用户名: 密码: 验证码:
无线协作传输系统性能分析及多址干扰抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协作传输作为一种开发空间分集增益的新技术,为传统无线通信系统引入了又一维可用的空间,使得提高传输速率和改善频谱利用率成为了可能。单天线配置、便携式的移动终端相互协调共享彼此的无线资源,在源节点与目的节点之间形成多条通信链路,虚拟构成MIMO系统,为MIMO技术的实用化提供了另外一条途径。因此,协作传输作为未来无线通信网络的关键技术之一,近年来日益受到广泛的关注,并成为当前无线通信领域研究的一个热点。
     基于此,本文详细讨论了协作传输技术在各种环境下的性能评估问题,并在此基础上,对终端节点,尤其是中继节点在信道频谱接入时面临的多址干扰抑制进行了相关研究。本文首先调研分析了国内外关于协作通信有关的研究进展。然后从单中继协作传输系统入手,详细推导出全信噪比域适用的衰落信道环境下机会中继和选择中继的性能增益指标计算公式。接着从时间和空间角度探讨非独立信道条件下信道状态信息(CSI)的相关性对系统性能的影响,由此引出频谱接入时多址干扰带来的困扰。最后,在DTR算法的基础上,提出了一种更为合理的多址干扰抑制解决方案:DTR PLUS算法。所得成果可为未来无线通信网络的发展提供部分理论依据和基础。本文的主要工作和贡献如下:
     1)一般信道条件下单中继协作传输系统性能参数的理论分析和定量计算公式的推导:单中继协作传输能减少多址干扰、提高频谱资源的利用效率,尤其适合在节点高密集的网络环境。利用概率统计理论,针对单中继无线网络,推导出了两种单中继协作传输系统在独立Nakagami衰落信道中的性能指标,得到机会中继和选择中继传输系统采用DF中继策略SC和MRC接收时中断概率、误符号率和信道容量的表达式,并通过蒙特卡罗仿真验证了理论推导的有效性,该部分性能指标表达式的推导为深入研究协作传输系统提供了数学分析根据。
     2) CSI相关性对协作分集性能影响的理论分析和定量计算公式的推导:CSI无论是对无线网络中各类协议设计还是对系统参数的选择配置都起着至关重要的作用,借助前面建立的独立信道环境下的性能分析研究成果,进一步分析非独立信道环境下CSI在时间相关性和空间相关性上对协作传输系统带来的影响。分析表明,无线信道的多变性会对协作机制的分集性能带来致命的影响,时间相关性越大,协作系统性能越少受影响,而空间相关性越大,协作传输系统的性能受到的影响却越大。此外,通过仿真验证表明,由推出的理论公式所得的理论计算值与实际模拟仿真值吻合的非常好,印证了理论分析的有效性。
     3)提出干扰抑制的多址频谱接入新算法:针对分布式无线协作网络中多中继接入信道的复杂频谱管理问题,提出了一种基于DTR协议的改进算法DTR PLUS。该算法采取局部博弈的方式选择单个接入信道的中继节点,避免了DTR协议中随机接入带来的大量退避或碰撞时延消耗;并且采用门限策略灵活控制接入信道的标准和中继与源节点局部交互信息的方式,取代了基站或AP选择最优中继的集中式控制,使算法完全适合在分布式网络中实施,所需通信开销也远小于退避或碰撞传输所付出的代价。分析与仿真结果表明,在未明显增加网络开销的情况下,新算法在减少端到端平均传输时延和改善系统吞吐量等方面比DTR算法具有更优越的性能。
Cooperative transmission, as a promising technique exploiting space diversity gain,offers a new dimension of freedom, which makes higher transmission rate and higherspectrum utilization possible. Single antenna and portable mobile terminals coordinate andshare wireless resource each other. Accordingly, multiple communication links between thesource nodes and the destination nodes are established with a virtual MIMO (Multiple Inputand Multiple Output) system, providing approaches for MIMO technique implementation. Asa result, cooperative transmission is taken as one of the key technologies for future wirelesscommunication networks and draw tremendous attention. Also, it has become a hotspot in theresearch of the wireless communication field.
