用户名: 密码: 验证码:
河流水沙对底栖动物的生态影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过野外调查和野外试验研究了河流水沙条件对底栖动物的生态影响,并以底栖动物为指示物种对河流生态进行评价。选取我国32条河流的64个断面进行底栖动物调查采样和鉴定分析,研究了底质、河床演变和水质污染对底栖动物的影响。共开展3项野外试验,通过更换河床底质研究了不同粒径的底质对底栖动物的影响,通过人工隔离河边水域研究了栖息地破碎的影响,分析了底栖动物物种数与采样面积之间的关系。
     底栖动物多样性随底质粒径增大而发生规律性变化,且不同类型底质中的优势类群不同。卵石河床中的生物多样性最高,沙质河床中的生物多样性最低。底质的稳定性、孔隙率和空隙大小对底栖动物群落亦影响显著,而外观形状和表面糙度对底栖动物结构组成和密度影响不大。河床底质中生长水生植物对底栖动物生存有利。
     水质污染导致底栖动物多样性降低,敏感物种消失。随着总氮浓度的增加,撕食者、刮食者和捕食者比例不断降低,牧食收集者比例不断增加。以底栖动物为指示物种对水质进行了生物评价,并与理化分析进行对比,二者结果基本一致。从河床演变的角度,探讨了河床稳定性对底栖动物的影响。根据河床演变特征,将河流分为稳定型、侵蚀下切型、淤积抬升型和强烈走沙型。稳定型河流,动物密度大,物种丰富,多样性高;侵蚀下切型河流,动物密度和物种丰度较低;淤积抬升型河流,动物密度和物种丰度更低;强烈走沙型河流,物种丰度和密度均非常低,甚至为零。总结出了不同河床演变条件下的典型底栖动物群谱。
     水生栖息地隔离使得底栖动物物种丰度、密度和生物多样性明显下降,且隔离程度越强,降低越显著;动物结构组成也发生变化。综合主要物理条件和化学条件对底栖动物的影响,提出了简单易用的底栖动物生物栖息地适宜度指数计算公式。生物多样性指数和物种丰度与栖息地适宜度指数呈非线性正相关关系。此外,提出了东江流域受损河段的生态修复方略,综合分析了长江流域的底栖动物分布。
The ecological impacts of water and sediment transportation on macroinvertebrate communities in rivers are studied through field investigations and experiments. Macroinvertebrates are used as indicator species in the assessment of river ecology. Macroinvertebrate samples were taken from 64 sampling sites on 32 rivers in China. Various species of macroinvertebrates were identified from the samples and they were compared and analyzed for the effects of substrate, fluvial process, and water pollution. Three field experiments were conducted to study the effects of substrata replacement with sediment of different sizes, the effects of aquatic habitat fragmentation by isolating riparian waters from the river, and the relation between the number of species in the samples and the sampling area.
     Biodiversity of macroinvertebrates varies with grain size of substrata, and different benthic organisms dominate in different types of substrata. Cobble substrate has the highest biodiversity, and sand substrate has the lowest biodiversity. The macroinvertebrate assemblage is also significantly affected by the stability, porosity, and interstitial dimension of the substrata, while it is rarely affected by the shape and the surface roughness of the sediment particles. Aquatic plants are favorable for macroinvertebrate assemblages. The effect of streambed substrate on macroinvertebrates is well understood, integrating both the results of the field investigations and the experiment.
     Water pollution results in a decrease of macroinvertebrate biodiversity and disappearance of intolerant species. Shredder, scraper and predator reduce following the increase in the concentration of total nitrogen. Collector-gatherer increases with the increased nitrogen. Because the macroinvertebrate communities are affected by pollution, water quality may be assessed by using macroinvertebrates as indicators. The results show that water quality assessment using macroinvertebrates as an indicator agrees with water chemistry analysis.
     The effect of fluvial process on the distribution of macroinvertebrates is studied. The rivers, according to their fluvial conditions, are classified as streams with a stable channel bed, degrading or aggrading channel beds, or intensive bed load motion. The compositions of macroinvertebrate fauna for the four types of rivers are very different. Stable streambeds provide the best habitat for benthic communities and have the highest biodiversity. Benthic communities are stressed in incised channels and the biodiversity is lower. In streams undergoing siltation habitats are seriously impaired and the biodiversity is even lower. In streams with strong bed load movement there are hardly any macroinvertebrates colonizing. This dissertation also presents the pedigrees of the benthic fauna in the four types of rivers.
