用户名: 密码: 验证码:
三维编织碳纤维/环氧树脂基复合材料的湿热残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织碳纤维环氧树脂基复合材料(C3D/EP)由复杂空间几何结构的增强体和基体结合而成,克服了传统层合复合材料沿厚度方向力学性能差、层间剪切强度低、易分层等缺点,其材料整体强度和刚度得到了提高。因此,在航空、航天等领域得到了越来越广泛的应用。但该复合材料在自然环境服役时不可避免地要受到湿热环境因素的作用。其中,由于碳纤维与树脂基体之间存在湿膨胀性的差异、不同的溶胀量导致的湿热残余应力是主要的影响因素之一。针对于此,本文采用微Raman光谱技术测试分析了C3D/EP复合材料的湿热残余应力场,同时,通过建立复合材料的整体模型并采用有限元分析软件ABAQUS对其湿热残余应力场进行了模拟分析,为复合材料在服役过程的强度评价及估寿提供参考。研究时,首先分别在37℃和80℃下对三维编织碳纤维环氧树脂复合材料进行吸湿试验,吸湿实验过程中采用微Raman光谱技术对C3D/EP复合材料的湿热残余应力进行测试表征。测试结果表明,随着C3D/EP复合材料吸湿过程的进行,其材料中碳纤维沿轴向所受残余应力由吸湿前的热残余压应力逐渐转变为湿热拉应力,且长期吸湿导致的残余应力可以达到较高的水平;测试结果也表明,C3D/EP复合材料中不同方向上碳纤维沿轴向的应力变化差异较大。温度对材料的湿致应力场也有明显的影响,表现为试样80℃高温条件下湿热残余应力大小和变化速率与37℃时不同。
     本文还采用了卡尔曼滤波理论(Kalman filter theory)来估算C3D/EP复合材料在T=37℃,RH=100%条件下的两个重要吸湿参数:平衡吸湿量、水分扩散系数。所得估算值为:平衡吸湿量C*=0.93%,扩散系数D= mm2/s,为验证该估算方法的准确性,本研究采用有限元方法(FEA)对复合材料在所获参数下的吸湿过程进行了模拟分析,结果表明模拟所获吸湿增重曲线与实测曲线吻合较好,这说明卡尔曼滤波理论对C3D/EP复合材料的吸湿参数进行估计具有一定的准确性。
     最后,本研究采用ABAQUS有限元分析软件对C3D/EP复合材料的三维吸湿应力场进行了分析。计算结果表明,通过模拟水分扩散过程获得的吸湿动力学曲线和实验结果吻合度较好。计算结果也表明,随着吸湿时间的延长,复合材料内应力增加,碳纤维轴向应力也增大,当吸湿达到饱和时,其应力值为45.5 MPa左右。
Because the three-dimensional braided carbon fiber reinforced epoxy resin matrix composites is formed by the reinforcement which have the complicated geometric structure and matrix, so it could overcome the problems of conventional laminated composites, such as low strength in the thickness direction、low interlaminar shear strength and are prone to interlaminar delamination, so, greatly improve it strength and stiffness. As a result, it will certainly be widely applied in many fields, including aviation and spaceflight. However, Composites are susceptible to heat and moisture during the storage and long-term service. due to the significant mismatch in the moisture induced volumetric expansion between the matrix and the fibers, and thus leads to the evolution of localized stress fields in the composite, thereby forcing the mechanical properties of composite to change. In this paper, the stress value of C3D/EP composite was measured by using Micro-Raman Spectroscopy technique. The whole model of composite was established and ABAQUS was used to simulate and analyze the stress field induced by moisture.
     Firstly,Moisture stress field of different fiber directions in the composite were characterized by Microscopic Raman Spectrometer. The result shows that during the long-term moisture absorption process,the axial residual stresses within the fibers transform from thermal resiual compressive stresses before absorption into hygrothermal tensile stresses after absorption. This fact suggests that tensile residual stress was generated during moisture absorption process. And residual stress caused by long-term moisture can reach a higher level . Moreover, the evolution process of stress fields for carbon fiber measured in different directions are different to some extent. The temperature has apparent impact on stress fields due to moisture induced expansions, which was illuminated by the fact that the stress level of the specimens at the exposure duration was higher for T=80℃than that observed for T=37℃.
