用户名: 密码: 验证码:
热浸Zn-Al-Sb合金镀层表面锌花的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁的腐蚀造成巨大的损失,热镀锌是钢铁最有效的防大气腐蚀的方法之一。热镀锌工业应用时,为了获得需要的镀层,常在锌浴中添加其他的合金元素,Al是最常用的元素之一。而当锌浴中添加少量的Pb、Sb、Bi、Sn等元素时,热镀锌层表面会出现一种肉眼可见的树枝状晶粒,即“锌花(spangle)"。锌花是热镀锌特有的现象,引起众多机构和学者的广泛关注。然而到目前为止,锌花的形成机制以及很多细节尚未形成统一的认识,国内对锌花的深入研究也不多见。
     本文以批量热浸Zn-Al-Sb合金锌层表面形成的锌花为研究对象,利用SEM、BSE、EDS、AFM、XRD、XPS、NSS、EIS等测试手段系统地研究了锌花的形貌、形成机制,表面合金元素的偏析和第二相粒子的析出、锌花的耐蚀性以及腐蚀机制。研究表明:
     锌花是热镀锌层中的自由锌层以树枝晶生长的结果,每一个锌花代表一个单晶体的锌晶粒。根据锌花的外观形貌,可将锌花分为亮锌花、羽毛状锌花和暗锌花。锌晶体基平面(0001)相对于钢基表面可能的位向决定了锌花最终的几何形貌,按照基平面(0001)相对于钢基平面的倾斜角β值的不同,可将锌花分为三类:1)β=0°,锌花具有60°对称的正六边形树枝晶状结构;2)0°<β<90°,锌花为倾斜六边形结构;3)β=90°,锌花具有垂直树枝晶状结构。锌花一次和二次树枝晶晶臂的方向均为沿锌密排六方晶格的(1010)方向择优生长,与热流方向越接近越能持续生长。晶体择优取向和温度梯度择优取向相互作用决定了在同一个锌花内会形成亮锌花、羽毛状锌花和暗锌花的形貌特征。
     热镀锌镀层表面形成锌花时,每个锌晶粒的尺寸异常粗大。对Zn-0.2Al和Zn-0.2Al-0.1Sb合金的定向凝固试验表明,在相同的定向凝固冷却条件下,两种合金的柱状晶固相前沿的定向生长速度基本相同,但在Zn-0.2Al合金锭中出现了柱状晶向等轴晶的转变(CET),而Zn-0.2Al-0.1Sb合金锭则全部为柱状晶,没有出现CET。这表明添加合金元素Sb溶解了熔融合金中的活性晶核,显著地抑制了Zn-0.2Al合金锌液凝固过程中有效晶核的均匀形核,Sb抑制形核是导致热浸镀锌层生成大晶粒的锌花的原因。
     Sb和Pb是产生锌花镀层最常用的添加元素,但由于Pb不利于环保,而加Sb的工艺更值得研究。然而过多的Sb会形成脆性的AlSb相,影响镀层的质量。本文首次研究了不同冷却条件下的热镀锌用Zn-0~6.0Al-4Sb中间合金的凝固组织变化规律,结果表明:提高冷却速度,将细化合金的凝固组织,且较快的冷却速度可以抑制亚稳态ζ-Sb2Zn3相向稳态相β-Sb3Zn4的共析分解:ζ→β+η.炉冷和空冷时,ζ相粒子完全转变为β相,水冷时ζ相则被保留下来。平衡条件下,对Zn-0~6.0Al-4Sb合金的凝固组织分析可知出现4中组织状态,即β-Sb3Zn4+Eβ+Zn(β和Zn组成的共晶);AlSb+Eβ+Zn;AlSb+ Zn;Zn+AlSb+EZn+Al(Zn和Al组成的共晶),这与提出的Zn-Al-Sb三元合金的室温等温截面对应的富锌角完全符合。
     锌浴中加入的合金元素会发生表面偏析,不同形貌的锌花表面存在不同程度的的合金元素偏析。在批量钢结构件热镀锌条件下,浸锌时间较长,镀层较厚,冷却速度较慢,合金元素的偏析和析出、以及析出的第二相由亚稳态向稳态(或非平衡态向平衡态)的转变都应更加充分,本文研究了典型的具有锌花的批量热浸Zn-0.05Al-0.2Sb合金锌花镀层的表面偏析规律。结果表面:锌花表面的偏析程度由亮锌花、羽毛状锌花到暗锌花依次增大。Al和Sb的偏析均集中在锌花镀层表面30nm以内,其中Al主要是以Al2O3形式存在,而Sb则是以薄片状的Sb3Zn4粒子存在。自由锌层中锌晶体基平面(0001)相对于钢基平面的结晶位向和枝晶的生长方向共同决定了第二相β-Sb3Zn4粒子的最终分布。亮锌花表面的β-Sb3Zn4粒子无规则分布,羽毛状锌花表面β-Sb3Zn4粒子主要分布在二次枝晶晶臂间隙,而暗锌花整个表面以及羽毛状锌花二次枝晶晶臂间隙内除了有层片状β-Sb3Zn4粒子外,还出现了雪花状Sb的枝晶偏析。
     不同形貌的锌花,耐蚀性能存在差异。本文研究了锌花在5%NaCl溶液中耐蚀性,塔菲尔极化测试和浸泡不同时间的电化学阻抗谱(EIS)测试结果表明,亮锌花、羽毛状锌花、暗锌花的极化电阻Rp和低频阻抗ZLF都依次减小,亮锌花、羽毛状锌花、暗锌花在5%NaCl溶液中的耐蚀性依次下降。影响锌花耐蚀性的因素包括晶面位向、表面粗糙度和表面合金元素的偏析程度。锌花在5%NaCl溶液中的腐蚀过程分为三个阶段:浸泡初期,主要是发生金属氧化物/氢氧化物膜的溶解和反应粒子的传质过程;浸泡中期,主要是发生腐蚀产物的溶解破坏过程;浸泡后期,主要发生基体锌层的腐蚀反应,在浸泡后期扩散过程起主要作用。
The corrosion of steel causes much loss. Hot-dip galvanizing is the most effective way to protect steel from corrosion. In order to obtain a required coating in this process, minor aluminium is usually added into the metal bath. The hot-dip-coated surface often exhibits a structure consisting of very large grains, termed 'spangles', when lead, antimony, bismuth, tin is/are added into the bath alloyed with aluminium. Spangles are special phenomenon of hot-dip galvanizing and have been received widely attention from institutes and researchers. Up to now, however, from the point of view of the formation mechanism and its details of were speculative, and the knowledge of spangle was only fragmentary in domestic studies.
