆转变[J].钢铁,2008,43(2):89.
    [10]张鑫,刘静,李光强等.超细晶高氮奥氏体不锈钢的制备及其性能[J].机械工程材料,2007,31(8):29.
    [11]王晓敏.工程材料学[M].哈尔滨:哈尔滨工业大学出版社,2005:103-104.
    [12]赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与应用,2005,20(4):38.
    [13]陈志强.高氮不锈钢研究的发展近况[J].宝钢技术,2005,5:13.
    [14]Uhlig,H.H.,Trans Am Soc.Met,Vol.30,1942,p.947.
    [15]郎宇平,康喜范.超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响[J].钢铁研究学报,2001,13(1):31.
    [16]严旺生.200系列(锰系)不锈钢发展前景.中国锰业,2004,22:8.
    [17]徐效谦.开发和推广200系列不锈钢.金属制品,2003,29:26.
    [18]R.Franks,W.O.Binnder,J.Thompson,Austenitic Chromium-Manganese-Nickel Steels Containing Nitrogen.Trans.ASM,1995,47:231.
    [19]J.Magee,Development of Type 204Cu Stainless Steel,A Low-cost alternate to Type 304.Wire J.Int.,2002,35:84.
    [20]陈志强.保加利亚的高氮钢研究和技术[J].上海金属,1992,14(5):1.
    [21]W.Holzgruber,New ESR-technology for new and improved products. Proc. of the 7th Int.Conf,on Vacuum Metall.,Tokyo Japan,1982:1452.
    [22]G.Stein,I.Huchlenbroich,Manufacturing and application of high nitrogen steels. Mater.and Manufacturing Processes,2004,19:7.
    [23]Y.Katada,M.Sagara,Y.Kobayashi,T.Kodama,Fabricaion of high strength high nitrogen stainless steel with excellent corrosion resistance and its mechanical properties,Mater.and Manufacturing Processes,2004,19:19.
    [24]冯珊,张树格.高氮钢[J].机械工程材料,1993,17(6):1-2.
    [25]董延亮,李光强.高氮钢的制造工艺[J].冶金信息导刊,2007,2:14-17.
    [26]Y.Katada,Effect of temperature on tensile behavior and microstructure evolution of nitrogen alloyed austenitic stainless steel.In:Han DONQJie SU, M.O. Speidel (Eds.)Proc.Int.Conf.on High Nitrogen Steels,HNS-2006,Beijing:Metallurgical Industry Press,2006:52.
    [27]高亦斌,陈根保,金卫强.AOD精炼高氮奥氏体不锈钢1cr22Mn15N的工艺实践[J].特殊钢,2005,26(2):51.
    [28]王松涛,杨柯,单以银等.高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J].金属学报,2007,43:171.
    [29]王松涛,杨柯,单以银等.冷变形对高氮奥氏体不锈钢组织与力学行为的影响[J].金属学报,2007,43:713.
    [30]季长涛,刘云旭,王淮等.一种高氮无镍奥氏体不锈钢的制造方法:中国,CN200810050792.8[P].2008-10-15.
    [31]逯允海,付瑞东,邱亮等.氮强化高锰奥氏体钢热变形行为研究[J].材料热处理学报,2007,28(2):69-72.
    [32]张有余.氮对节镍奥氏体不锈钢高温变形的影响[J].酒钢技术,2007,34:85-91.
    [33]李岩,张有余,朱亮等.低镍奥氏体不锈钢热变形性能及氮的影响[J].轧钢,2008,25(3):11-15.
    [34]张进,李静媛,王一德等.Mn18Cr18高氮钢热加工工艺的研究[J].锻压技术,2009,34(1):12.
    [35]刘继冰,郭军,季长涛等.利用氮化铬铁合金生产高氮无镍奥氏体不锈钢的研究[J].铁合金,2010,1:26-28.
    [36]夏明生,田志凌,彭云等.高氮奥氏体不锈钢的氮化物析出及其对焊接性影响[J].焊接学报,2005,26(12):109.
    [37]周灿栋,丁伟中,蒋国昌.高氮钢的显微组织和机械性能的特点及其发展[J].包头钢铁学院学报,1999,18:396.
    [38]马玉喜,荣凡,周荣等18Cr18Mn2MoN奥氏体不锈钢在900℃等温过程中的析出行为[J].钢铁,2007,42(12):64-68.
    [39]傅万堂,王正,刘文昌等18Mn-18Cr-0.5N钢氮化物等温析出动力学研究[J].钢铁,1998,33(9):45-48.
    [40]马玉喜,荣凡,周荣等.固溶时效对超高氮奥氏体不锈钢形成行为的影响[J].材料 热处理学报,2008,29(3):70.