     Therefore, this thesis focuses on the performance evaluation of cooperative transmissionover all kind of environments. Based on these evaluation results, the problem of multipleaccess interference suppressions when terminals and relay nodes access into the wirelesschannels is studied. This thesis attempts to be self-contained and begins with a summary ofefforts poured into the topic by both domestic and international researchers. Holding singlerelay cooperative transmission systems as objective, this thesis will focus on performanceanalysis of opportunistic relaying and selection relaying over fading channels, and the effectsof variable CSI (Channel State Information) on system are well analyzed by lateral andvertical directions. Then, the theoretical analysis obtained above draw forth the multiplespectrum access interference and possible solutions resolving multiple access interferencesuppressions are provided at last. The results and conclusions obtained in this thesis can bepartial theoretical bases for the future wireless communication networks.
     The main contributions of this thesis are as follows:
     1) With the probability and statistics theory, aiming at single relay wireless networks,the performance parameters of two single relay selection cooperative transmissionsystems over Nakagami fading channels are put forward. For single relay cooperativetransmission can decrease multiple access interference and improve spectrumutilization, especcially in dense network circumstance, outage probability, symbolerror rate and channel capacity performances for opportunistic relaying and selectionrelaying with DF (Decode-and-Forward) are derived at arbitrary signal-to-ratios,respectively. Then, the theoretical analyses are validated by Monte Carlo simulations.The obtained closed-form expressions provide an analytic method of studying wireless cooperative transmission systems.
     2) CSI is crucial to all kinds of protocol designs for wireless networks. Based on theperformance parameters of single relay cooperative communication, the effects oflateral and vertical CSI correlation on cooperative transmission systems are wellanalyzed. Both the theoretical analysis and simulations show that, from lateraldirection, the varied wireless channels may bring fatal influence to the performanceof the cooperative network, and the more time correlation, the little effects oncooperative performance. However, from vertical direction, the more spacecorrelation, the more effects on cooperative performance. Moreover, simulationresults show that the derived exact results very well match with the simulation curves,which illustrate the validity of overall numerical performance analyses results.
     3) Due to the complex spectrum management in multi-relay channel accesses fordistributed wireless cooperative networks, an improved DTR (Distributed ThresholdRelaying) algorithm is proposed based on the local game between source and relays,which selects a best relay offering cooperation. In our novel algorithm, each sourcecontrols its standard of accessing channel with threshold scheme adaptively, whichsubstitutes base station or AP (Access Point) in centralized networks and couldcarried out in distributed systems. In addition, the added communication overheadwould pay less compared with the backoff time and collision in DTR. Analysis andsimulation results show that our proposed algorithm, without increasing significantnetwork overhead, provides less delay consumption and more throughputimprovement compared to DTR.