     In this thesis, the spangles on batch hot-dipped coating were investigated. Spangle morphologies, formation mechanism, surface segregation of alloying elements, precipitation of second phase particles, corrosion resistance and corrosion mechanism were investigated using SEM, BSE, EDS, AFM, XRD, XPS, NSS and EIS. The results show that:
     Spangle is the result of dendritic growth of zinc layer, and each spangle represents a single-crystal zinc grain. On the basis of macroscopic surface appearance, spangles may be classified intod three types:shiny spangle, feathery spangle and dull spangle. The spangle crystallographic classification lies into three types according to the correlation between the basal plane (0001) and the inclined angleβwith respect to the steel sheet plane:1)β=0°, the spangle presents 60°symmetry dendrite structure with snow-flake or six-fold star structure.2) 0°<β<90°, the spangle presents inclined hexagonal structure or shiny/dull divided morphology.3)β=90°, the spangle presents dull and rough orthogonal-dendrite morphology. Both dendritic primary and secondary arms of spangle grow along the preferred direction (1010) of zinc crystal, the ones which are parallel to the thermal direction will posess sustained growth. The preferred direction and thermal gradent determine the formation of shiny spangle, feathery spangle and dull spangle in a single spangle area. Columnar-to-equiaxed transition (CET) Zn-0.2Al alloy was derived, whenas, no CET was found in Zn-0.2Al-0.1Sb alloy under the same directional solidification condition. This indicated that the addition of Sb (or Pb) restrains CET and reduces the amount of nucleus in unit volume and that Sb (or Pb) poisons these available nucleation sites, resulting in large spangle grains on hot-dip galvanized coatings.
     The coating with spangle can be produced by the addition of Sb (or Pb). As we know however, Pb is poisonous, and the research of application of Sb is more valuable. But overmuch of Sb addition would affect the quality of the coating by forming brittle AlSb phase. In this paper, solidification structures of Zn-Al-Sb master alloys under different cooling condition were investigated. The results show that solidification microstructure of the alloys are refined significantly as the cooling rate increases, and the eutectoid decomposition of metastableζtoβ:ζ→β+ηis inhibited under water cooling. Under equilibrium solidification condition, Zn-Al-Sb ternary phase diagram at ambient temperature can be divided into 4 phase zone:β-Sb3Zn4+Eβ+Zn; AlSb+Eβ+Zn; AlSb+Zn; Zn+AlSb+EZn+Al·
     The coating surface usually exhibited three kinds of spangles:shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. Batch hot dip galvanized coatings hold longer dipping time, thicker coating and slower coating solidification rate, thus resulting in a rougher coating surface and a greater surface segregation, and the transition of metastable intermetallic precipitate to stable state occurs more completed. In this paper, surface segregation rule of alloying elements on typical coating with spangle obtained in batch hot dipped Zn-0.05Al-0.2Sb bath was investigated. The results show that the segregation degree increased from shiny, feathery to dull spangle. Aluminium segregated toward the outer spangle surface in the form of Al2O3 layer with the thickness of 20nm, while antimony segregated toward the surface in the form ofβ-Sb3Zn4 particles with the thickness of 29nm. Final distribution of the precipitate is correlated with spangle morphology, which depends on interaction of crystal orientation and growth direction of the nucleated zinc grain in the zinc layer. Theβ-Sb3Zn4 particles randomly distribute on the shiny spangle surface;β-Sb3Zn4 particles and snow-like dendritic segregation of antimony exists in the dendritic secondary arm spacings of feathery spangle surface;β-Sb3Zn4 particles and dendritic segregation of antimony spread extensively on the whole dull spangle surface.
     Corrosion resistance in 5%NaCl solution differs from spangles. From the results of Tafel polarization and EIS under different immersion time it was concluded that both the polarization resistance Rp and low-frequency impedance ZLF decreased from shiny, feathery to dull spangle, and corrosion resistance of spangle in 5%NaCl solution decreased from shiny, feathery to dull spangle in turn. The difference of corrosion resistance of spangle follows into three factors:the crystallographic orientation of crystal plane, surface roughness, the amount of alloying elements and precipitates segregated on the spangle surface. There are three stages during the corrosion process of spangle immersed in 5%NaCl solution, they are:the initial immersion stage involves the dissolution of superficial metallic oxide/hydroxide layer and the mass transfer of reaction particles; the middle immersion stage of which the relaxation of corrosion products layer takes place and, the later immersion stage involves the dissolution of zinc associated with the diffusion process, which controls the zinc dissolution.