     The taxa richness, density and biodiversity of macroinvertebrates greatly decrease in the isolated plots due to the habitat fragmentation. The smaller the isolated habitat plot, the more the biodiversity decreases. Habitat fragmentation also results in a succession of macroinvertebrate communities. A Habitat Suitability Index for macroinvertebrates (HSIm) is proposed in this dissertation, integrating the effects of the primary physical (including biotic and abiotic) and chemical conditions. The biodiversity index value and taxa richness increase non-linearly with the HSIm.
     Moreover, ecological restoration strategies for the impaired reaches of the East River basin are suggested in the dissertation. Macroinvertebrates distribution in the Yangtze River basin is studied.
引文
[1] Ahmadi-Nedushan B, St.-Hilaire A, BérubéM, et al. A review of statistical methods for the evaluation of aquatic habitat suitability for instream flowassessment. River Research and Applications, 2006, 22: 503-523.
    [2] Arrhenius O. Species and area. Journal of Ecology, 1921, 9: 95-99.
    [3] Arunachalam M K C, Madhusoodanan N, Vijverberg J, et al. Substrate selection and seasonal variation in densities of invertebrates in stream pools of a tropical river. Hydrobiologia, 1991, 213:141-148.
    [4] Barbour M T, Gerritsen J, Griffith G E, et al. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 1996, 15(2): 185-211.
    [5] Barbour M T, Gerritsen J, Snyder B D, et al. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington. D.C. 1999.
    [6] Barkman J J. A critical evaluation of minimum area concepts. Vegetatio, 1989, 85: 89-104.
    [7] Basset A, Sangiorgio F, Pinna M. Monitoring with benthic macroinvertebrates: advantages and disadvantages of body size descriptors. Aquatic Conservation: Marine and Freshwater Ecosystems, 2004, 14(1): 43-58.
    [8] Beauger A, Lair N, Reyes-Marchant P, et al. The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia, 2006, 571:63-76.
    [9] Beecher H A, Caldwell B A, Demond S B. Evaluation of depth and velocity preferences of juvenile coho salmon in Washington streams. North American Journal of Fisheries Management, 2002, 22: 785-795.
    [10] Beisel J N, Usseglio-Polatera P, Thomas S, et al. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia, 1998, 389: 73- 88.
    [11] Biggs B J F, Lowe R L. Responses of two trophic levels to patch enrichment along a New Zealand stream continuum. New Zealand Journal of Marine and Freshwater Research, 1994, 28: 119-134.
    [12] Blake J G. Nested subsets and the distribution of birds in isolated woodlots. Conservation Biology, 1991, 5: 58-66.
    [13] Bode R W, Novak M A, Abele L E. Quality Assurance Work Plan for Biological Stream Monitoring in New York State. NYS Department of Environmental Conservation, Albany, NY. 1996: 89.
    [14] Bohonak A J, Jenkins D G. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters, 2003, 6: 783-796.
    [15] Bolger D T, Suarez A V, Crooks K R, et al. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecological Applications, 2000, 10:1230-1248.
    [16] Boulton A J, Humphreys W F, Eberhard S M. Imperilled subsurface waters in Australia: Biodiversity, threatening processes and conservation. Aquatic Ecosystem Health and Management, 2003, 6(1):41-54.
    [17] Boulton A J, Peterson C G, Grimm N B, et al. Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology, 1992, 73(6): 2192-2207.
    [18] Bovee K D, Lamb B L, Bartholow J M, et al. Stream habitat analysis using the Instream Flow Incremental Methodology. Information and Technology Report USGS/BRD/ITR-1998-0004. Fort Collins, CO: US Geological Survey, Biological Research Division, Washington, D C. 1998: 130
    [19] Bovee K D. A guide to stream habitat analysis using the instream flow incremental methodology. U. S. Fish and Wildlife Service, Cooperative Instream Flow Group, Instreamflow information paper, 1982, 12: 248.
    [20] Bovee K D. Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology. U.S. Fish and Wildlife Service Biological Report, 1986, 86(7): 1-235.
    [21] Boyero L. The quantification of local substrate heterogeneity in streams and its significance for macroinvertebrate assemblages. Hydrobiologia, 2003, 499(1-3): 161-168.
    [22] Braun-Blanquet J. Plant Sociology: The Study of Plant Communities. New Yok: McGraw-Hill, 1932: 439.