    [41]程晓农,戴起勋.奥氏体钢设计与控制[M].北京:国防工业出版社,2005:40.
    [42]姜周华,陈兆平,黄宗泽.不锈钢冶炼及凝固过程氮的控制[J].钢铁,2005,40(3):32.
    [43]任伊宾,杨柯,张炳春等.一种超纯高氮奥氏体不锈钢及其制备方法:中国,02132853.6[P].2004-3-10.
    [44]J.LF,SAGE氮对马氏体形成温度的影响[J].国外金属热处理,1991,12(3):41.
    [45]陆利明,壮云乾,蒋国昌.高氮钢的研究和发展[J].特殊钢,1996,17(3):1.
    [46]M.O.Speidel,Properties and applications of high nitrogen steels,in J.Foct and A.Hendry(eds.)HNS-88,London:The Institute of Metals,1989:92.
    [47]C.Andreev,T.Rashev,Chromium-manganese Steel with Nitrogen Content up to 2.10wt%,High Nitrogen Steel98,Mater.Sci.Forum,1999:318.
    [48]张鑫.纳米级超细晶高氮奥氏体不锈钢的制备及其性能研究[D].武汉:材料学,2006.
    [49]UggowitzerP.J.,Magdowski,R.,and Speidel,M.O.,ISIJ Intnl.,36(7),1996,901.
    [50]李晓刚,郭兴蓬,何业东.材料腐蚀与防护[M].长沙:中南大学出版社,2009:76.
    [51]曾荣昌,韩恩厚.材料的腐蚀与防护[M].北京:化学工业出版社,2006:76.
    [52]李长胜.新型奥氏体不锈钢磨损、腐蚀性能研究[D].江苏:材料学,2007.
    [53]Y.C.Lu,R.Bandy,C.R.Clayton,R.C.Newman.Surface Enrichment of Nitrogen During Passivation of Highly Resistant Stainless Steel[J]. J.Electrochem. Soc.,1983, 130:1774-1776.
    [54]Grabke H.J. The role of nitrogen in the corrosion of iron and steels[J]. ISIJ Inter, 1996,36(7):777-786.
    [55]R.Bandy.Measurement of Corrosion Rate Using Two Electrodes[J]. Electrochimi-ca Acta,1981,26(1):149-159.
    [56]崔大伟,曲选辉,李科.高氮低镍奥氏体不锈钢的研究进展[J].材料导报,2005,19(12):66.
    [57]郭剑英.不锈钢管晶间腐蚀的分析[J].物理测试,1998,4:18.
    [58]Stickler, R., Vinckier, A. Trans. ASM,1961,54:362.
    [59]Mozhi T.A.,Betrabet W.H.S.,Jagannathan V.,Wilde B.E. and Clark W.A.T.,Scripta Metall.,Vol.20,1986,p.723.
    [60]许崇臣,冈毅民,李民保.氮对高纯奥氏体不锈钢耐晶间腐蚀性能的影响[J].腐蚀科学与防护技术,1997,9(3):192-196.
    [61]石锋,崔文芳,王立军等.高氮奥氏体不锈钢研究进展[J].上海金属,2006,28(5):48.
    [62]Okayama S.,Tsuijikawa S.and Kikuchi K.,Corros Eng.(Jpn).,Vol.36,1987, P.702.
    [63]Azumi S.,Miyuka H.and Kudo T.,ISIJ International,Vol.36,1996,p.793.
    [64]Kamachi Mudali U.and Dayal R.K.,J.Mat.Sci.,Vol.35,2000,p.1799.
    [65]刘继冰.高氮无镍奥氏体不锈钢的显微结构与性能分析[D].长春:长春工业大学材料学院,2007.
    [66]杨金成,李军,程兴德等.一种高氮钢的冶炼方法:中国,200410022051.0[P].2005-9-21.
    [67]H.Baba,Y.Katada.Effect of nitrogen on crevice corrosion in austenitic stainless steel[J].Corrosion Science,2006,48:2510-2524.
    [68]Y.Katada,N.Washizu,H.Baba. Development of High-Nitrogen Steels In The National Institute For Materials Science[J].Metal Science and Heat Treatment,2005,47: 494-496.
    [69]Osazawa K.and Okata N.,Passivity and its Breakdown on Iron Based Alloy,U.S.A.-Japan Seminar,Honolulu,NACE Houston,TX,1976,p.135.
    [70]Speidel,M.O.,in Proc Stainless Steels 121 Chiba,Japan ISIJ,1991,p.25.
    [71]Stott F.H.,Wei F.I.and Enahoro C.A.,Werst Korros.,Vol.40,1989,p.198.
    [72]孙道明等.不锈钢点蚀花边盖脱落与稳定生长[J].郑州大学学报,2009,30(1):71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700