引文
[1]Sivakumar R, Mordike L. High temperature coatings for gas turbine blades:A review[J]. Surface and Coating Technology.1989,37(2):139-160
    [2]Marder A.R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000,45:191-271
    [3]Hoare W.E, Hedges E.S, Barry B.T.K. The Technology of Tinplate[M]. New York: Martins Press,1965:35-40
    [4]边军,高彩茄,王国栋,等.热镀锌钢板生产及应用进展[A].中国金属学会.提高钢材的市场竟争力—2002年全国轧钢生产技术会议暨中国金属学会第七届轧钢年会论文集[C].北京:冶金工业出版社,2002:167-169
    [5]Wang X.H, Lu J.T, Che Ch.Sh, et al. The behavior of lead during the solidification of Zn-0.1Al-0.1Pb coating on batch hot-dipped steel[J]. Applied Surface Science,2008, 254(8):2466-2471
    [6]Asgari H, Toroghinejad M.R, Golozar M.A. On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings[J]. Applied Surface Science,2007, 253:6769-6777
    [7]Asgari H, Toroghinejad M.R, Golozar M.A. Relationship between (00.2) and (20.1) texture components and corrosion resistance of hot-dip galvanized zinc coatings[J]. Journal of Materials Processing Technology,2008,198 (1-3):54-59
    [8]Asgari H, Toroghinejad M.R, Golozar M.A. Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings[J]. Current Applied Physics,2009,9(1):59-66
    [9]Chang S, Shin J.C. The effect of antimony additions on hot dip galvanized coatings[J]. Corrosion Science,1994,36(8):1425-1436
    [10]Zhu Zh.X, Su X.P, Yin F.Ch, et al.450℃ isothermal section of the Zn-Fe-Sb ternary phase diagram[J]. Journal of Alloys and Compounds,2010,490, (1-2):541-547
    [11]Sere P.R, Culcasi J.D, Elsner C.I, et al. Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets[J]. Surface and Coatings Technology, 1999,122:143-149
    [12]Pistofidis N, Vourlias G, Konidaris S, et al. The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings[J]. Materials Letters,2007,61(10):2007-2010
    [13]Strutzenberger J, Faderl J. Solidification and spangle formation of hot-dip-galvanized zinc coatings[J]. Metallurgical and Materials Transactions A,1998,29(2):631-646
    [14]Safaeirad M, Toroghinejad M.R, Ashrafizadeh F. Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets[J]. Journal of Materials Processing Technology,2008,196:205-212
    [15]Tzimas E, Papadimitriou G. Cracking mechanisms in high temperature hot-dip galvanized coatings[J]. Surface and Coatings Technology,2001,145:176-185.
    [16]Moreira A.R, Panossian Z, Camargo P.L, et al. Zn/55A1 coating microstructure and corrosion mechanism[J]. Corrosion Science,2006,48 (3):564-576
    [17]Farid H, Nabil N. Factors affecting the quality of hot-dip-galvanized steel sheets[J]. Surface Technology,1984,21(1):27-37
    [18]Raeker W, Friehe W. Effect of Alloying Elements on the Properties of Hot Dip Galvanizing Coatings[A]. Zinc Development Association. Proceedings of the 6th International Conference on Hot Dip Galvanizing[C]. Paris:EGGA,1964:238-264
    [19]Vourlias G, Pistofidis N, Stergioudis G, et al. The effect of alloying elements on the crystallization behaviour and on the properties of galvanized coatings [J]. Crystal Research Technology,2004,39(1):23-29
    [20]Vourlias G, Pistofidis N, Stergioudis G, et al. Influence of alloying elements on the structure and corrosion resistance of galvanized coatings[J]. Physica Status Solidi a-Applied Research,2004,201(7):1518-1527
    [21]常丽丽,陈红星,孙杰,等.热镀锌钝化板锌花形貌对耐蚀性的影响[J].材料保护,2005,38(11):49-50
    [22]H. Bablik热镀锌理论与工艺[M].北京:冶金工业出版社,1959:37-39
    [23]张启富,刘邦津,仲海峰.热镀锌技术的最新进展[J].钢铁研究学报,2002,14(4):66-72
    [24]李九岭.带钢热浸镀层发展综述[J].武钢技术,1996,(1):42-46
    [25]朱立.钢材热镀锌[M].北京:化学工业出版社,2006:56-60
    [26]卢锦堂,许乔瑜,孔纲.热浸镀技术与应用[M].北京:机械工业出版社,2006:16-20
    [27]Culcasi J.D, Sere P.R, Elsner C.I, et al. Control of the growth of zinc-iron phases in the hot-dip galvanizing process[J]. Surface and Coatings Technology,1999,122 (1):21-23
    [28]苏旭平,李智,尹付成,等.热浸镀中硅反应性研究[J].金属学报,2008,44(6):718-722
    [29]Chung S.C, Lin A.S, Chang J.R, et al. EXAFS study of atmospheric corrosion products on zinc at the initial stage[J]. Corrosion Science,2000,42(5):1599-1600
    [30]Nevison D.C.H. Corrosion of zinc [J]. Materials Park:ASM International,ASM Handbook,1987(3):755-769
    [31]American Galvnizers Associaton. Hot dip galvanizing for corrosion protection of steel produces[M]. Englewood:AGA,2000:1-11
    [32]Hamdy H.H. Corrosion behavior of zinc in sodium perchlorate solutions[J]. Applied Surface Science,2001,174(4):210-209
    [33]Shinichi M, Masayusu S, Kazuharu S, et al. Zinc corrosion in simulated acid rain[J]. Electrochimica Acta,1999,44(24):4307-4312
    [34]American Galvanizers Associaton. Hot dip galvanizing for corrosion prevention:A guide to specifying & inspecting hot dip galvanized reinforcing steel[M]. Colorado: AGA,2002:5-7
    [35]Daunt J.P. An invedtigation into the bond shrengtg of undeformed galvanized and black steel reinforcement in concrete as a function of curing time[R]. Australia: Australian Defence Force Academy, College of Civi Engineering, University of New South Wales, Canberra, Australia,1998
    [36]Obada K, Stephen R.Y. Bond of ribbed galvanized reinforcing steel in concrete[J]. Cement and Concrete Composites,2000,22(6):459-467
    [37]Lichti K A, Niessen P. The effect of silicon on the reactions between iron and ζ-FeZn13[J]. Z. Metallkde,1987,78:58-62