    [23] Brinkhurst R O, Cook D G. Aquatic earthworms (Annelida: Oligochaeta) // Hart C W, Saneal L H F. Pollution ecology of freshwater invertebrates. New York: Academic Press, 1974: 143-156.
    [24] Brittain J E, Saltveit S J. A review of the effects of river regulation on mayflies (Ephemeroptera). Regulated Rivers: Research and Management, 1989, 3: 191-204.
    [25] Brookes A, Shields F D. River Channel Restoration. UK: John Wiley & Sons, 2001.
    [26] Brosse S, Arbuckle C J, Townsend C R. Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodiversity and Conservation, 2003, 12: 2057-2075.
    [27] Brown A V, Brussock P P. Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia, 1991, 220: 99-108.
    [28] Brown S K, Buja K R, Jury S H, et al. Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine. North American Journal of Fisheries Management, 2000, 20: 408-435.
    [29] Buss D F, Baptista D F, Nessimian J L, et al. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia, 2004, 518(1): 179-188.
    [30] Cain S A. The species-area curve. American Midland Naturalist, 1938, 19: 573-581.
    [31] Cobb D G, Galloway T D, Flannagan J F. Effects of Discharge and Substrate Stability on Density and Species Composition of Stream Insects. Canadian Journal of Fisheries and Aquatic Sciences CJFSDX, 1992, 49(9): 1788-1795.
    [32] Coimbra C N, Graca M A S, Cortes R M. The effects of a basic effluent on macroinvertebrate community structure in a temporary Mediterranean river. Environmental Pollution, 1996, 94: 301-307.
    [33] Cummins K W. Structure and function of stream ecosystems. BioScience, 1974, 24: 631-641.
    [34] Cummins K W. Macroinvertebrates // Whitton B A. River Ecology. Blackwell Scientific Publications, Oxford, 1975: 170-198.
    [35] Cummins K W. The natural stream ecosystem // Ward J V, Stanford J A. The Ecology of Regulated Streams. New York: Plenum Press, 1979: 7-24.
    [36] Cummins K W. Trophic relations of aquatic insects. Annual Review of Entomology, 1973, 18: 183-206.
    [37] Death R G, Winterbourn M J. Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology, 1995, 76: 1446-1460.
    [38] Doeg T, Lake P S. A technique for assessing the composition and density of the macroinvertebrate fauna of large stones in streams. Hydrobiologia, 1981, 80: 3-6.
    [39] Downes B J, Lake P S, Schreiber E S G, et al. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia, 2000, 123: 569-581.
    [40] Dudgeon D, Corlett R. The Ecology and Biodiversity of Hong Kong. Hong Kong: Jointed Publishing Company, 2004: 1-334.
    [41] Duncan M J, Suren A M, Brown S L R. Assessment of Streambed Stability in Steep, Bouldery Streams: Development of a New Analytical Technique. Journal of the North American Benthological Society, 1999, 18(4): 445-456.
    [42] Erman D C, Erman N A. The response of stream invertebrates to substrate size and heterogeneity. Hydrobiologia, 1984, 108: 75-82.
    [43] Ethan J N, Richard W M, Michael G K. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environmental Pollution, 2003, 123: 1-13.
    [44] Evans F D, Clark P J, Brand R H. Estimation of the number of species present on a given area. Ecology, 1955, 36:342-343.
    [45] Evans L J, Norris R H. Predicition of benthic macroinvertebrate composition using microhabitat characteristics derived from stereo photography. Freshwater Biology, 1997, 37: 621-633.
    [46] Fahrig L. Effects of habitat fragmentation on biodiversity. Annual Reviews of Ecology and Systematics, 2003, 34: 487-515.
    [47] Farrell M A. Studies on the bottom fauna in polluted waters // A biological survey of the St. Lawrence watershed. Suppl. 20th Ann. Rep., 1930, N.Y. Conservation Dep. 1931: 192-196.
    [48] Flecker A S, Allan J D. The importance of predation, substrate and spatial refugia in determining lotic insect distributions. Oecologia, 1984, 64(3): 306 -313.
    [49] Franken R J M, Gardeniers J J P, Beijer J A J, et al. Variation in stonefly (Nemoura cinerea Retzius) growth and development in response to hydraulic and substrate conditions. Journal of the North American Benthological Society, 2008, 27(1):176-185.