引文
[1] http://www.wlbbs.com/[OL]
    [2]崔海霞.分布式无线网络协作资源分配研究[D].广州:华南理工大学,2011
    [3] Muelen E. C. van der. Three-terminal communication channels[J]. Adv. Appl. Probab.,1971,3(1):120-154
    [4] S Sendonaris A., Erkip E., Aazhang B. User cooperation diversity-part I: systemdescription[J]. IEEE Trans. Commun.,2003,51(11):1927-1938
    [5] S Sendonaris A., Erkip E., Aazhang B. User cooperation diversity-part II: ImplementationAspects and Performance Analysis[J]. IEEE Trans. Commun.,2003,51(11):1939-1948
    [6] Laneman J. N., Tse D. N. C., Wornell G. W. Cooperative diversity in wireless networks:efficient protocols and outage behavior[J]. IEEE Trans. Tnf. Theory,2004,50(12):3062-3080
    [7] Salem M., Adinoyi A., Rahman M., et al. An overview of radio resource management inrelay-enhanced OFDMA-based networks[J]. IEEE Commun. Surveys&Tutorials,2010,12(3):422-436
    [8]沈嘉. LTE-Advanced关键技术演进趋势[J].移动通信,2008,16:20-25
    [9]赵经纬. LTE-Advanced蓄势待发[J].通信世界,2009,8:4-5
    [10]Hiertz G. R., Max S., Zhao R., et al. Principle of IEEE802.11s[A] InternationalConference on Computer Communications and Networks[C],2007:1002-1007
    [11]Zhu H., Cao G. H. On improving the performance of IEEE802.11with relay-enabledPCF[J]. Springer Journal on Mobile Networks and Applications,2004:423-434
    [12]Zhu H., Cao G. H. rDCF: A relay-enabled medium access control protocol for wireless adhoc networks[J] IEEE Trans. Mobile Comput.,2006,5(9):1201-1214
    [13]www.winner-ist.org[OL]
    [14]http://www.ist-fireworks.eu[OL]
    [15]http://www.cordis.lu/ist/ct/neweve/pubs-reports.htm[OL]
    [16]Jeong C., Kim H. Radio resource allocation in OFDMA multihop cellular cooperativenetworks[A]. Proc. IEEE Int’l Symp. PIMRC[C], Cannes,2008:1234-1238
    [17]Ng T., Yu W. Joint optimization of relay strategies and resource allocations in cooperativecellular networks[J]. IEEE J. Sel. Areas Commun.,2007,25(2):328-339
    [18]Kim S. J., Wang X., Madihian M. Optimal resource allocation in multihop OFDMAwireless networks with cooperative relay[J] IEEE Trans. Wireless Commun.,2008,7(5):1833-1838
    [19]Shim W., Han Y., Kim S. Fairness-aware resource allocation in a cooperative OFDMAuplink system[J]. IEEE Trans. Wireless Commun.,2010,59(2):932-939
    [20]Zhang X., Wang W. B., Ji X. D. Multiuser diversity in multiuser two-hop cooperativerelay wireless networks: system model and performance analysis[J]. IEEE Trans. Veh.Tech.,2009,58(2):1031-1036
    [21]Chen S. P., Wang W. B., Zhang X. Performance analysis of multiuser diversity incooperative multi-relay networks under rayleigh-fading channels[J]. IEEE Trans.Wireless Commun.,2009,8(7):3415-3419
    [22]Chang M. K., Lee S. Y. Performance analysis of cooperative communication system withhierarchical modulation over rayleigh fading channel[J]. IEEE Trans. Wireless Commun.,2009,8(6):2848-2852
    [23]Michalopoulos D. S., Karagiannidis G. K. Performance analysis of single relay selectionin rayleigh fading[J]. IEEE Trans. Wireless Commun.,2008,7(10):3718-3724
    [24]Costa D. B., Aissa S. Performance analysis of relay selection techniques with clusteredfixed-gain relays[J]. IEEE Signal Processing Lett.,2010,17(2):201-204
    [25]Adinoyi A., Fan Y., Yanikomerolu H., Poor H. V., Al-Shaalan F. Performance of selectionrelaying and cooperative diversity[J]. IEEE Trans. Wireless Commun.,2009,8(12):5790-5795
    [26]Ikki S. S., Ahmed M. H. Exact error probability and channel capacity of the best-relaycooperative-diversity networks[J]. IEEE Signal Processing Lett.,2009,16(12):1051-1054