    [38]Osinski K, Vriend A.W, Bastin G.F, et al. Periodic formation of FeSi bands in diffusion couples Fe (15wt% Si)-Zn[J]. Z. Metallkde,1982,73:258-261
    [39]Sadelin R.W. Galvanizing characteristics of different types of steels[J]. Wire and Wire Products,1940,15:655-676
    [40]Reumont G, Foct J, Perrot P. New possibilities for galvanizing process:The addtion of manganese and tatanum to the zinc bath[A]. Zinc Development Association. Proceedings of 19th International Galvanizing Conference[C]. Berlin:EGGA,2000,4: 1-9
    [41]Tobiyama Y, Kato C. Effect of the substrate compositions on the growth of Fe-Al interfacial layer formed during hot dip galvanizing[J]. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2003,89(1):38-45
    [42]Pistofidis N, Vourlias G, Konidaris S. Microstructure of zinc hot-dip galvanized coatings used for corrosion protection[J]. Materials Letters,2006,60(6):786-789
    [43]Manceau A, Tommaeseo C, Rihs S, et al. Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction[J]. Geochimica et Cosmochimica Acta,2005.69(16):4007-4034
    [44]车淳山.Sandelin效应机理及其抑制方法研究[D].广州:华南理工大学,2005
    [45]吕瑞东,刘国杰,叶汝强,等.物理化学[M].北京:高等教育出版社,1999
    [46]Dybkov V.I. Reaction diffusion in heterogeneous binary systems. I-Growth of the chemical compound layers at the interface between two elementary substances:One compound layer. II-Growth of the chemical compo[J]. Journal of Materials Science, 1986,21:3078-3090
    [47]VanLoo-Prog F.J.J. Multiphase diffusion in binary and ternary solid-state systems[J]. Solid State chemistry,1990,1:47-99
    [48]Kieffer R, Kolbl F. Uber die Herstellung von Hartmetallen nach dem Trankverfahren[J]. Z. anorg. Chemie.1950,262:229-304
    [49]刘根凡,郑家燊,李华飞,等.热镀55%Al-Zn时化合物层生长动力学研[J].华中科技大学学报,2002,30(7):7-10
    [50]Su X.P, Tang N.Y, Toguri J M, et al, Thermodynamic evaluation of the Fe-Zn system[J]. Journal of Alloys and Compounds,2001,325:129-136
    [51]Jordan C.E, Marder A.R. Fe-Zn phase formation in interstitial-free steels hot dip galvanized at 450℃:part I 0.00wt% Al-Zn baths[J]. Journal of Materials Science, 1997,32(21):5593-5602
    [52]Horstmann D, Peters F.K. Reaction between iron and zinc[A]. zinc development association. Proceedings of 9th International Hot Dip Galvanization Conference[C]. London:EGGA,1971:75-79
    [53]Horstmann D. Formation and growth of iron-zinc alloy layers[A]. Zinc development association. Proceedings of 14th International Hot Dip Galvanization Conference[C]. London:EGGA,1986:1-6
    [54]Allen C, Mackowiak J. The application of the inert-marker technique to solid/solid and solid/liquid iron/zinc couples[J]. Journal of the Institute of Metals,1962:369-391
    [55]Onishi M, Wakamatsu Y, Miura H. Formation and growth kinetics of intermediate phase in Fe-Zn diffusion couples[J]. Trans. Japan Inst. Metals,1974,15:331-337
    [56]Mackowiak J, Short N R. Metallurgy of galvanized coatings[J]. International Materials Reviews,1979,1:1-19
    [57]Hisamatsu Y. Science and technology of zinc and zinc alloy coated steel sheet[A]. International Conference on Zinc and Zinc Alloy Coated Steel Sheet-Galvatech'89[C]. Tokyo:The Iron and Steel Institute of Japan,1989,3-12
    [58]孔纲,卢锦堂.热镀锌浴中少量铝对镀层性能的影响[J].材料保护,2002.35(7):17-19
    [59]Syahbuddin P.R, Munroe C.S, Laksmi, et al. Effects of 0.1 and 0.2 wt.% aluminium addition to zinc on the interdiffusion between zinc and iron at 400℃[J]. Materials Science and Engineering A,1998,251(1-2):87-93
    [60]Hirose S, Itoh T, Makita M I, et al. Defect structure of deformed Fe2Al5 intermetallic compound[J]. Intermetallics,2003,11(7):633-642
    [61]Kato T, Nunome K, Kaneko K, et al. Formation of the ζ-phase at an interface between an Fe substrate and a molten 0.2 mass% Al-Zn during galvannealing[J]. Acta Materialia,2000,48(9):2257-2262
    [62]Dutta M, Singh S.B. Effect of strip temperature on the formation of an Fe2Al5 inhibition layer during hot-dip galvanizing[J]. Scripta Materialia,2009,60(8):643-646
    [63]Krepski R.P. The influence of lead in after-fabrication hot dip galvanizing[A]. Zinc Development Association. Proceedings 14th International Galvanizing Conference[C]. London:EGGA,1986:6/6-6/12
    [64]Fasoyinu F.A, Weinberg F. Spangle formation in galvanized sheet steel coatings[J]. Metallurgical and Materials Transactions B,1990,21(6):549-558
    [65]Rappaz M, Quiroga A, Semoroz A. Effect of lead and antimony on the grain structure of directionally solidified Zn-Al Alloys[A]. TMS. Solidification Processes and Microstructures:A Symposium in Honor of Wilfried Kurz as held at the 2004 TMS Annual Meeting [C]. Warrendale (PA):2004:225-231
    [66]Semoroz A, Strezov L, Rappaz M. Orientation domains and texture in hot-dipped galvanized coatings[J]. Metallurgical and Materials Transactions A,2002,33(8): 2695-2701
    [67]Jin H.M, Li Y, Liu H.L, et al. Study on the behavior of additives in steel hot-dip galvanizing by DFT calculations[J]. Chemistry of Materials,2000,12(7):1879-1883
    [68]Zhu Zh.X, Su X.P, Wang J.H, et al. Experimental investigation and thermodynamic calculation of the Zn-Fe-Sb system[J]. Calphad,2010,34, (1):98-104
    [69]Zapponi M, Quiroga A, Perez T. Segregation of alloying elements during the hot-dip coating solidification process[J]. Surface and Coatings Technology,1999,122(1): 18-20