    [50] Furse M T, Moss D, Wright J F, et al. The influence of seasonal and taxonomic factors on the ordination and classification of running water sites in Great Britain, and on the prediction of their macroinvertebrate communities. Freshwater Biology, 1984, 14: 257-280.
    [51] Graca M A S, Pinto P, Cortes R, et al. Factors affecting macroinvertebrate richness and diversity in Portuguese streams: a two-scale analysis. International Review of Hydrobiology, 2004, 89: 151-164.
    [52] Grubaugh J W, Wallace J B, Houston E S. Production of benthic macroinvertebrate communities along a southern Appalachian river continuum. Freshwater Biology, 1997, 37(3): 581-596.
    [53] Hannaford M J, Resh V H. Variability of macroinvertebrate rapid-bioassessment surveys and habitat assessments in a northern California stream. Journal of the North. American Benthological Society, 1995, 14: 430-439.
    [41] Duncan M J, Suren A M, Brown S L R. Assessment of Streambed Stability in Steep, Bouldery Streams: Development of a New Analytical Technique. Journal of the North American Benthological Society, 1999, 18(4): 445-456.
    [42] Erman D C, Erman N A. The response of stream invertebrates to substrate size and heterogeneity. Hydrobiologia, 1984, 108: 75-82.
    [43] Ethan J N, Richard W M, Michael G K. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environmental Pollution, 2003, 123: 1-13.
    [44] Evans F D, Clark P J, Brand R H. Estimation of the number of species present on a given area. Ecology, 1955, 36:342-343.
    [45] Evans L J, Norris R H. Predicition of benthic macroinvertebrate composition using microhabitat characteristics derived from stereo photography. Freshwater Biology, 1997, 37: 621-633.
    [46] Fahrig L. Effects of habitat fragmentation on biodiversity. Annual Reviews of Ecology and Systematics, 2003, 34: 487-515.
    [47] Farrell M A. Studies on the bottom fauna in polluted waters // A biological survey of the St. Lawrence watershed. Suppl. 20th Ann. Rep., 1930, N.Y. Conservation Dep. 1931: 192-196.
    [48] Flecker A S, Allan J D. The importance of predation, substrate and spatial refugia in determining lotic insect distributions. Oecologia, 1984, 64(3): 306 -313.
    [49] Franken R J M, Gardeniers J J P, Beijer J A J, et al. Variation in stonefly (Nemoura cinerea Retzius) growth and development in response to hydraulic and substrate conditions. Journal of the North American Benthological Society, 2008, 27(1):176-185.
    [50] Furse M T, Moss D, Wright J F, et al. The influence of seasonal and taxonomic factors on the ordination and classification of running water sites in Great Britain, and on the prediction of their macroinvertebrate communities. Freshwater Biology, 1984, 14: 257-280.
    [51] Graca M A S, Pinto P, Cortes R, et al. Factors affecting macroinvertebrate richness and diversity in Portuguese streams: a two-scale analysis. International Review of Hydrobiology, 2004, 89: 151-164.
    [52] Grubaugh J W, Wallace J B, Houston E S. Production of benthic macroinvertebrate communities along a southern Appalachian river continuum. Freshwater Biology, 1997, 37(3): 581-596.
    [53] Hannaford M J, Resh V H. Variability of macroinvertebrate rapid-bioassessment surveys and habitat assessments in a northern California stream. Journal of the North. American Benthological Society, 1995, 14: 430-439.
    [69] Kondratieff P F, Matthews R A, Buikema Jr A L. A stressed stream ecosystem: macroinvertebrate community integrity and microbial trophic response. Hydrobiologia, 1984, 111: 81-91.
    [70] Korman J, Perrin C J, Lekstrum T. A Guide for the Selection of Standard Methods for Quantifying Sportfish Habitat Capability and Suitability in Streams and Lakes of British Columbia. Report to B.C. Environment Fisheries Branch, Vancouver: British Columbia. 1994.
    [71] Landres L B, Verner J, Thomas J W. Ecological uses of vertebrate indicator species: a critique. Conservation Biology, 1988, 2: 316-328.
    [72] Layher W G, Maughan O E. Spotted bass habitat evaluation using an unweighted geometric mean to determine HSI values. Proceedings of the Oklahoma Academy of Science, 1985, 65: 11-17.