    [27]Duong T. Q., Bao V. N. Q., Zepernick H. J. On the performance of selectiondecode-and-forward relay networks over nakagami-m fading channels[J]. IEEE Commun.Lett.,2009,13(3):172-174
    [28]Costa D. B., Aissa S. Capacity analysis of cooperative systems with relay selection inNakagami-m fading[J] IEEE Commun. Lett.,2009,13(9):637-639
    [29]Suraweera H. A., Michalopoulos D. S., Karagiannidis G. K. Performance of distributeddiversity systems with a single amplify-and-forward relay[J]. IEEE Trans. Veh. Tech.,2009,58(5):2603-2608
    [30]Lee Y., Tsai M. H., Sou S. L. Performance of decode-and-forward cooperativecommunications with multiple dual-hop relays over Nakagami-m fading channels[J].IEEE Trans. Wireless Commun.,2009,8(6):2853-2859
    [31]Lee Y., Tsai M. H. Performance of decode-and-forward cooperative communications overNakagami-m fading channels[J]. IEEE Trans. Veh. Technol.,2009,58(3):1218-1228
    [32]Yan K., Jiang J., Wang Y. G., Liu H. T. Outage probability of selection cooperation withMRC in Nakagami-m fading channels[J]. IEEE Signal Process. Lett.,2009,16(12):1031-1034
    [33]Xu F., Lau F., Zhou Q., Yue D. Outage performance of cooperative communicationsystems using opportunistic relaying and selection combining receiver[J]. IEEE SignalProcess. Lett.,2009,16(2):113-116
    [34]Kim J. B., Kim D. Comparison of tightly power-constrained performance foropportunistic amplify-and-forward relaying with partial or full channel information[J].IEEE Commun. Lett.,2009,13(2):100-102
    [35]Zhao Y., Lim T. J. Improving amplify-and-forward relay networks: optimal powerallocation versus selection[A]. Proc. IEEE Int’l Symp. Information Theory (ISIT’06)[C],2006:1234-1238
    [36]Maham B., Hjrungnes A. Asymptotic performance analysis of amplify-and-forwardcooperative networks in a nakagami-m fading environment[J]. IEEE Commun. Lett.,2009,13(5):300-302
    [37]Katiyar H., Bhattacharjee R. Performance of two-hop regenerative relay network undercorrelated nakagami-m fading at multi-antenna relay[J]. IEEE Commun. Lett.,2009,13(11):820-822
    [38]单杭冠.无线协作传输系统的资源分配与协议设计[D].上海:复旦大学,2009
    [39]李屹.未来无线网络中协作通信算法研究[D].北京:北京邮电大学,2008
    [40]Suriyachai P., Roedig U., Scott A. A survey of MAC protocols for mission-criticalapplications in wireless sensor networks[J]. IEEE Communi. Surveys&Tutorials,2012,14(2):240-264
    [41]Domenico A. D., Strinati E. C., Benedetto M. G. D. A survey on MAC strategies forcognitive radio networks[J]. IEEE Communi. Surveys&Tutorials,2012,14(1):21-44
    [42]Luo T., Motani M., Srinivasan V. Energy-efficient strategies for cooperative multichannelMAC protocols[J]. IEEE Trans. Mobile Computing,2012,11(4):553-566
    [43]Rui L., Petropulu A. P. A new wireless network medium access protocol based oncooperation[J]. IEEE Trans. Signal Process.,2005,53(12):4675-4684
    [44]Telatar I. E. Capacity of multi-antenna Gaussian channels[J]. European Trans.Telecommunications.1999,10(6):585-595
    [45]Foschini G. J., Gans M. J. On limits of wireless communication in a fading environmentwhen using multiple antennas[J]. Wireless Personal Communications,1998,6(3):311-335
    [46]徐峰.无线网络中协作通信系统的性能分析[D].大连:大连海事大学,2009
    [47]Gibson D. J. The Mobile Communications Handbook[M]. IEEE Press,1999
    [48]Gallager R. G. A perspective on multi access channels[J]. IEEE Trans. Inform.1985,31(2):124-142