    [70]Farid H, Nabil N. Factors affecting the quality of hot-dip-galvanized steel sheets[J]. Surface Technology,1984,21(1):27-37
    [71]Zervoudis J. Reactive steel galvanizing with Zn-Sn-V(Ni) alloy in hot dip galvanizing[A]. Zinc Development Association. Proceedings of the 19th International Conference on Hot dip Galvanizing[C]. Berlin:EGGA,2000:77
    [72]Adams G.R, Zervoud J. A new alloy for galvanizing reactive steels[A]. Zinc Development Association. Proceedings of the 18th International Conference on Hot dip Galvanizing[C]. London:EGGA,1997:96
    [73]Katiforis N, Papadimitriou G. Influence of copper, cadmium and tin additions in the galvanizing bath on the structure, thickness and cracking behaviour of the galvanized coatings[J]. Surface and Coatings Technology,1996.78(1-3):185-195
    [74]Kazumi N, Yasuhide M, Kenichiro M. Hot-dip Zn-Al-Sn alloy coated steel sheet excellent in spangle uniformity and corrosion resistance[P]. Japan:2001207249
    [75]JIE W.Q. Further discussions on the solute redistribution during dendritic solidification of binary alloys[J]. Metallurgical and Materials Transactions,1994,25B:731-739
    [76]Hunt J.D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering,1984,65(1):75-83
    [77]Wang C.Y, Beckermann C. Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J]. Metallurgical and Materials Transactions A,1993,25A:1081-1093
    [78]Gandin C.A. From constrained to unconstrained growth during directional solidification[J]. Acta Materialia,2000,48:2483-2501
    [79]Ares A.E, Gueijman S.F, Caram R, et al. Analysis of solidification parameters during solidification of lead and aluminum base alloys[J]. Journal of Crystal Growth,2005, 275:e319-e327
    [80]Reinhart G, Mangelinck-Noel N, Nguyen-Thi H, et al. Investigation of columnar-equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography[J]. Materials Science and Engineering A,2005,413-414:384-388
    [81]Nguyen-Thi H, Reinhart G, Mangelinck-Noel N, et al. In-situ and real-time investigation of columnar-to-equiaxed transition in metallic alloy[J]. Metallurgical and Materials Transactions A,2007,38A:1458-1464
    [82]Ares A.E, Schvezov C.E. Influence of solidification thermal parameters on the columnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys[J]. Metallurgical and Materials Transactions A,2007,38A:1485-1499
    [83]张宙庆,张国伟,侯华,等.铸件凝固过程的微观组织数值模拟研究进展[J].华北 工学院学报,2004,25(5):387-390
    [84]Martorano M.A, Beckermann C, Gandin Ch.A. A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification[J]. Metallurgical and Materials Transactions A,2003,34A:1657-1674
    [85]Wu M, Ludwig A. A three-phase model for mixed columnar-equiaxed solidification[J]. Metallurgical and Materials Transactions A,2006,37A:1613-1631
    [86]Wu M, Ludwig A. Using a three-phase deterministic model for the columnar-to-equiaxed transition[J]. Metallurgical and Materials Transactions A,2007, 38A:1465-1475
    [87]Wang C.Y, Beckermann C. Equiaxed dendritic solidification with convection multistage/multiphase modeling[J]. Metallurgical and Materials Transactions A,1996, 27A:2754-2764
    [88]Wang C.Y, Beckermann C. Equiaxed dendritic solidification with convection numerical simulation for an Al-4wtpct Cu alloy[J]. Metallurgical and Materials Transactions A,1996,27A:2765-2783
    [89]Wang C.Y, Beckermann C. Equiaxed dendritic solidification with convection comparisons with NH4Cl-H2O experiments [J]. Metallurgical and Materials Transactions A,1996,27A:2784-2795
    [90]Ludwig A, Wu.M. Modeling the columnar-to-equiaxed transition with a three-phase eulerian approach[J]. Materials Science and Engineering A,2005,413-414:109-114
    [91]Ludwig A, Gruber-Pretzler M, Mayer F, et al. A way of coupling ternary phase diagram information with multiphase solidification simulations[J]. Materials Science and Engineering A,2005,413-414:485-489
    [92]Wu M, Ludwig A. On the impact of macroscopic phase separation on solidification microstructures[J]. Advanced Engineering Materials,2005,7:846-851
    [93]Rappaz M, Gandin Ch.A. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metallurgica et Materialia,1993,41:345-360
    [94]Rappaz M, Charbon Ch, Sasikumar R. About the shape of eutectic grains solidifying in a thermal gradient[J]. Acta Metallurgica et Materialia,1994,42:2365-2374
    [95]Gandin Ch.A, Rappaz M, Tintillier R. Three-dimensional probabilistic simulation of solidification grain structures:Application to superalloy precision castings[J]. Metallurgical and Materials Transactions A,1993,24A:467-479
    [96]Gandin Ch.A, Rappaz M, Tintillier R.3-Dimensional simulation of the grain formation in investment castings[J]. Metallurgical and Materials Transactions A,1994,25A: 629-635
    [97]Beekermann C. Modeling segregation and grain structure development in equiaxed solidification[J]. JOM Journal of the Minerals, Metals and Materials Society,1997,49: 13-17
    [98]Beltran-Sanchez L, Stefanescu D.M. Growth of solutal dendrites:A cellular automaton model and its quantitative capabilities[J]. Metallurgical and Materials Transactions A, 2003,34A:367-382
    [99]Liu D.R, Wu S.P, Guo J.J, et al. Modelling of solidification of Ti-45 at%Al alloy ingot by the stochastic model[J]. Journal of Materials Science,2005,40:6071-6077
    [100]Gandin Ch.A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta metallurgica et materialia,1994,42:2233-2246