    [73] Lemly A D. Modifications of benthic insect communities in polluted streams: Combined effects of sedimentation and nutrient enrichment. Hydrobiologia, 1982, 87: 229-245.
    [74] Lenat D R, Smock L A, Penrose D L. Use of benthic macroinvertebrates as indicators of environmental quality // Worf D L. Biological Monitoring for Environmental Effects. D.C. Heath: Lexington, M A. 1980. 97-112.
    [75] Lisa A C, William H C. Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: an experimental approach. Freshwater Biology, 2002, 47: 1766-1778.
    [76] Margalef D R. Information Theory in Ecology. Gen Syst, 1957, 3: 36-71.
    [77] Matthaei C D, Townsend C R. Long-term effects of local disturbance history on mobile stream invertebrates. Oecologia, 2000, 125, 119-126.
    [78] Matthew T F, Ashley A R, Martin J A. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquatic Conservation: Marine and Freshwater Ecosystems, 1999, 9(3): 255-263.
    [79] Merritt R W, Cummins K W. Trophic relations of macroinvertebrates // Hauer F R, Lamberti G A. Methods in Stream Ecology. San Diego: Academic Press Inc., 1996: 453-474.
    [80] Metzeling L, Miller J. Evaluation of the sample size used for the rapid bioassessment of rivers using macroinvertebrates. Hydrobiologia, 2001, 444: 159-170.
    [81] Miltner R J, Rankin E T. Primary nutrients and the biotic integrity of rivers and streams. Freshwater Biology, 1998, 40: 145-158.
    [82] Monaghan M T, Robinson C T, Spaak P T, et al. Macroinvertebrate diversity in fragmented Alpine streams: implications for freshwater conservation. Aquatic Sciences, 2005, 67: 454-464.
    [83] Morse J C, Yang L F, Tian L X. Aquatic Insects of China Useful for Monitoring Water Quality. Nanjing: HoHai University Press, 1994.
    [84] Newall P, Bate N, Metzeling L. A comparison of diatom and macroinvertebrate classification of sites in the Kiewa River system, Australia. Hydrobiologia, 2006, 572(1):131-149.
    [85] Newbury R W. Hydrologic determinants of aquatic insect habitats // Resh V H, Rosenberg D M. The Ecology of Aquatic Insects. New York: Praeger Publishers, 1984: 323-357.
    [86] Newmark W D. Tropical forest fragmentation and the local extinction of understory birds in the eastern Usambara Mountains, Tanzania. Conservation Biology, 1991, 5: 67-78.
    [87] Olyslager N J. Williams D D. Microhabitat selection by the lotic amphipod Gammarus pseudolimnaeus Bousfield: Mechanisms for evaluating local substrate and current suitability. Canadian Journal of Zoology, 1993, 71: 2401-2409.
    [88] Palmer C G, Maart B, Palmer A R, et al. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia, 1996, 318: 153-164.
    [89] Palmer C G, O'Keeffe J H, Palmer A R. Macroinvertebrate habitat relationships in the Buffalo River, South Africa. Journal of the North American Benthological Society, 1991, 10: 349-357.
    [90] Pfankuch D J. Stream reach inventory and channel stability evaluation. U. S. Department of Agriculture Forest Service. Region, Montana, 1975.
    [91] Pielou E C. Ecological Diversity. Wiley2Inters (New York), 1975: 163.
    [92] Plafkin J L, Barbour M T, Porter K D, et al. Rapid Bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. United States Environmental Protection Agency, Washington, D.C. 1989.
    [93] Poff N L. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 1997, 16: 391-409.
    [94] Prenda J, Gallardo-Mayenco A. Self-purification, temporal variability and the macroinvertebrate community in small lowland Mediterranean streams receiving crude domestic sewage effluents. Archiv für Hydrobiologie, 1996, 136: 159-170.
    [95] Rabeni C F, Doisy K E, Zweig L D. Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences, 2005, 67: 395-402.
    [96] Reice S R. Experimental disturbance and the maintenance of species diversity in a stream community. Oecologia, 1985, 67(1): 90-97.
    [97] Reice S R. The role of substratum in benthic macroinvertebrate microdistribution and litter decomposition in a woodland stream. Ecology, 1980, 61: 580-590.
    [98] Rempel L L, Richardson J S, Healey M C. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology, 2000, 45 (1): 57-73.
    [99] Reynoldson T B, Bailey R C, Day K E, et al. Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology, 1995, 20: 198-219.