     Furthermore, A new approach-Kalman filter was adopted to determine critical moisture diffusion parameters such as: maximum moisture content, and the diffusivity for C3D/EP composite exposed to the humidity of RH=100%, temperature at 37℃. The conclusive result are: maximum moisture content C*=0.93%, diffusivity D= mm2/s. Using these best estimates obtained from the kalman filter as inputs, the moisture diffusion process was simulated by finite element program ABAQUS and the close match between the simulated results and the experimental observations supports the accuracy of the estimated diffusion parameters determined from the kalman filter.
     At last, ABAQUS was used to analyze the stress field of carbon fiber epoxy composite materials during moisture absorption process with the three-dimensional model. The analyzed results show that the calculated results and experimental results of moisture absorption curve are consistent. The results of three-dimensional model show that the value of stress was increased with the moisture absorption time, so as to the axial stress of carbon fiber which was about 45.5 MPa when moisture saturation.
引文
[1]黄丽.聚合物复合材料.北京:中国轻工业出版社, 2001
    [2] L.Tong APM, M.K.Bannister. 3D纤维增强聚合物基复合材料.北京:科学出版社, 2008
    [3]理有亲.复合材料的设计基础与应用.北京:航空工业出版社, 1992
    [4]谢丽宽,方东红,徐金洲.环氧乙烯基酯树脂耐环境老化性能研究.海军航空工程学院学报, 2010, 25(1):118-120
    [5]吕新颖,江龙,闫亮.碳纤维复合材料湿热性能研究进展.玻璃钢/复合材料, 2009, (3):76-80
    [6]张建明,陈跃良.飞机结构复合材料加速腐蚀老化行为.科学技术与工程, 2008, 8(23):6338-6443
    [7]乌云其其格,张连鸿,廖子龙.碳纤维复合材料性能研究及应用.工程塑料应用,2009,37(10):37-39
    [8]李涛,陈蔚,成理,等.碳纤维复合材料低成本多用途发展展望.科技资讯.2009,(22):68-69,71.
    [9]世平.碳纤维/环氧树脂复合材料的应用开发新动向.科技信息, 2007
    [10]刘雄亚,欧阳国恩,张华新,等.透光复合材料、碳纤维复合材料及其应用.北京:化工工业出版社, 2006
    [11]李是华.碳纤维的性能与用途.广西化纤通讯,2002,30(2):23-24
    [12]张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势.纤维复合材料, 2004, 21(1):50-53,58
    [13] Lewis SJ. Use of carbon fibre composites on military aircraft. Composites manufacturing, 1994, 5(2):95-103
    [14] Wen S, Chung D.D.L. A comparative study of steel- and carbon-fibre cement as piezoresistivestrain sensors. Advances in Cement Research, 2003, 15(3):119-128
    [15]林益明,杨宝宁.三维编织复合材料在卫星支架的应用.航天器工程, 2002, 11(4):29-33
    [16]唐文彪,沈怀荣.三维编织复合材料应用于火箭级间段的可行性分析.机械工程材料, 2001, 25(10):22-24
    [17]王玉果,王玉林,万怡灶.骨折固定用三维编织复合材料的性能.天津大学学报.自然科学与工程技术版, 2004, 37(11):1009-1013
    [18]肖丽华,李嘉禄.三维编织多功能结构复合材料的发展.复合材料学报,自然科学与工程技术版, 1994, 11(2):23-27
    [19] Ko.F.K. Three-dimensional fabrics for composites. Japan Soc for Composite, 1987:129-171
    [20]左惟炜.三维编织复合材料力学性能与工程应用研究: [博士学位论文].武汉:华中科技大学,2006
    [21] Mouritz,A.P.Review of applications for sdvanced three-dimensional fiber textile compositesComposites Science and Technology, 1999, 59(3):391-404
    [22]马文锁,赵允岭,冯伟.三维编织复合材料理论研究进展.材料科学与工程学报,2006,24(4):621-636
    [23]Chen L,Tao XM,Choy CL.On the microstructure of three-dimensional braided preforms.Composites Science and Technology,1999,59(3):391-404
    [24] Sun.Baozhong, Gu.Bohong. High strain rate behavior of 4-step 3D braided composites undcompressive failure. Journal of Materials Science, 2007, 42(7):2463-2470
    [25] Wang YQ, Wang ASD. Spatial distribution of yarns and mechanical properties in 3D braided tubular composites. Applied Composite Materials,1997,4(2):121-132