    [101]Vandyoussefi M, Greer A.L. Application of cellular automaton-finite element model to the grain refinement of directionally solidified Al-4.15 wt% Mg alloys[J]. Acta Materialia,2002,50:1693-1705
    [102]Spittle J.A, Brown S.G.R. A cellular automaton model of steady-state columnar-dendritic growth in binary alloys[J]. Journal of Materials Science,1995,30: 3989-3994
    [103]Brown S.G.R. Simulation of diffusional composite growth use the cellular automaton finite difference(CAFD)method[J]. Journal of Materials Science,1998,33(19): 4769-4773
    [104]Jarvis D.J, Brown S.G.R. Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D,2D, and 3D cellular automaton-finite difference simulations[J]. Materials Science and Technology,2000,16:1420
    [105]Dong H.B, Yang X.L, Lee P.D. Simulation of equiaxed growth of an advancing columnar front in directionally solidified Ni-based superalloys[J]. Journal of Materials Science,2004,39:7207-7212
    [106]Dong H.B, Lee P.D. Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Materialia,2005,53:659-668
    [107]Liu D.R, Guo J.J, Wu S.P, et al. Stochastic modeling of columnar-to-equiaxed transition in Ti-(45-48at%)Al alloy ingots[J]. Materials Science and Engineering A, 2006,415:184-194
    [108]张国伟,侯华,徐宏.铸件凝固组织数值模拟研究进展[J].材料导报,2004,18(10):6-9
    [109]Boettinger W.J, Warren J.A, Beckermann C, et al. Phase-field simulation of solidification[J]. Annual Review of Materials Reviews,2002,32:163-194
    [110]Li Q, Guo Q.Y, Li R.D. Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process[J]. Chinese Physics,2006, 15(4):778-791
    [111]Badillo A, Beckermann C. Phase-field simulation of columnar-to-equiaxed transition in alloy solidification[J]. Acta Materialia,2006,54:2015-2026
    [112]Karma A. Phase-field formulation for quantitative modeling of alloy Solidification[J]. Physical review letters,2001,87:115701
    [113]Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification[J]. Physical Review E,2004,70(6):061604/1-061604/22
    [114]Ramirez J.C, Beckermann C. Examination of binary alloy free dendritic growth theories with a phase-field model[J]. Acta Materialia,2005,53:1721-1736
    [115]Cameron D.I, Harvey G.J. Solidification and spangle of galvanized coatings[A]. Zinc Development Association. Proceedings of 7th International Conference on Hot Dip Galvanization[C]. London:EGGA.1967:11-23
    [116]Quiroga A, Rappaz M, Claessens S, et al. A novel experiment for the study of substrate-induced nucleation in metallic alloys:Application to Zn-Al[J]. Metallurgical and Materials Transactions A,2004,35(11):3543-3550
    [117]Rappaz M, Quiroga A, Semoroz A. Effect of lead and antimony on the grain structure of directionally solidified Zn-Al alloys solidification processes and microstructures[A]. Charlotte N C. A Symposium in Honor of Wilfried Kurz as held at the 2004 TMS Annual Meeting[C]. USA,2004:225-231
    [118]Semoroz A, Strezov L, Rappaz M. Numerical simulation of Zn coating solidification[J]. Metallurgical and Materials Transactions A,2002,33(8):2685-2694
    [119]Semoroz A, Rappaz M, Henry S. Application of the phase-field method to the solidification of hot-dipped galvanized coatings[J]. Metallurgical and Materials Transactions A,2000,31(2):487-495
    [120]Chirzi A, Quintin A.P, Reumont G. Numerical study of Pb addition effects on hot-dipped galvanised steel microstructure using novel hexagonal growth laws[J]. American Institute of Steel Technology Transaction,2007,6:1-6
    [121]Kim K.H, Benny V.D, Gustaaf V T, et al. Observations of intermetallic compound formation of hot dip aluminized steel[J]. Materials Science Forum,2006, Y.519-521: 1871-1875
    [122]Quintn A, Avett P, Fenoel M, et al. Modeling of the solidification of the zinc coating and of the resulting morphology[A]. Charlotte N C. Proceedings of AIST Annual Meeting[C]. USA:AIST,2005:511-520
    [123]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002:40-42
    [124]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999:260-262
    [125]Dutta M, Mukhopadhyay A, Chakrabarti S. Effect of galvanizing parameters on spangle size investigated by data mining technique[J]. The Iron and Steel Institute of Japan International,2004,44(1):129-139
    [126]Willem J.F, Claessens S, Cornil H, et al. Solidification mechanisms of Aluzinc coatings effect on spangle size[A]. Proceedings of 5th International Conferrence on Zinc and Zinc Alloy Coated Steel Sheet[C]. Brussels, Belgium:2001:401-408
    [127]李九龄.带钢连续热镀锌[M].北京:冶金工业出版社,1981
    [128]李锋,吕家舜,贾丽娣,等.影响热浸镀锌钢板锌花形成的因素[J].材料保护,2006,39(7):1-3
    [129]Adachi Y, Arai M, Nakamori T. Coating adhesion and interface structure of galvannealed steel[J]. Sumitomo Metals (Japan),1996,48(4):103-110
    [130]Henry S, Minghetti T, Rappaz M. Dendrite growth morphologies in aluminium alloys[J]. Acta Materialia,1998,46(18):6431-6443
    [131]Niederberger C, Michler J, Jacot A. Inverse method for the determination of a mathematical expression for the anisotropy of the solid-liquid interfacial energy in Al-Zn-Si alloys[J]. Physics Review E,2006,74(2):021604/1-021604/8
    [132]Gonzales F, Rappaz M. Dendrite growth directions in aluminum-zinc alloys[J]. Metallurgical and Materials Transactions A,2006,37(9):2797-2806