    [100] Richards C, Haro R J, Johnson L B, et al. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 1997, 37(1): 219-230.
    [101] Rosenberg D M, Resh V H. Introduction to freshwater biomonitoring and benthic macroinvertebrates // Rosenberg D M, Resh V H. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, 1993: 1-9.
    [102] Rowntree K M, Wadeson R A, O'Keeffe J. The development of a geomorphological classification system for the longitudinal zonation of South African rivers. South African Geographical Journal, 2000, 82(3): 163-172.
    [103] Rutt G P, Weatherley N S, Ormerod S J. Microhabitat availability in Welsh moorland and forest streams as a determinant of macroinvertebrate distribution. Freshwater Biology, 1989, 22: 247-261.
    [104] Shannon-Wiener C E, Weaver W J. The mathematical theory of communication. Urbana: University of Illinois, 1949:117.
    [105] Simberloff D, Dayan T. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 1991, 22: 115-143.
    [106] Simpson E H. Measurement of diversity. Nature, 1949, 163:688
    [107] Simpson J, Norris R, Barmuta L, et al. AusRivAS - National River Health Program: User Manual Website version, 1999.
    [108] Sláde?ek V. Diatom as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica, 1986, 14: 555 - 566.
    [109] Sloane P I W, Norris R H. Relationships of AUSRIVAS- based macroinvertebrate predictive model outputs to a metal pollution gradient. Journal of the North American Benthological Society, 2003, 22: 457-471.
    [110] Smith M J, Kay W R, Edward D H D, et al. AusRivAS: Using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology, 1999, 41: 269 - 282.
    [111] Statzner B, Gore J A, Resh V H. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Society, 1988, 7: 307-360.
    [112] Stoertz M W, Bourne H, Knotts C, et al. The effects of isolation and acid mine drainage on fish and macroinvertebrates communities of Monday Creek, Ohio, USA. Mine Water and the Environment, 2002, 21: 60-72.
    [113] Storey A W, Edward D H D, Gazey P. Surber and kick sampling: a comparison for the assessment of macroinvertebrate community structure in streams of south-western Australia. Hydrobiologia, 1991, 211: 111-121.
    [114] Thomson J R, Lake P S, Downes B J. The effect of hydrological disturbance on the impact of a benthic invertebrate predator. Ecology, 2002, 83: 628-642.
    [115] Tomanova S, Goitia E, Hele?ic J. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 2006, 556: 251-264.
    [116] Townsend C R, Scarsbrook M R, Doledec S. The intermediate disturbance hypothesis, refugia and biodiversity in streams. Limnology and Oceanography, 1997, 42: 938-949.
    [117] United States Fish and Wildlife Service (USFWS). Standards for the development of Habitat Suitability Index models (ESM 103). U.S. Department of the Interior, Fish and Wildlife Service, Washington DC. 1981.
    [118] Vadas R L, Orth D J. Formulation of habitat suitability models for stream fish guilds: do the standard methods work? Transactions of the American Fisheries Society, 2001, 130: 217-235.
    [119] Vannote R L, Minshall G W, Cummins K W, et al. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37: 130-137.
    [120] Verdonschot P F M. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia, 2001, 463: 249-262.
    [121] Verdonschot P F M. Macrofaunal community types of ditches in the province of Overijssel (The Netherlands). Archiv für Hydrobiologie, Supplement, 1992, 90(2): 133-158.
    [122] Vinson M R, Hawkins C P. Biodiversity of stream insects: variation at local, basin and regional scales. Annual Review of Entomology, 1998, 43: 271-293.
    [123] Vismara R, Azzellino A, Bosi R, et al. Habitat suitability curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regulated Rivers: Research and Management, 2001, 17: 37-50.
    [124] Wallace J B, Webster J R, Woodall W R. The role of filter feeders in flowing waters. Arch Hydrobiol, 1977, 79: 506-532.
    [125] Walley W J, Trigg D J, Martin R W, et al. Assessment of River Phosphorus and Nitrogen from Macroinvertebrate Data using Artificial Intelligence Techniques. Environment Agency Technical Report, 2002.
    [126] Wang Hongzhu, Wang Haijun, Liang Xiaomin, et al. Empirical modelling of submersed macrophytes in Yangtze lakes. Ecological Modelling, 2005, 188: 483 -491.
    [127] Wang Zhaoyin, Lee Joseph Hun-wei, Melching Charles Steve. Integrated River Management. Beijing: Tsinghua University. 2008.
