用户名: 密码: 验证码:
协作与认知系统中资源优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的快速发展,新的无线应用和服务(如实时的视频会议,在线游戏等)呈爆发式的增长,这些新的应用和服务通常需要较宽的带宽和较高的速率。然而有限的资源和现有这种固定式的分配机制,使得这些新的应用和服务没有资源可用,制约着无线通信技术的发展。作为有效缓解这对矛盾的方法,资源优化设计一直以来是科学家们的研究热点。优化的资源不仅可以有效的提高资源的利用率,同时满足人们对高质量服务和应用的需求。
     协作分集利用了无线电波的广播特性,使得中继用户可以接收到源用户发送的信号,中继用户经过一定的处理后把源用户的信号转发到目的终端,这样不同的用户就可以共享彼此的天线形成虚拟的多天线阵列,获得MIMO(Multiple Input and Multiple Output)的效果,从而有效地利用频谱资源,改善用户的通信质量。认知无线电通过自适应地检测周围无线环境,实时地调整系统参数(如调制技术、工作频率和传输功率等),在保证授权用户的正常通信不受影响的前提下,伺机接入授权频谱,从而充分利用有限的频谱资源,有效地提升频谱资源的利用率,提高通信系统的容量。
     OFDM(Orthogonal Frequency Division Multiple)是下一代无线通信网络的一种关键技术,不仅可以有效提高频谱效率,而且还能有效对抗宽带通信中频率选择性衰落带来的影响。本文以下一代无线通信网络为背景,在分析国内外文献的基础上,主要利用OFDM技术对协作和认知无线电系统中的资源优化和频谱接入方法进行了深入研究。此外,我们还利用博弈论的方法对认知无线电系统中的频谱博弈问题进行了分析,提出了一种基于纳什博弈的协作频谱接入方法,并对这个频谱接入方法中的资源优化问题进行了分析和研究。论文的主要研究内容如下:
     第一,介绍了协作分集和认知无线电的系统模型及关键技术。首先,我们介绍了协作分集的系统模型,并详细描述了几种经典的中继协作协议,分析了它们的性能和特点。然后我们介绍了认知无线电中的几个关键技术,包括频谱检测、频谱分享和频谱管理等技术。
     第二,针对协作系统中资源优化算法资源利用率不高的问题,提出了一种OFDM固定中继系统中单中继多源用户资源优化算法,在该算法中,一个固定的中继节点利用OFDM符号可以同时帮助多个源用户转发信息,这样可以有效地利用频谱资源,进一步提高系统容量,降低中断概率。我们以信道容量最大化为原则,提出了源用户和中继节点间子载波和功率优化算法。
     第三,在现有固定频谱分配机制中,由于频谱资源受到分配机制的限制,利用率得不到根本上提高。我们把协作分集和认知无线电技术相结合,分别提出了基于放大转发(Amplify-and-Forward,AF)和解码转发(Decode-and-Forward,DF)协作的OFDM频谱接入方法,在我们所提的频谱接入方法中,如果授权用户在直传时候达不到自己的目标速率,认知用户作为授权用户的中继,利用一部分子载波来转发授权用户的信息帮助其达到目标速率,然后利用剩余的正交子载波来发送自己的信息,以此来获得频谱接入。这样他们之间就不会互相产生干扰,从而有效地利用了有限的频谱资源,进一步提高了系统性能。首先,我们对基于AF协作频谱接入方法做了一下理论分析,提出了一种集中式的AF协作频谱接入方法,该方法能够获得性能理论上界。但是该方法要交互很多信息,不能在分布式系统中实现,所以我们在此基础上又提出了一种分布式的AF协作频谱接入方法。如果认知用户能够解码授权用户的信息,认知用户就可以通过DF协作来帮助转发授权用户的信息,所以我们又提出了一种分布式的DF协作频谱接入方法,在该方法中认知用户解码授权用户的信息后,在协作的第二个时隙,就不用和授权用户的子载波进行配对。
     第四,现有的大部分频谱接入方法都是在不影响授权用户正常通信的前提下,认知用户才能接入授权用户的频谱,并且这些方法的优化目标都是最大化认知用户的性能。针对这个限制,我们提出了一种基于纳什博弈的协作频谱接入方法。在我们所提的方法中,如果认知用户能够帮助改善授权用户的性能,则授权用户就会主动分配一部分自己的发送时间给认识用户来改善自己的性能。这样不仅授权用户的性能能够得到改善,认知用户也能够获得频谱接入的机会来发送自己的信息,从而双方获得互赢的效果。
With the development of wireless communication technology, the new wireless ap-plication and high quality serves (i.e. real-time video conference, online game) increaseexplosively. These wireless application and serves always need wide bandwidth and largerate. However, they do not have enough resource to use due to the limit resource andstatic resource allocation method. It is the main obstructions to develop wireless com-munication technology. As an efective way to relieve this conflict, resource optimizationalgorithms design is always the hot topic for scientists. Optimized resource can efective-ly improve the utilization of the resource. Meanwhile, it can satisfy the requirement ofthe high qualified service and application.