    [133]Ben-Jacob E, Levine H. The artistry of nature[J]. Nature,2001,409(2):985-986
    [134]Ben-Jacob E, Garik P. The formation of patterns in non-equilibrium growth[J]. Nature, 1990,343(2):523-530
    [135]Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica,1986,34(5):823-830
    [136]Aronin A.S, Barkalov O.I, Ponyatovsky E G. Transmission electron microscopy of Zn41Sb59 quenched high-pressure phase amorphized by solid-state reaction[J]. Journal of Non-Crystalline Solids,1995,189(1-2):138-140
    [137]Zhang L.T, Tsutsui M, Ito K, et al. Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3[J]. Journal of Alloys and Compounds,2003, 358(1-2):252-256
    [138]Zhang L.T, Tsutsui M, Ito K, et al. Thermoelectric properties of Zn4Sb3 thin films prepared by magnetron sputtering[J]. Thin Solid Films,2003,443(1-2):84-90
    [139]Ur S.C, Nash P, Kim I.H. Thermoelectric properties of Zn4Sb3 processed by sinter-forging[J]. Materials Letters,2004,58(22-23):2937-2941
    [140]Ueno K, Yamamoto A, Noguchi T, et al. Effect of impurity oxygen concentration on the thermoelectric properties of hot-pressed Zn4Sb3[J]. Journal of Alloys and Compounds,2006,417(1-2):259-263
    [141]Jackson K.A, Hunt J.D. Lamellar and rod eutectic growth[J]. Transactions of the Metallurgical Society, AIME,1966,236(8):1129-1142
    [142]Adjadj F, Belbacha E.D, Bouharkat M. Differential calorimetric analysis of the binary system Sb-Zn[J]. Journal of Alloys and Compounds,2007,430(1-2):85-91
    [143]Li J.B, Record M.C, Tedenac J.C. A thermodynamic assessment of the Sb-Zn system[J]. Journal of Alloys and Compounds.2007,438 (1-2):171-177
    [144]余永宁.金属学原理[M].北京:冶金工业出版社,2007:132-133
    [145]Pavlidou E, Pistofidis N, Vourlias G, et al. Modification of the growth-direction of the zinc coatings associated with element additions to the galvanizing bath[J]. Materials Letters,2005,59:1619-1622
    [146]Chattopadhyay A, Subramanya Sarma V, Murty B.S, et al. Studies on hot-rolled galvanized steel sheets:Segregation of alloying elements at the surface[J]. Scripta Materialia,2008,59, (5):522-525
    [147]Shindou Y, Kabeya M. Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating[P]. US Patent:4812371, March 14,1989
    [148]Singh A.K, Jha G, Chakrabarti S. Spangle formation on hot-dip galvanized steel sheet and its effects on corrosion-resistant properties[J]. Corrosion,2003,59(2):189-196
    [149]Biber H.E. Scanning auger microprobe study of hot-dipped regular-spangle galvanized Steel:Part 2. Surface Composition of Chromated Sheet[J]. Metallurgical and Materials Transactions A,1988,19(6):1609-1616
    [150]Hegde R.I, Sainkar S.R, Badrinarayanan S, et al. A study of dilute tin alloys by x-ray photoelectron spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena,1981,24 (1):19-25
    [151]Morgan W.E, Stec W.J, Van Wazer J R. Inner-orbital binding-energy shifts of antimony and bismuth compounds[J]. Inorganic Chemistry,1973,12(4):953-955
    [152]Shawki S, Hamid Z.A. Effect of aluminium content on the coating structure and dross formation in the hot-dip galvanizing process[J]. Surface and Interface Analysis,2003, 35(12):943-947
    [153]Feliu J.S, barranco V, XPS study of the surface of conventional hot-dip galvanized pure Zn, galvanneal and Zn-Al alloy coatings on steel[J]. Acta Materialia,2003,51: 5413-5424
    [154]Rodnyansky A, Waburton Y.J, Hanke L.D. Segregation in hot-dipped galvanized steel[J]. Surface and Interface Analysis,2000,29:215-220
    [155]Guimon M.F, Pfister-Guillouzo G, Bremont M, et al. Application of X-ray photoelectron spectroscopy to the study of degradation mechanisms of epoxy-bonded joints of zinc coated steel[J]. Applied Surface Science,1997,108:149-157
    [156]Swaminathan S, Spiegel M. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys[J]. Applied Surface Science,2007,253(10):4607-4619
    [157]Wang X.H, Lu J.T, Che Ch.Sh. Identification of segregation phase on a batch hot-dip-coated Zn/0.1Al/0.2Sb surface[J]. Surface and Interface Analysis.2007,39: 805-808
    [158]Liu X.J, Wang C.P, Ohnuma I, et al. Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems[J]. Journal of Phase Equilibria,2000,21(5):432-442
    [159]卢锦堂,孔纲.冷却速度对Zn/0.24Ni合金共晶组织的影响[J].特种铸造及有色合金,2005,25(6):375-376
    [160]Chung S C, Sung S L, Hsien C C, et al. Application of EIS to the initial stages of atmospheric zinc corrosion[J]. Journal of Applied Electrochemistry,2000,30:607-615
    [161]Kim Y.H, Rae C.Y, Kim K.H. Study of initial stage corrosion of hot-dip-coated zinc surface using in situ AFM[J]. Jorunal of Electrochemistry Society,2004,151(6): B319-B324
    [162]Yao Zh.P, Jiang Zh.H, Wang F.P. Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique[J]. Electrochimica Acta,2007,52:4539-4546
    [163]Liu X.W, Xiong J.P, Lv Y.W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS[J]. Progress in Organic Coatings,2009,64(4): 497-503
    [164]Amar P.Y, Atsushi, Tooru T. Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions[J]. Corrosion Science,2004,46(2): 361-376
    [165]Yadav A.P, Katayama H, Nodaa K, et al. Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte [J]. Electrochimica Acta,2007,52:2411-2422