    [128] Way C M, Burky A J, Bingham C R, et al. Substrate roughness, velocity refuges, and macroinvertebrate abundance on artificial substrates in the lower Mississippi River. Journal of the North American Benthological Society, 1995, 14(4):510-518.
    [129] Wise D H, Molles M C Jr. Colonization of artificial substrates by stream insects: influence of substrate size and diversity. Hydrobiologia, 1979, 65(1):69-74.
    [130] Wright J F, Armitage P D, Furse M T, et al. The classification of sites on British rivers using macroinvertebrates. Verhandlungen der Internationalen Vereiningung für Theoretische und Angewandte Limnologie, 1984, 22: 1939-1943.
    [131] Wright J F. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology, 1995, 20(11): 181-197.
    [132] Zwick P. Stream habitat fragmentation - a threat to biodiversity. Biodiversity and Conservation, 1992, 1: 80-97.
    [133]陈其羽,梁彦龄,吴天惠.武汉东湖底栖动物群落结构和动态的研究.水生生物学集刊, 1980, 7(1): 42-55.
    [134]陈显维.嘉陵江流域水库群拦沙量估算及拦沙效应分析//水利部长江水利委员会水文测验研究所.三峡水库来水来沙条件分析研究论文集.武汉:湖北科学技术出版社, 1992: 151-162.
    [135]程尊兰,朱平一,游勇.金沙江下游地区输沙与泥石流的相关性分析.自然灾害学报, 2000, 9(1): 84-8.
    [136]崔鸿,刘胜祥,杨其仁,等.长江新螺段和天鹅洲白鳍豚自然保护区的水生生物比较.河南大学学报(自然科学版), 2000, 30(1): 74-75.
    [137]戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物评价.生态学报, 2000, 20(2): 277-282.
    [138]董哲仁.国外河流健康评估技术.水利水电技术, 2005, (11): 15-19.
    [139]董哲仁.河流型态多样性与生物群落多样性.水利学报, 2003, (11): 1-7.
    [140]龚志军.长江中游浅水湖泊大型底栖动物的生态学研究[博士学位论文].武汉:中国科学院水生生物研究所, 2002.
    [141]郝卫民,王士达,王德铭.洪湖底栖动物群落结构及其对水质的初步评价,水生生物学报, 1995, 19(2):124-134.
    [142]何易平.长江流域的生态应力研究(博士后出站报告).清华大学水利水电工程系, 2005.
    [143]何志辉.淡水生态学.北京:中国农业大学出版社, 2004.
    [144]黄玉瑶,滕德兴,赵忠宪.应用大型无脊椎动物群落结构特征及其多样性指数监测蓟运河污染.动物学集刊, 1982, 2: 133-146.
    [145]姜苹红,梁小民,陈芳,等.月湖底栖动物的空间格局及其对水草可恢复区的指示.长江流域资源与环境, 2006, 15(4): 502-505.
    [146]柯欣,杨莲芳,孙长海.安徽丰溪河水生昆虫多样性及其水质生物评价.南京农业大学学报, 1996, 19(3):37-43.
    [147]蓝宗辉.韩江下游底栖动物的分布及其对水质的评价.生态学杂志, 1997, 16(4): 24-28.
    [148]梁象秋,方纪祖,杨和荃.水生生物学(形态和分类).北京:中国农业出版社, 1995.
    [149]梁彦龄,刘伙泉.草型湖泊资源、环境与渔业生态学管理(一).北京:科学出版社, 1995.
    [150]刘建康.高级水生生物学.北京:科学出版社, 2002: 241-259.
    [151]刘月英,张文珍,王跃先.中国经济动物志北京:科学出版社, 1979: 1-126.
    [152]卢金友,黄悦,宫平.三峡工程运用后长江中下游冲淤变化.人民长江, 2006, 37(9): 55-57, 87, 112
    [153]鲁春霞,谢高地,成升魁,等.水利工程对河流生态系统服务功能的影响评价方法初探.应用生态学报, 2003, 14(5): 803-807.
    [154]潘久根.金沙江流域的河流泥沙输移特性.泥沙研究, 1999, 2: 46-49.
    [155]任淑智.北京地区河流中大型底栖无脊椎动物与水质关系的研究.环境科学学报, 1991, 11(1): 31-46.