     Cooperative diversity makes the relay possible to receive the signal of the source byusing the broadcast nature of radio waves. After some proceeding, the relay help forwardthe signal of the source to the destination node. Thus, diferent users can share theirantennas and obtain MIMO (Multiple Input and Multiple Output) efects. It can efectivelyuse the spectrum and improve the quality of the communication. Cognitive radio canopportunistic access the primary spectrum by adaptively sensing the neighboring wirelessenvironment and timely adjusting the parameter of the system (i.e. modulation technique,working frequency, transmission power) while guaranteeing the primary transmission. Itmakes the best use of the limited spectrum, which can efectively improve the utilizationof spectrum. Thus it can help improve the performance of the wireless communicationsystems.
     OFDM(Orthogonal Frequency Division Multiple) is one of the key technology inthe next generation wireless communication network. It can efectively use the spectrum.Also, it can combat the influence of the frequency selective channel. This dissertationinvestigates the next generation wireless communication network. Based on the analysisof literature in China and abroad, the resource optimization in cooperative and cognitivesystem mainly by using OFDM technology is studied. Meanwhile, the spectrum bargain-ing problem in cognitive system by using bargaining method is analyzed. A cooperativespectrum access method based on Nash bargaining is proposed and the resource optimiza-tion in this method is investigated. The main work and innovative points are expressed asfollows.
     Firstly, the system model and key technology of cooperative diversity and cognitiveradio is introduced. The system model of cooperative diversity is introduced at first. Thenseveral classical relay protocols is describe, and the performance and characteristics ofthese protocols is analyzed. At last, the key technology of cognitive radio which includesspectrum detection, spectrum sharing and spectrum management is introduced.
     Secondly, a resource optimization in OFDM fixed relay system with one relay multi-source is proposed, in order to combat the low resource utilization of resource optimiza-tion algorithms in cooperative system. In our propose algorithms, one fixed relay is ableto help forward information of multiple sources in one OFDM symbol. It can efcient-ly utilize the available bandwidth, improve the system capacity and reduce the outageprobability. A joint sub-carrier matching and power allocation algorithm to maximize thechannel capacity is proposed.
     Thirdly, the spectrum utilization can not be fundamentally improved with the staticspectrum allocation. Cooperative OFDM spectrum access methods base on amplify-and-forward (AF) and decode-and-forward (DF) is proposed respectively, by combining thetechnology of cooperation and cognition. In our proposed methods, the cognitive user actsas a relay of the primary user, in which the cognitive user uses some of the subcarriersto help forward the primary signal, then uses the left orthogonal subcarriers to transmitits own signal to gain spectrum access. Thus, there will be no interference anymore. Itcan efciently use the limited spectrum to further improve the system performance. Acentralized AF spectrum access method by theoretically analyze is proposed at first. Thiscentralized method can achieve the upper bound performance, but it needs exchange toomuch information. It is hard to use in distributed system. Thus, a distributed method isproposed. If the cognitive user can decode the signal of primary user, the cognitive usercan use DF cooperation to forward the signal of primary user. A spectrum access methodbased on DF cooperation is proposed, in which the cognitive user do not need to pair thesubcarrier with primary user in the second slot.