    [26]阮仕荣,龚小平.三维四步方形编织结构的几何建模.工程图学学报, 2006, 27(3):1-6
    [27] Ko FK. Three dimensional fabrics for composites-an introduction to the magnaweave structure. Japan Soc for Composite Materials,1982,2:1609-1616
    [28] Sun W, Lin F, Hu X. Computer-aided design and modeling of composite unit cells. Composites Science and Technology,2001,61(2):289-299
    [29]王迎娜.三维编织芳纶纤维增强树脂基复合材料的性能研究与设计: [博士学位论文].天津:天津大学, 2004
    [30]张静,张琦,马会平,等. G827/5224和G803/5224碳纤维增强环氧树脂湿热老化的研究,装备环境工程, 2008, 5(3):16-20
    [31] Bhavesh G RP,Toshio Nakamura.Deguadation of Carbon Fiber-reinforced Epoxy Composites byUlt raviolet Radiation and Condensation. Journal of Composite Materials,2002,36(24):2713-2733
    [32]李晓骏,陈新文.复合材料加速老化条件下的力学性能研究.航空材料学报, 2003, 23(增刊):286
    [33] Selzer R FK. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture .Compos PartA:Appl Sci Manuf,1997,28(6):595-640
    [34]过梅丽,肇研.航空航天结构复合材料湿热老化机理的研究.宇航材料工艺, 2002, 32(4):51-54
    [35] Lee MC PN. Models of moisture transport and moisture induced stresses in epoxy composites.Comosite Materials, 1993, 27(12):1146
    [36] Vaddadi P,Nakamura T,Singh RP.Inverse amalysid for transient moisture diffusion throughfiber-reinforced composActa Materialia, 2003, 51(1):177-193
    [37] Hutapea p, Yuan F G. The effect of thermal aging on the Mode-I interlaminar fracture behavior of ahigh-temperature IM7LaRC-RP46 composite. Composites Science Technology, 1999, 59:1271-1286
    [38]郑锡涛.湿热老化对复合材料层压板强度的影响.航空学报, 1998, 19(4):462-465
    [39]王学贵,何嘉松,周建良,等.水腐蚀对环氧基复合材料动力学性能的影响.复合材料学报, 1986, 3(4)70
    [40]Aditya PK,Sinha PK.Diffusion coeffients of polymeric composites subjected to perildichygrothermal exposure. Journal of Reinforced Plastics and Composites, 1992, 11(9):1035-1047
    [41] Arici, Aziz Armaqan. Effect of hygrothermal aging on polyetherimide composites.Journal ofReinforced Plastics and Composites, 2007, 26(18):1937-1942
    [42]王玉果.三维编织炭纤维增强环氧树脂复合材料的吸湿特性.天津大学学报,200942(10):867-871.
    [43]惠雪梅,王晓洁,尤丽虹. Ce/Ep/CF复合材料湿热性能研究.工程塑料应用,200634(5):49-51
    [44]杨专钊,田伟,刘道新,张晓化.碳纤维/环氧复合材料的吸湿溶胀行为,腐蚀与防护,200829(5):251-252,256
    [45] W P De Wilde, P Frolkovic. Modelling of moisture absorption in epoxies:effects at the boundaries.Composites, 1994, 25(2):119-127
    [46]乔海霞,曾竟成,杜刚.混杂纤维增强环氧树脂复合材料电缆芯湿热老化性能研究.玻璃钢/复合材料, 2007, (1):42-45
    [47] S.Springer G. Environmental effects on composite materials. Technomic Publ Co, 1984, (2)
    [48]胡宝荣,笪有仙.芳纶纤维/环氧复合材料吸湿行为的研究.玻璃钢/复合材料,1995,(5):3-5
    [49]矫桂琼.吸湿对复合材料层间断裂韧性的影响.宇航材料工艺, 1995, 25(6):32-34
    [50]曾金芳,乔生儒.纤维吸水F-12环氧复合材料性能影响.宇航材料工艺,1999,29(6):38-41
    [51]陈贵才,王玉林,万怡灶,等.界面对三维编织复合材料的吸湿行为的影响.高分子材料科学与工程, 2003, 19(5):108-111
    [52] Pavlidou S, Papaspyrides CD. The effect of hygrothermal history on water sorption and interlaminar shear strength of glass/polyester composites with different interfacial strength. ComosPart A: Appl Sci Manuf, 2003, 34(11):1117-1124
    [53] Nishikawa Y,Okbo,Kazuya,et al.Effect of moisture abosorption at fabrication stage on static andfatigue properties for plain-woven CF/Epoxy composites. JSME International Journal Series A, 2005, 48(2):73-78.