    [166]Elvins J, Spittle J A, Worsley D A. Relationship between microstructure and corrosion resistance in Zn-Al alloy coated galvanised steels [J]. Corrosion Engineering, Science and Technology,2003,38(3):197-204
    [167]Arenas M.A, de Damborenea J, Use of electrochemical impedance spectroscopy to study corrosion of galvanized steel in 0.6M NaCl solution[J]. Corrosion Engineering, Science and Technology,2006,41(3):228-234
    [168]Rosalbino F, Angelini E, Maccio D, et al. Application of EIS to assess the effect of rare earth small addition on the corrosion behaviour of Zn-5%Al(Galfan) alloy in neutral aerated sodium chloride solution[J]. Electrochimica Acta,2009,54:1204-1209
    [169]Zhang H, Li X.G, Du C.W, et al. Corrosion behavior and mechanism of the automotive hot-dip galvanized steel with alkaline mud adhesion[J]. International Journal of Minerals, Metallurgy and Materials,2009,16(4):414-421
    [170]Sere P.R, Zapponi M, Elsner C.I, et al. Comparative corrosion behaviour of 55Aluminium-zinc alloy and zinc hot-dip coatings deposited on low carbon steel substrates[J]. Corrosion Science,1998,40(10):1711-1723
    [171]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006:156-158
    [172]Yin Q, Kelsall GH, Vaughan D.J, et al. Mathematical models for time-dependent impedance of passive electrodes[J]. Electrochemical Society,2001,148(3):200-2008
    [173]Reynolds L.B, Twite R, Khobaib M P. Preliminary evaluation of the anticorrosive properties of aircraft coatings by eledtrochemical methods[J]. Progress in Organic Coatings,1997,32:31-34
    [174]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987:97-137
    [175]Cachet C, Ganne F, Joiret S, et al. EIS investigation of zinc dissolution in aerated sulphate medium. Part Ⅱ:zinc coatings[J]. Electrochimica Acta,2002,47 (21): 3409-3422
    [176]Cachet C, Ganne F, Maurin G, et al. EIS investigation of zinc dissolution in aerated sulfate medium. Part Ⅰ:bulk zinc[J]. Electrochimica Acta,2001,47(3):509-518
    [177]Lillard R.S, Kanner G.S, Daemen L L. The influence of a mixed radiation environment on the properties of the passive film on tungsten[J]. Electrochimica Acta,2002,47(15): 2473-2482
    [178]Amirudin A, Thierry D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings[J]. Progress in Organic Coatings,1996,28(1):59-76
    [179]Hamlaoui Y, Pefraza F, Tifouti L. Corrosion monitoring of galvanized coatings through electrochemical impedance spectroscopy[J]. Corrosion Science,2008,50:1558-1566
    [180]Claffey W.J, Reid A.J. Post treatment of phosphated metal surfaces by zircoaluminate coupling agents[P]. US Patent:4650526, March,17,1987
    [181]Yang D, Chen J.Sh, Han Q, et al. Effects of lanthanum addition on corrosion resistance of hot-dipped galvalume coating[J]. Journal of Rare Earths,2009,27(1):114-118
    [182]Gu B.Sh, Liu J.H. Cerium (Ⅲ) film formation process for aluminum alloys observed with electrochemical impedance spectroscopy[J]. Journal of the Chinese Rare Earth Society,2007,25(2):210-218
    [183]Qian J.G, Li D, Wang Ch, et al. EIS study on corrosion process of anodized film on AZ91D magnesium alloy[J]. Rare Metal Materials and Engineering,2006,35(8): 1280-1286
    [184]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,1-21
    [185]Lebrini M, Fontaine G, Gengembre L, et al. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution AC impedance study and XPS[J]. Applied Surface Science,2008,254:6943-6947
    [186]Flis J, Tobiyama Y, Mochizuki K, et al. Characterisation of phosphate coatings on zinc, zinc-nickle and mild steel by impedance measurements in dilute sodium phosphate solution[J]. Corrosion Science,1997,39(10-11):1751-1770
    [187]Ride D. CRC Handbook of Chemistry and Physics[M]. Boca Raton:CRC Press,2002
    [188]Mishra A.K, Balasubramaniam R. Corrosion inhibition of aluminuim by rare earth chlorides[J]. Materials Chemistry and Physics,2007,103(2-3):385-393
    [189]Benedetti A, Sumodjo P, Nobe K, et al. Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys:impedance results in 0.5 M NaCl[J]. Electrochem Acta,1995,40(16):2657-2668
    [190]李谋成,林海潮,曹楚南.碳钢在土壤中腐蚀的电化学阻抗谱特征[J].中国腐蚀与防护学报,2000,20(2):111-117
    [191]Jegannathan S, Sankara Narayanan T.S.N, Ravichandran K, et al. Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests[J]. Electrochimica Acta,2005,51(2):247-256
    [192]Kouisni L, Azzi M, Dalard F, et al. Phosphate coatings on magnesium alloy AM60 Part2:electrochemical behaviour in borate buffer solution[J]. Surface and Coatings Technology,2005,192(2-3):239-246
    [193]Park H, Szpunar J A. The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings[J]. Corrosion Science,1998,40, (4-5):525-545
    [194]Pyun S.I, Bae J.S, Park S.Y, et al. The anodic behaviour of hot-galvanized zinc layer in alkaline solution[J]. Corrosion Science,1994,36(6):827-835
    [195]Armstrong R.D, Bell M.F. The active dissolution of zinc in alkaline solution[J]. Journal of Electroanalytical Chemistry,1974,55:201-211
    [196]Cachet C, Saidani B, Wiart R. The behavior of Zinc electrode in alkaline electrolytes[J]. Journal of the Electrochemical Society,1992,139(3):644-654
    [197]Zhu F, Persson D, Thierry D, et al. Formation of corrosion products on open and confined zinc surfaces exposed to periodic wet/dry conditions[J]. Corrosion,2000, 56(12):1256-1265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700