     Fourthly, in most existing underlay spectrum access methods, the cognitive user canaccess the spectrum of primary user if the primary transmission is guaranteed. And thetarget of these methods is to maximize the rate of cognitive user. A cooperative spectrumaccess method based on Nash bargaining to extend these limit is proposed. In our pro-posed method, if the cognitive user can help improve the performance of the primary user,the primary user will lease a part of the transmission time to cognitive user to improve its own performance. In this spectrum access method, not only primary user can improveits performance, but the cognitive user can obtain spectrum access. Thus gain win-winefect.
引文
[1] FCC. Spectrum policy task force report[J]. ET Docket,2002:02–155.
    [2] M. A. McHen. spectrum occupancy measurements project summary[J]. Sharedspectrum Company Rep,2005.
    [3] Andrea Goldsmith. Wireless Comminications[M]. Cambridge: Cambridge Uni-versity Press,2005.
    [4] S. M. Alamouti. A Simple Transmit Diversity Technique for Wireless Communica-tions[J]. IEEE Journal on Selected Areas in Communications,1998,16(8):1451–1458.
    [5]庄铭杰,郭东辉.一种双天线发射分集方案的性能分析[J].电波科学学报,2006,21(3):454–458.
    [6]韩昌彩.天线与协作中继网络中的传输技术研究[D].北京邮电大学,2009:1–4.
    [7] J. Mitola III, Q G. Cognitive radio:Making software radios more personal[J].IEEE Persnal Communication,1999,6(4):13–18.
    [8] J. Mitola III. An Integrated Agent Architecture for Software Defined Radio[D].Royal Institute of Technology(KTH),2000.
    [9] J. Mitola III. Cognitive radio for flexible mobile multimedia communica-tion[C]//IEEE International Workshop on Mobile Multimedia Communications.1999:3–10.
    [10] Haykin S. Cognitive Radio: Brain-Empowered Wireless Communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201–220.
    [11] W. Krenik, A. Batra. Cognitive Radio Techniques for Wide Area Network-s[C]//42nd Design Automation Conference.2005:409–412.
    [12] R. Tandra, S. M. Mishra, A. Sahai. What is a Spectrum Hole and what does It Taketo Recognize One?[J]. Proceedings of the IEEE,2009,97(5):824–848.
    [13] G. Zhao, J. Ma, G. Y. Li. Spatial Spectrum Holes for Cognitive Radio with Relay-assisted Directional Transmission[J]. IEEE Transactions on Wireless Communica-tions,2009,8(10):5270–5279.
    [14] T. M. Cover, A. A. E. Gamal. Capacity Theorems for the Relay Channel[J]. IEEETransactions on Information Theory,1979,25(5):572–584.
    [15] Sendonaris A,Erkip E,Aazhang,B. User cooperation diversity-Part I:system de-scription[J]. IEEE Transactions on Communications,2003,51(11):1927–1938.
    [16] Sendonaris A., Erkip E., Aazhang,B. User cooperation diversity-Part I-I:implementation aspects and performance analysis[J]. IEEE Transactions on Com-munications,2003,51(11):1939–1948.
    [17] J. N. Laneman, G. W. Wornell. Exploiting Distributed Spatial Diversity in Wire-less Networks[C]//Allerton Confence on Communications, Control and Comput-ing. Monticello:2000:1–12.
    [18] J. N. Laneman, G. W. Wornell. Energy-Efcient Antenna Sharing and Relayingfor Wireless Networks[C]//IEEE Wireless Communications and Networking Con-ference. Chicago:2000:7–12.
    [19] J. N. Laneman, G. W. Wornell, D. N. C. Tse. An Efcient Protocol for RealizingCooperative Diversity in Wireless Networks[C]//IEEE International Symposiumon Information Theory. Washington, DC:2001:294.
    [20] J. N. Laneman, G. W. Wornell, D. N. C. Tse. Cooperative Diversity in WirelessNetworks: Efcient Protocols and Outage Behavior[J]. IEEE Transactions on In-formation Theory,2004,50(12):3062–3080.
    [21] J. N. Laneman, G. W. Wornell. Distributed Space-Time-Coded Protocols for Ex-ploiting Cooperative Diversity in Wireless Network[J]. IEEE Transactions on In-formation Theory,2003,49(10):2415–2425.