    [54]邱宇,雷振坤,亢一澜.微拉曼光谱技术及其在微结构残余应力检测中的应用.机械强度, 2004, 26(4):38
    [55]李铁骑,章明秋,曹汉民.用Raman光谱研究碳纤维/聚醚醚酮复合材料的界面结构.高分子学报, 1998, (4):482-486.
    [56]李铁骑,章明秋.碳纤维/聚醚醚酮复合材料界面的强相互作用.材料研究学报, 1999, 13(6):606-612.
    [57]邱宇,雷振坤,亢一澜,等.微拉曼光谱技术及其在微结构残余应力检测中的应用.机械强度, 2004, 26(4):389-392
    [58] HadjievVG, WarrenGL, SunLY, et al. Raman microscopy of residual strains in carbonnanotube/epoxy composites. Carbon, 2010, 48(6):1750-1756
    [59] Kao CC, Young RJ.Assessment of interface damage during the deformation of carbon nanotubecomposites. Journal of Materials Science, 2010, 45(6):1425-1431
    [60] Goutianos S, Peijs T, Galiotis C. Mechanisms of stress transfer and interface integrity incarbon/epoxy composites under compression loading Part I: Experimental investigation. International Journal of Solids and Structures, 2002, 39(12):3217-3231
    [61]浦广益,宋广雷.材料力学实验教学与有限元方法的有机结合.人力资源管理:学术版, 2010, (1):111-111,113
    [62]严祖文.基于ANSYS二次开发的桩土相互作用的三维非线性有限元分析: [博士学位论文].天津:天津大学,2006
    [63] Bielecki A, Kalita P, Lewandowski M, et al. Numerical simulation for a neurotransmitter transport model in the axon terminal of a presymaptic neuron.Biological Cybernetics,2010,102(6):189-502
    [64] Peters PWM, Xia Z, Hemptenmacher J, et al. Influence of interfacial stress transfer on fatigue crack growth in SiC-fibre reinforced titanium alloys.Composites Part A;Applied Science andManufacturing, 2001, 32(3-4):561-567
    [65] Oshima M, Torii R, Kobayashi T,Taniguchi N,et al.Finite element simulation lf blood flow inthe cerebral artery. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6-7):661-671
    [66]粱月明,徐惠娟,易茂中.不同纤维含量的炭/炭复合材料制动时的温度场.粉末冶金材料科学与工程,2009,14(4):225-230
    [67]黄远,万怡灶,何芳,等.碳纤维/环氧树脂复合材料的吸湿残余应力研究.航空材料学报, 2009,29(4):57-62
    [68]张纪奎,郦正能,关志东,等.热固性复合材料固化过程三维有限元模拟和变形预测复合材料学报, 2009, 26(2):174-178
    [69]宛琼,李付国,梁宏,等.三维四向编织复合材料基本性能的有限元模拟.航空材料学报, 2005, 25(1):30-35
    [70] Tay TE, Lam KY, Cen Z. Analysis of composite structures with distributed and localized damage by the finite-element method. Composite Structures 1997, 37(2):135-143
    [71] De Wilde WP,Kacur J,Van Keer R,et al.Finite element model for moisture ab-/desorption inpolymeric walls with FRP reinforcement .Finite Elenebts ub Anakysis and Ddsign,2009,4598-9):511-518 Technol CADCOMP 92,1992,591-598.
    [72] Khoshbakht M,Lin MW,Feickert CA.A finite element model for hygrothermal analysis ofmasonry walls with FRP rcement. Finite Elements in Analysis and Design,2009,45(8-9)511-518
    [73]张胜宾,赵祚喜.基于卡尔曼滤波的轮式移动机器人定位实验研究,机电工程技术,2010,39(2):44-45,84
    [74]霍成立,谢凡,秦世引.面向室内移动机器人的无迹滤波实时导航方法.智能系统学报,2009, 4(4):295-302
    [75]刘谨,雷仲魁.遗传算法提高卡尔曼滤波器在无人机滑行控制中的应用,信息化研究, 2009, 35(10):48-51.