    [49]郑少仁. Ad Hoc网络技术[M].北京:人民邮电出版社,2005
    [50]Karn P. MACA-a new channel access method for packet radio[A]. Proc. the ARRL/CRRLAmateur Radio9th Computer Networking Conference[C],1990
    [51]Fullmer C. L. Floor acquisition multiple access for packet-radio networks[A]. Proc. ACMSIGCOMM[C]. Cambridge MA,1995
    [52]Talucci F., Gerla M. MACA-BI. A wireless MAC protocol for high speed ad hocnetworking[A]. Proc. the IEEE ICUPC[C],1997
    [53]Wu C. Receiver-initiated busy-tone multiple access in packet radio networks[A]. Proc.ACM SIGCOMM Conference[C],1987:336-342
    [54]Tavli B., Heinzelman W. B. MH-TRACE: multihop time reservation using adaptivecontrol for energy efficiency[J]. IEEE Journal on Selected Areas in Communications,2004,22(5):942-953
    [55]Singh S. PAMAS-power aware multi-access protocol with signaling for ad hocnetworks[J]. ACM Computer Communication,2008,28(3):5-26
    [56]Ye W., Heidemann J. An energy-efficient MAC protocol for wireless sensor networks[A].Proc. the21st International Annual Joint Conference of the IEEE Computer andCommunications Societies[C]. New York,2002:1567-1576
    [57]Edgar H., Callaway. Wireless sensor network: Architecture and protocols[M]. CRC PressLLC,2004:41-62
    [58]Haas Z. J., Deng J. Dual busy tone multiple access (DBTMA)-a multiple access controlscheme for ad hoc networks[J], IEEE Trans. Communication,2002,50(6):975-984
    [59]Kleinrock L. Packet switching in radio channels: Part1-carrier sense multiple accessmodes and their throughput-delay characteristics[J]. IEEE Transaction Communication,1975,23(12):1400-1416
    [60]Jung E. S. A power control MAC protocol for ad hoc networks[A]. Proc. ACMMOBICOM[C],2002
    [61]Ko Y. B. Medium access protocols using directional antennas in ad hoc networks[A].Proc. IEEE INFOCOM[C],2000
    [62]Choudhury R. R. Using directional antennas for medium access control in ad hocnetworks[A]. Proc. ACM MOBICOM[C],2002
    [63]Bao L. Channel access scheduling in ad hoc networks with unidirectional links[A]. ProcACM/IEEE DIAL-M,2001
    [64]Benveniste M. EDCF proposed draft text[S]. IEEE Working Document,2001
    [65]余旭涛,张在琛,毕光国.一种提高能量效率的Ad Hoc网络MAC协议[J].计算机学报,2006,29(2):256-266
    [66]IEEE Std802.11-1999, Wireless LAN medium access control (MAC) and physical layer(PHY)[S], New York, NY, USA,1999
    [67]Tseng Y. C., Hsu C. S. Power-saving protocols for IEEE802.11-based multi-hop ad hocnetworks[A]. INFOCOM[C],2002
    [68]Lin P., Qiao C. Medium access control with a dynamic duty cycle for sensor networks[A].IEEE Wireless Communication and Networking Conference[C],2004:1534-1539
    [69]Pursley M., Russell H. Energy-efficient transmission and routing protocols for wirelessmultiple-hop networks and spread-spectrum radios[A]. Proc EUROCOMM2000[C],IEEE Press,2000:1-5
    [70]Monks J. A power controlled multiple access protocol for wireless packet networks[A].Proc. IEEE INFOCOM[C],2001
    [71]Wu S. L. Intelligent medium access for mobile ad hoc networks with busy tones andpower control[J]. IEEE Journal on Selected Areas in Communications,2000,18(9):1647-1657
    [72]Wang W. Power control for distributed MAC protocols in wireless ad hoc networks[J].IEEE Transaction on Mobile Computing,2008,7(10):1169-1183
    [73]Nar P., Cayirci E. A power controlled sensor-MAC protocol for wireless sensornetworks[A]. Proc. of the EWSN[C], ACM Press,2005:81-92
    [74]李方敏,徐文君,高超.一种适用于无线传感器网络的功率控制MAC协议[J].软件学报,2007,18(5):1080-1091