    [22] T. E. Hunter, A. Nosratinia. Cooperation Diversity through Coding[C]//IEEE In-ternational Symposium on Information Theory. Lausanne:2002:220.
    [23] T. E. Hunter, A. Nosratinia. Coded Cooperation under Slow Fading, Fast Fading,and Power Control[C]//The Thirty-Sixth Asilomar Conference on Signals Systemsand Computers. Pacific Groove:2002:118–122.
    [24] J. N. Laneman, G. W. Wornell. Diversity through Coded Cooperation[J]. IEEETransactions on Wireless Communications,2006,5(2):283–289.
    [25] R. Liu, P. Spasojevic, E. Soljanin. Incremental Redundancy Cooperative Codingfor Wireless Networks: Cooperative Diversity, Coding, and Transmission EnergyGains[J]. IEEE Transactions on Information Theory,2008,54(3):1207–1224.
    [26]韩春雷,葛建华.编码协作中的一种门限选择中继方案[J].西安电子科技大学学报(自然科学版),2009,36(2):198–202.
    [27]雷维嘉,谢显中.一种基于LDPC编码的协作通信方式[J].电子学报,2007,35(4):711–714.
    [28]宫丰奎,韩春雷.慢衰落信道下高阶调制编码协作方案及性能分析[J].西安电子科技大学学报(自然科学版),2008,35(4):565–569.
    [29]张鸿涛.无线网络多用户协作传输关键技术研究[D].北京邮电大学,2008:1–17.
    [30] M.Janani. Coded Cooperation in Wireless Communications:Space Time Trans-mission and Iterative Decoding[J]. IEEE Transactions on Signal Processing,2004,52(2):362–371.
    [31] A.Stefanov, E.Erkip. Cooperative coding for wireless networks[J]. IEEE Transac-tions on Communications,2004,52(9):1470–1476.
    [32] A.Chakrabarti, E.Erkip, A.Sabharwa. Code designs for cooperative communica-tion[J]. IEEE Signal Processing Magazine,2007:16–26.
    [33] A.Chakrabarti, A.Baynast, A.Sabharwal, B.Aazhang. Low Density Parity Checkcodes for the relay channel[J]. IEEE Journal on Selected Areas in Communications,2007,25(2):280–291.
    [34] H.Wen, L.Zhou, Z.P.Zhang. Cooperative coding using parallel concatenated LDPCcodes[C]//IEEE Information Theory Workshop.2006:395–398.
    [35] G.Scutari, S.Barbarossa. Distributed space-time coding for regenerative relay net-works[J]. IEEE Transaction on Wireless Networks,2005,4(5):2387–2399.
    [36] Z.M.Zhong, S.H.Zhu, and G.M.Lv. Distributed space-time coding based onamplify-and-forward protocol[C]//ChinaCom’06. Beijing:2006:1–5.
    [37] C.Hucher, G.R.Othman, J.Belfiore. AF and DF Protocols based on Alamouti STCode[C]//ISIT2007. Nice:2007:1526–1530.
    [38] S.Atapattu, N.Rajatheva. Exact SER of Alamouti Code Transmission through Am-plify–Forward Cooperative Relay over Nakagami-m Fading Channels[C]//ISCIT’07. Sydney:2007:1429–1433.
    [39] Z.H.Yi, I.M.Kim. Joint Optimization of relay-precoders and decoders with partialchannel side information in cooperative networks[J]. IEEE Journal on SelectedAreas in Communications,2007,25(2):447–458.
    [40] Z.G.Ding, W.H.Chin, K.K.Leung. Distributed beamforming and power allocationfor cooperative networks[J]. IEEE Transaction on Wireless Communication,2008,7(7):1817–1822.
    [41] J.S.Park, D.S.Lun, F.Soldo. Performance of network coding in Ad Hoc network-s[C]//25th Military Communications Conference. Washington DC:2006:1–6.
    [42] M.Yu, J.Li, and R.S.Blum. User cooperation through network coding[C]//IEEECommunication Conference.2007:4064–4069.
    [43] S.L.Fu, K.J.Lu, Y.Qian. Cooperative network coding for wireless Ad-Hoc net-works[C]//IEEE Global Telecommunications Conference.2007:812–816.