    [156]茹辉军,刘学勤,黄向荣,等.大型通江湖泊洞庭湖的鱼类物种多样性及其时空变化湖泊科学, 2008, 20(1): 93-99.
    [157]田胜艳.胶州湾大型底栖动物的生态学研究[硕士学位论文].青岛:中国海洋大学海洋生态学专业, 2003.
    [158]田世民,王兆印,段学花.拒马河自净化能力及几种水草净化能力的比较//唐洪武,李桂芬,王连祥.水力学与水利信息学进展.南京:河海大学出版社, 2007: 41-45.
    [159]万丽华.黄浦江上游底栖动物的指示生物生态研究.上海环境科学, 1995, 14(1): 11-14.
    [160]王备新,杨莲芳.我国东部底栖无脊椎动物主要分类单元耐污值.生态学报, 2004, 24(12): 2768-2775.
    [161]王洪铸.中国小蚓类研究.北京:高等教育出版社, 2002: 1-227
    [162]王士达.武汉东湖底栖动物的多样性及其与富营养化的关系.水生生物学报, 1996, 20 (增刊): 75-89.
    [163]王寿兵.对传统生物多样性指数的质疑.复旦学报(自然科学版), 2003, 42 (6): 867-868, 874.
    [164]王兆印,程东升,何易平,等.西南山区河流阶梯—深潭系统的生态学作用.地球科学进展, 2006b, 21 (4): 409-416.
    [165]王兆印,周静,李昌志.黄河下游水沙变化及河床纵横断面的演变.水力发电学报, 2006a., 25(5): 33-36.
    [166]韦方强,刘淑珍,范建容,等.小江流域生态环境灾害与治理对策.自然灾害学报, 2004, 13(4):109-114.
    [167]翁立达.长江生态与环境—现状与挑战.长江流域资源与环境, 2006, 15(5): 614-618.
    [168]吴阿娜,杨凯,车越,等.河流健康状况的表征及其评价.水科学进展, 2005, 16(4): 602-608.
    [169]吴保生,陈红刚,马吉明.美国基西米河渠化工程对河流生态环境的影响.水利水电技术, 2004, 35(9): 13-16.
    [170]吴成果,周晓农,肖邦忠.三峡建坝生态环境改变与血吸虫病传播的关系.国外医学寄生虫病分册, 2005, 32(5): 224-228.
    [171]吴小平,梁彦龄,王洪铸,等.长江中下游湖泊淡水贝类的分布及物种多样性.湖泊科学, 2000, 12(2): 111-118.
    [172]武正军,李义明.生境破碎化对动物种群存活的影响.生态学报, 2003, 23(11): 2424-2435.
    [173]徐江,王兆印.山区河流阶梯-深潭的发育及其稳定河床的作用.泥沙研究, 2003, (5): 21-27.
    [174]颜京松.以底栖动物评价甘肃境内黄河干支流枯水期水质.环境科学, 1980, 1(14): 14-20.
    [175]杨莲芳,李佑文,戚道光,等.九华河水生昆虫群落结构和水质生物评价.生态学报, 1992, 12 (1): 9-15.
    [176]余国安,王兆印,张康,等.人工阶梯-深潭改善下切河流水生栖息地及生态的作用.水利学报, 2008, 39(2): 162-167.
    [177]余文畴,岳红艳.长江径流泥沙在世界江河中的地位.长江科学院院报, 2002, 19(6): 13-16.
    [178]虞孝感.长江流域生态环境的意义及生态功能区段的划分.长江流域资源与环境, 2002, 11(4): 323-326.
    [179]袁兴中,陆健健.长江口潮滩湿地大型底栖动物群落的生态学特征.长江流域资源与环境, 2002, 11(5): 414-420.
    [180]张代钧,许丹宇,任宏洋,等.长江三峡水库水污染控制若干问题.长江流域资源与环境, 2005, 14(5): 605-610.
    [181]张曙光,李雅卿,赵玉仙,等.河流沉降物对有毒重金属的生物学转移及有效性影响.黄河流域水环境监测中心, 1998: 24-43.
    [182]张增光.水生生物在水质监测中的应用.科技情报开发与经济, 2004, 14(7): 150-151.
    [183]周建军.三峡工程建成后长江中游防洪等问题的对策.科技导报, 2006, 24(6): 32-35.
    [184]周晓,王天厚,葛振鸣,等.长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析.生物多样性, 2006, 14 (2): 165-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700