    [75]Eibatt T. Joint scheduling and power control for wireless ad hoc networks[J]. IEEETransaction on Wireless Communications,2004,3(1):74-85
    [76]Zhu C. A five-phase reservation protocol for mobile ad hoc networks[A]. Proc.17thAnnual Joint Conference of the IEEE Computer and Communication Societies[C],1998:322-331
    [77]Sobrinho J. L. Quality-of-service in ad hoc carrier sense multiple access networks[J].IEEE Journal of Selected Areas in Communication,1999,7(8):1353-1368
    [78]Dimitrios D. QoS-aware TDMA for end-to-end traffic scheduling in ad hoc networks[J].IEEE Wireless Communication,2006:68-74
    [79]Wang P. A new MAC scheme supporting voice/data traffic in wireless ad hoc networks[J].IEEE Transaction on Mobile Computing,2008:1-13
    [80]Navrati S. Dynamic duty cycle and adaptive contention window based QoS-MACprotocol for wireless multimedia sensor networks[J]. Computer Networks,2008:2532-2542
    [81]Lo C. K., Jr. R. W. H., Vishwanath S. The impact of channel feedback on opportunisticrelay selection for hybrid-ARQ in wireless networks[J]. IEEE Trans. Veh. Technol.,2009,58(3):1255-1268
    [82]Le L., Hossain E. Cross-layer optimization frameworks for multihop wireless networksusing cooperative diversity[J]. IEEE Trans. Wireless Commun.,2008,7(7):2592-2602
    [83]Chen W., Dai L, Letaief K. B., Cao Z. G. A unified cross-layer framework for resourceallocation in cooperative networks[J]. IEEE Trans. Wireless Commun.,2008,7(8):3000-3012
    [84]Dai L., Chen W., Jr. L. J. C., Letaief K. B. Fairness improves throughput inenergy-constrained cooperative ad-hoc networks[J]. IEEE Trans. Wireless Commun.,2009,8(7):3679-3691
    [85]Zhou Z., Zhou S. L., Cui J. H. Energy-efficient cooperative communication based onpower control and selective single-relay in wireless sensor networks[J]. IEEE Trans.Wireless Commun.,2008,7(8):3066-3077
    [86]Cui H. X., Wei G., Wang Y. D. Effects of CSI on ASEP based opportunistic DF relayingsystems[J]. IEEE Trans. Veh. Tech.,2011,60(4):1898-1904
    [87]Wang B., Han Z., Liu K. J. R. Distributed relay selection and power control for multiusercooperative communication networks using Stackelberg game[J]. IEEE Trans. MobileComput.,2009,8(7):975-997
    [88]Huang J., Han Z., Chiang M. Auction-based resource allocation for cooperativecommunications[J]. IEEE J. Sel. Areas Commun.,2008,26(7):1226-1237
    [89]刘琚,郑丽娜.多跳无线网络中协作ARQ机制和协作MAC技术[J].山东大学学报(理学版),2011,46(10):57-65
    [90]李云,杜杨,曹傧,尤肖虎.无线网络协作MAC机制[J].软件学报,2011,22(1):101-114
    [91]Shan H. G., Zhuang W. H., Wang Z. X. Distributed cooperative MAC for multihopwireless networks[J]. IEEE Commun. Magazine, pp.126-133,2009
    [92]Hua Y., Zhang Q., Niu Z. S. A cooperative MAC protocol with virtual-antenna arraysupport in a multi-AP WLAN system[J]. IEEE Trans. Wireless Commun.,2009,8(9):4806-4814
    [93]Zhang J., Zhang Q., Jia W. J. VC-MAC: a cooperative MAC protocol in vehicularnetworks[J]. IEEE Trans. Veh. Tech.,2009,58(3):1561-1571
    [94]Guo T., Carrasco R. CRBAR: cooperative relay-based auto rate MAC for multiratewireless networks[J]. IEEE Trans. Wireless Commun.,2009,8(12):5938-5947
    [95]Ho C. K., Tan P. H., Sun S. Maximum diversity order in cooperative MAC for generalmodulation schemes[J]. IEEE Commun. Lett.,2009,13(12):941-943
    [96]Wang F., Younis O., Krunz M. Throughput-oriented MAC for mobile ad hoc networkswith variable packet sizes[J]. Proc. IEEE SECON,2006:421-430