    [44] X.Lei, E.F.Thomas. A network coding approach to cooperative diversity[J]. IEEETransaction on Information Theory,2007,53(10):3714–3722.
    [45]郝建军.网络编码协同通信系统及其性能的研究[D].[S.l.]:北京邮电大学,2008.
    [46] Moualeu J. M. M., Xu H., Takawira F. Double repeat-punctured turbo codedcooperative diversity scheme[C]//WCNC.2008:1044–1049.
    [47] Moualeu J. M. M., Xu H.,Takawira F. Turbo codes in coded cooperation using theforced symbol method[C]//WCNC.2009:1–6.
    [48] Van Khuon H., Le-Ngoc T. A cooperative turbo coding scheme for wireless fadingchannels[J]. IET Communication,2009,3(10):1606–1615.
    [49] A. Bletsas, A. Khisti, D. P. Reed. A Simple Cooperative Diversity Method Basedon Network Path Selection[J]. IEEE Journal on Selected Areas in Communication-s,2006,24(3):659–672.
    [50] A. Bletsas, H. Shin, M. Z. Win. Cooperative Diversity with Opportunistic Relay-ing[C]//IEEE Wireless Communications and Networking Conference.2006:1034–1039.
    [51] V. Mahinthan, L. Cai, J. W. Mark. Maximizing Cooperative Diversity Energy Gainfor Wireless Networks[J]. IEEE Transactions on Wireless Communications,2007,6(7):2530–2539.
    [52] V. Mahinthan, L. Cai, J. W. Mark. Partner Selection Based On Optimal PowerAllocation in Cooperative-Diversity Systems[J]. IEEE Transactions on VehicularTechnology,2008,57(1):511–520.
    [53]王荆宁,沙学军,卢为党,张中兆.改进的集中式协作用户选择方法[J].西安交通大学学报,2009,43(8):64–68.
    [54] J. Wang, X. Sha, W. Lu, Z. Zhang. An Efcient Relay Selection Strategy for HighSpeed Users in Cooperative Diversity Systems[C]//The5th International Confer-ence on Wireless Communications Networking and Mobile Computing.2009:1–4.
    [55] Y. Jing and H. Jafarkhani. Single and multiple relay selection schemes and theirachievable diversity orders[J]. IEEE Transactions on Wireless Communications,2009,8(3):1414–1423.
    [56] A. K. Sadek, Z. Han, and K. J. R. Liu. A distributed relay-assignment algorithmfor cooperative communications in wireless networks[C]//ICC.2006:1–4.
    [57] Z. Lin, E. Erkip, and A. Stefanov. Cooperative regions and partner choice in codedcooperative systems[J]. IEEE Transactions on Communications,2006,54:1323–1334.
    [58] A. S. Ibrahim, A. K. Sadek, W. Su. Cooperative Communications with Relay-Selection: When to Cooperate and Whom to Cooperate with[J]. IEEE Transactionson Wireless Communications,2008,7(7):2814–2827.
    [59] S. Chen, W. Wang, X. Zhang. Performance Analysis of Multiuser Diversity in Co-operative Multi-Relay Networks under Rayleigh-Fading Channels[J]. IEEE Trans-actions on Wireless Communications,2009,8(7):3415–3419.
    [60] Host-Madsen A., Zhang J. Capacity bounds and power allocation in wireless relaychannel[J]. IEEE Transactions on Information Theory,2005,51(6):2020–2040.
    [61] Zhang Q,Zhang J, Shao C, Wang Y, Zhang P,Hu R. Power allocation for regenera-tive relay channel with Rayleigh fading[C]//IEEE VTC2004-Spring.2004:1167–1171.
    [62] Seddik K. G., Sadek A. K., Su W. F., Liu K. J. R.. Outage analysis and optimalpower allocation for multi-node relay networks[J]. IEEE Signal Processing Letter,2007,14(6):377–380.
    [63] Yao Y., Cai X., Giannakis G. B. On energy efciency and optimum resource al-location of relay transmissions in the low-power regime[J]. IEEE Transaction onWireless Communication,2005,4(6):2917–2927.
    [64] Z. Han, T. Himsoon, W. P. Siriwongpairat. Resource Allocation for MultiuserCooperative Ofdm Networks: Who Helps Whom and How to Cooperate[J]. IEEETransactions on Vehicular Technology,2009,58(5):2378–2391.