    [76] Zhe S, Rongxiang Z, Jing W. Sensorless control method of PMSM based on extended Kalman filter. WCICA, 2006, 2: 8093-8097
    [77] Xing FW, Peng ZS. Applying the extended kalman filter to fault diagnosis in the control system of a manned carrier rocket. Inst. of Elec. and Elec. Eng. Computer Society. 2008, 589-592
    [78]杨宏,吴旭光.卡尔曼滤波算法在多传感器融合技术中的应用,弹簧与制导学报,200929(5):251-254
    [79]顺濑彻也.估算转弯加速度的卡尔曼滤波器空载雷达,2001,(1)70-80
    [80]李玉峰,李磊,张宗麟.自适应卡尔曼滤波应用于空—空导弹传递对准研究.弹箭与制导学报, 2003, 1(S1):128-130
    [81] Loos ACS, George S. Moisture absorption of graphite-epoxy somposites immersed in lipuids and in humid air. Journal of Composite Materials, 1979, 13:131-147
    [82] Wolff EG. Moisture and viscoelastic effects on the dimensional stability of composites. Int Soc for Optical Engineering; 1990, (1335): 70-79
    [83] Han Qirui LJ, Li Xueming. Unit cell geometry of 3-D braided structrue of composites.ActaMateriae Compositae Sinica, 1996, 13(3):76-80
    [84] Lei.C, Cai YJ, Frank K. Finite element anatysis of 3-D braided composite. Advances in engineering software 1992, 14(13):187-194
    [85] Zeng T, Wu LJ, Guo LC, Mechamical amalysis of 3D braided composites:a finite element model.Composite Structures, 2004;64(3-4):399-404
    [86] L Chen, XM Tao,CL Choy.On the microstructure of three-dimensional braided preforms.Composites Science and Technology 1999, 59(3): 391-404
    [87] Wan YZ, Wang YL, Cheng G.X.et al.Three-dimensionslly braided carbon fier-epoxy composites,a new type of material for osteosynthesis devices. I. Mechanical properties and moisture absorption behavior. Journal of Applide Polymer Science m2002m85(5):1031-1039
    [88]杨潇,卞昂,阎捷,等.复合材料残余应力的拉曼测定.光散射学报, 2008, 20(1):47-51
    [89] Cervenka AJ, Young RJ, Kueseng K. Investigation of hygrothermal aging phenomena in modelcomposites by Raman spectroscopy. Plastics, Rubber and Composites, 2003, 32(5):206-214
    [90]黄远,万怡灶,何芳,等.碳纤维/环氧树脂单向复合材料的吸湿残余应力研究.航空材料学报, 2009, 29(4):57-62
    [91]道德锟,以心,李兴国.立体织物与复合材料.上海:中国纺织大学出版社, 1998.
    [92]Myung CL,Nikolaos PN,Models of moisture transport and moisture-induced stresses in epoxycomposites. Journal of Composite Materials, 1993, 27(72):1146-1171
    [93]Cuo ML,Yang F,Fan XY,et al.Moisture diffrsion parameters of polymer matrix composites.Acta Material Composite, 2001,18(1):34-37.
    [94]Choi HS,Ahm KJ,Nam JD,Chun HJ.Hygroscopic aspects of epoxy/carbon fiber compositelaminates in aircraft environments. Composites Part A: Applied Science and Manufacturing 2001;32(5):709
    [95] Breipohl AM. Kalman filtering and its application to reliability. IEEE Transactions on Reliability, 1969, R-18(3):127-130.
    [96] Farooq M, Rouhi A, Lim SS. Analysis of suboptimal filtering algorithms for target tracking. Signal Processing, 1993, 30(2):221-233
    [97] Azimi Sadjadi, Mahmood R. New results in strip Kalman filtering. IEEE transactions on circuits and systems 1992,30(2):221-233
    [98] Nakamura T, Wang T, Sampath S. Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Materialia, 2000, 48(17):4293-4306
    [99] Tamas L, Lazea G, Robotin R,et al.State estimation based on Kalman filtering tefhmiques innavigation. IEEE Computer Society; 2008, 2: 147-152
    [100] Yang PeiPei, Li Qing. Application on Kalman filtering of SINS/GPS navigation system.IEEEComputer Society, 2009, 3354-3357
    [101] Naceri A. An analysis of moisture diffusion according to Fick's law and the tensile mechanicalbehavior of a glass-fabric-reinforced composite. Mechanics of Composite Materials, 2009, 45(3):331-336
    [102] Benkhedda A, Tounsi A, Adda bedia EA. Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates.Composite Structures,2008, 82(4):629-635
    [103]黄远,何芳,万怡灶,等.碳纤维增强环氧树脂复合材料湿热残余应力微Raman光谱测试表征.复合材料学报, 2009, 26(4):22-27
    [104]贺福.用拉曼光谱研究碳纤维的结构.高科技纤维与应用,2005,30(6):20-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700