    [97]Zheng J. L., Ma M. D. Qos-aware cooperative medium access control for MIMO ad-hocnetworks[J]. IEEE Commun. Lett.,2010,14(1):48-50
    [98]Zhou Y., Liu J., Zheng L. N., Zhai C., Chen H. Link-utility-based cooperative MACprotocol for wireless multi-hop networks[J]. IEEE Trans. Wireless Commun.,2011,10(3):995-1005
    [99]刘云,刘凯,曾峰.无线网络中基于优先级竞争的协作媒质接入控制协议研究[J].通信学报,2011,32(8):183-190
    [100]叶其孝,沈永欢.实用数学手册[M].第2版.科学出版社,2006
    [101] Bletsas A., Shin H., Win M. Z. Cooperative communications with outage-optimalopportunistic relaying[J]. IEEE Trans. Wireless Communi.,2007,6(9):3450-3460
    [102] Jose Lopez Vicario, Albert Bel, Lopez-Salcedo A. Opportunistic relay selection withoutdated CSI: outage probability and diversity analysis[J]. IEEE Transaction on wirelessCommunications,2009,8(6):2872-2876
    [103] Yu Y. C., Cui H. X., Feng S. L., Zhuang H. C. Performance analysis of opportunisticdecode-and forward relaying over nakagami-m fading channels[A]. Proc. IEEENIDC’10[C],2010:479-482
    [104] Zhang X. J., Gong Y., Letaief K. B. On the diversity gain in cooperative relayingchannels with imperfect CSIT[J]. IEEE Trans. Communi.,2010,58(4):1273-1279
    [105] Chen L., Carrasco R. A., Wassell I. J. Opportunistic nonorthogonalamplify-and-forward cooperative communications[J]. Electronics Lett.,2011,47(10):626-628
    [106] Costa D.B., Aissa S. Dual-hop decode-and-forward relaying systems with relayselection and maximal-ratio schemes[J]. Electronics Lett.,2009,45(9):460-461
    [107] Khatalin S., Fonseka J. P. Capacity of correlated nakagami-m fading channels withdiversity combining techniques[J]. IEEE Trans. Veh. Tech.,2006,55(1):142-150
    [108] Cui H. X., Yu Y. C., Zhong Q. H., Zhang H. An adaptive power pricing scheme forimproved fairness in energy constrained cooperative networks[J]. International Journal ofCommunication Systems,2013, DOI:10.1002/dac.2528
    [109] Cui H. X., Wei G., Zhang H., Zhong Q. H. Utility-optimal cross-layer resourceallocation in distributed wireless cooperative networks[J]. International Journal ofCommunication Systems,2012, DOI:10.1002/dac.2360
    [110] Yu Y. C., Feng S. L., Zhuang H. C., Cui H. X. Effects of outdated CSIT ondiversity-multiplexing based opportunistic cooperative channels[A]. Proc. IC-NIDC[C],Beijing: IEEE,2012:582-585
    [111] Liu K. H., Chen H. H. Performance analysis of threshold relaying with randomchannel access over non-identically distributed Rayleigh-fading channels[J]. IEEEJournal on Selected Areas in Communications,2012,30(9):1703-1708
    [112]崔海霞,韦岗,余永聪.无线传感器网络的能耗分析[J].华南理工大学学报(自然科学版),2010,38(5):15-21
    [113] Isabella C., Andrea F., Puja G. Delay models of single-source single-relaycooperative ARQ protocols in slotted radio networks with Poisson frame arrivals[J].IEEE/ACM Transaction on Networking,2008,16(2):371-382
    [114] Selvaraj M. D., Mallik R. K. Performance of full CSI selection combining forcooperative diversity systems[J]. IEEE Transaction on Communications,2012,60(9):2482-2488
    [115] Ali Asghar Sharifi, Farid Ashtiani, Hossein Keshavarz, et al. Impact of cognition andcooperation on MAC layer performance metrics, part I: maximum stable throughput [J].IEEE Transaction on wireless Communications,2012,11(12):4252-4263.无
    [116] Christopher H., Ashutosh S. Distributed protocols for interference management incooperative networks[J]. IEEE Journal on Selected Areas in Communications,2012,30(9):1633-1640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700