    [65] Bae C. S., Cho D. H. Fairness-aware adaptive resource allocation scheme in mul-tihop OFDMA systems[J]. IEEE Communication Letter,2007,11(2):134–136.
    [66] Dohler M., Gkelias A., Aghvami H. A resource allocation strategy for distributedMIMO multi-hop communication systems[J]. IEEE Communication Letter,2004,8(2):99–101.
    [67] E. Yazdian, M. R. Pakravan. Adaptive Modulation Technique for Amplify andForward Cooperative Diversity and Fairness Analysis[C]//International Conferenceon Telecommunications. Venice:2008:1–6.
    [68] Tyler Nechiporenko, K. T. Phan, C. Tellambura. On the Capacity of RayleighFading Cooperative Systems Under Adaptive Transmission[J]. IEEE Transactionson Wireless Communications,2009,8(4):1626–1631.
    [69] Z. Ding, W. H. Chin, Kin K. Leung. Distributed Beamforming and Power Allo-cation for Cooperative Networks[J]. IEEE Transactions on Wireless Communica-tions,2008,7(5):1817–1822.
    [70] I.Krikidis. Distributed truncated ARQ protocol for cooperative diversity network-s[J]. IEEE Transactions on Wireless Communications,2007,1(6):1212–1217.
    [71] M.C.Valenti, Bin Zhao. Hybrid-ARQ based intra-cluster geographic relay-ing[C]//IEEE Military Communications Conference.2004:805–811.
    [72] B.Zhao,and M.C.Valenti. Practical relay networks:a generalization of hybrid-ARQ[J]. IEEE Journal of Selected Areas of Communications,2005,53:7–18.
    [73] Z.G.Yang, J.H.Liu, A.Host-Madsen. Cooperative Routing and Power Allocationin Ad-hoc Networks[C]//IEEE GlOBECOM.2005:2730–2734.
    [74] F.Xie,H.Tian, P.Zhang. Cooperative Routing Strategies in Ad hoc Network-s[C]//IEEE VTC.2005.
    [75] A.S.Ibrahim, Z.Han, K.J.Ray Liu. Distributed energy-efcient cooperative routingin wireless networks[C]//IEEE GLOBECOM.2007:4413–4418.
    [76] Shang Y., Xia X. G. Shift-full-rank matrices and applications in space-time trelliscodes for relay networks with asynchronous cooperative diversity[J]. IEEE Trans-action on Information Theory,2006,52(7):3153–3167.
    [77] Damen M. O., Hammons A. R. Delay-tolerant distributed TAST codes for coop-erative diversity[J]. IEEE Transaction on Information Theory,2007,53(10):3755–3773.
    [78] Shang Y., Xia X. G. Space-time trellis codes with asynchronous full diversity upto fractional symbol delays[J]. IEEE Transaction on Wireless Communications,2008,7(7):2473–2479.
    [79] Lu H. Diversity-multiplexing tradeof optimal codes for OFDM-based asyn-chronous cooperative networks[C]//IEEE ISIT.2008:1701–1705.
    [80] Torbatian M., Damen M. O. DMT analysis of asynchronous OFDM decode-and-forward cooperative networks[C]//IEEE GLOBECOM.2009:1–6.
    [81] Li Z., Xia X. G., Lee M. H. A simple orthogonal space-time coding schemefor asynchronous cooperative systems for frequency selective fading channels[J].IEEE Transaction on Communications,2010,58(8):2219–2224.
    [82] Wang H., Xia X. G., Yin Q. Distributed space-frequency codes for cooperativecommunication systems with multiple carrier frequency ofsets[J]. IEEE Transac-tion on Wireless Communications,2009,8(2):1045–1055.
    [83] Tian F., Xia X. G., Ching P. C., Ma W. K. Signal detection in a space-frequencycoded cooperative communication system with multiple carrier frequency ofsetsby exploiting specific properties of the code structure[J]. IEEE Transaction onVehicular Technology,2009,58(7):3396–3409.
    [84] FCC-03-322. Facilitating Opportunities for Flexible, Efcient, and Reliable Spec-trum Use Employing Cognitive Radio Technologies[J]. IEEE Transaction on Ve-hicular Technology,2003.
    [85] Akyildiz I. F., Lee W. Y., Yuran M. C. Next Generation Dynamic Spectrum Ac-cess Cognitive Radio Wireless Network: a survey[J]. Computer Networks,2006,1(50):2127–2159.
    [86] S. Haykh. Cognitive Radio: brain-empowered wireless communications[J]. IEEEJournal of Selected Area in Communications,23(2):201–205.
    [87]周贤伟.认知无线电[M].国防工业出版社,2008:7–8.
    [88] A. Baker, S. Ghosh, A. Kumar. LDPC Decoder a Cognitive Radio Perspective forNeXt Generation (XG) Communication[J]. IEEE Circuits and Systems Magazine,2007,7(3):24–37.
    [89] I. F. Akyildiz, W. Y. Lee, M. C. Vuran. NeXt Generation/Dynamic Spectrum Ac-cess/Cognitive Radio Wireless Networks: A Survey[J]. Computer Networks,2006,50(13):2127–2159.
    [90] T. Weiss, J. Hillenbrand, A. Krohn. Efcient Signaling of Spectral Resources inSpectrum Pooling System[C]//10th Symposium on Communications and VehicularTechnology. Eindhoven:2003:1–6.
    [91] T. A. Weiss, F. K. Jondral. Spectrum Pooling: An Innovative Strategy for theEnhancement of Spectrum Efciency[J]. IEEE Radio Communications,2004,22(3):8–14.
    [92] R. W. Broderson, D. Cabriv, I. D. O’Donnell. Spectrum Sharing Radios[C]//1stIEEE International Symposium on New Frontiers in Dynamic Spectrum AccessNetwork. Baltimore:2005:371–378.
    [93] D. Grandblaise, C. Kloeck, K. Moessner. Techo-economic of collaborative basedsecondary spectrum usage E2R research project outcomes overview[C]//DysPAN.2005:318–327.
    [94] M. Buddhikot, P. Kolodzy, S. Miller. DIMSUMNet: New Directions in WirelessNetworking Using Coordinated Dynamic Spectrum Access[C]//Sixth IEEE Inter-national Symposium on a Digital Object Identifier, WoWMoM2005.2005:78–85.
    [95] M. M. Buddhikot, K. Ryan. Spectrum Management in Coordinated DynamicSpectrum Access Based Cellular Networks[C]//1st IEEE International Symposiumon New Frontiers in Dynamic Spectrum Access Networks. Baltimore:2005:299–307.
    [96] H. Zheng, C. Peng. Collaboration and fairness in opportunistic spectrum ac-cess[C]//IEEE International Conference on Communications.2005:3132–3126.
    [97] L. Cao, H. Zheng. Distributed spectrum allocation via local bargaining[C]//Thesecond Annual IEEE Communications Society Conference on Sensor and Ad HocCommunications and networks.2005:475–486.
    [98] Peng C., Zheng H., Zhao B. Y. Utilization and fairness in spectrum assignment foropportunistic spectrum access[C]//Mobile Networks and Applications.2006:555–576.
    [99] L. Cao, H. Zheng. Stable and Efcient Spectrum Access in Next GenerationDynamic Spectrum Networks[C]//IEEE INFOCOM.2008:870–878.
    [100] X. Z. Mettu, S. Zheng, H., Belding, E. M. Trafc-driven Dynamic SpectrumAuctions[C]//SECON Workshops.2008:1–6.
    [101]石磊.认知无线电中空闲频谱检测技术的研究[D]. Harbin:哈尔滨工业大学,2011:7–24.
    [102] C. Cordeiro, K. Challapali, D. Birru. IEEE802.22: The First Worldwide Wire-less Standard based on Cognitive Radios[C]//1st IEEE International Symposium onNew Frontiers in Dynamic Spectrum Access Networks. Baltimore:2005:328–337.
    [103] A. Nosratinia, T. E. Hunter, A. Hedayat. Cooperative Communication in WirelessNetwork[J]. IEEE Communications Magazine,2004,42(10):74–80.
    [104] Hunter T. E., Hedayat A., Nosratinia A. Outage analysis of coded cooperation[J].IEEE Transaction on Information Theory,2006,52(2):375–391.
    [105] Alemseged Y. D., Harada H. Spectrum sensing for cognitive radio[C]//IEEE Radioand Wireless Symposium. San Diego:2009:356–359.
    [106]张玉,葛利.认知无线电系统中的关键技术研究[J].网络与通信,2010,26(11):99–101.
    [107] G. Ganesan, Y. G. Li. Cooperative Spectrum Sensing in Cognitive Radio-PartI: Two user networks[J]. IEEE Transaction on Wireless Communication,2007,6(6):2204–2213.
    [108] G. Ganesan, Y. G. Li. Cooperative Spectrum Sensing in Cognitive Radio-PartII: Multiuser networks[J]. IEEE Transaction on Wireless Communication,2007,6(6):2214–2222.
    [109] Oh D. C., Lee Y. H. Cooperative spectrum sensing with imperfect feedback channelin the cognitive radio systems[J]. International Journal of Communication Systems,2010,23(6):763–779.
    [110] Tandra R. Fundamental limits on detection in low SNR[C]//International confer-ence on Wireless Networks, Communications and Mobile Computing. San Diego:2005:464–469.
    [111] Cabr D., M. Ishra SM, Brodersen RW. Implements issues in spectrum sensing forcognitive radio[C]//38th Asilomar Conference on Signals, Systems, and computersAsilomar. California:2004:772–776.
    [112] Urkowitz H. Energy detection of unknown deterministic signals[J]. Proceeding ofIEEE,1967,55(4):523–531.
    [113] Dighamf., Alouini MS., Simon MK. On the Energy detection of unknownsignals over fading channels[C]//International Conference on Communications.2003:3575–3579.
    [114] W.A. Gardner. Signal interception: a unifying theoretical framework for featuredetection[J]. IEEE Transaction on Communications,1988,36(8):897–909.
    [115] Theiler J., Foy B. R. Efect of signal contamination in matched-filter detection ofthe signal on a cluttered background[J]. IEEE Geoscience and Remote SensingLetters,2006,3(1):98–102.
    [116] Wang J., Huang, J., Jiao Y. Adaptive matched filter detection method on underwatersmall aperture array[C]//2011IEEE Statistical Signal Processing Workshop. Nice:2011:97–100.
    [117] Kapoor S., Rao S.V.R.K., Singh G. Opportunistic spectrum sensing by employ-ing matched filter in cognitive radio network[C]//2011International Conference onCommunication Systems and Network Technologies. Katra:2011:580–583.
    [118] Zhang S., Wu T., Lau, Vincent K. N. A low-overhead energy detection basedcooperative sensing protocol for cognitive radio systems[J]. IEEE Transactions onWireless Communications,2009,8(11):5575–5581.
    [119] Chen J., Gibson A., Zafar J. Cyclostationary spectrum detection in cognitiveradios[C]//IET Seminar on Cognitive Radio and Software Defined Radio: Tech-nologies and Techniques. London:2008:1–4.
    [120] Tani A., Fantacci R. Spectrum Sensing for UWB and WiMAX Coexistencewith Noise Uncertainty[J]. IEEE Transactions on Vehicular Technology,2010,59(6):2940–2950.
    [121] Oh DongChan, Lee HeuiChang, Lee YongHwan. Linear hard decision combiningfor cooperative spectrum sensing in cognitive radio systems[C]//IEEE72nd Vehic-ular Technology Conference Fall. Ottawa:2010:1–4.
    [122] Yan Yuan, Li A., Kayama H. Study on soft decision based cooperative sensingin cognitive radio network[C]//IEEE70th Vehicular Technology Conference Fall.Anchorage:2009:1–4.
    [123] Uchiyama H., Umebayashi K., Fujii T. Study on soft decision based cooperativesensing for cognitive radio networks[J]. IEICE Transactions on Communications,2008,91(1):95–101.
    [124] Birk V., Rozner E., Bahl P. DSAP: a protocol for coordinated spectrum ac-cess[C]//IEEE DySPAN2005.2005:1–4.
    [125] Ileri O., Samardzija D., Mandayan N. B. Demand responsive pricing and compet-itive spectrum allocation vis spectrum server[C]//IEEE DySPAN2005.2005:194–202.
    [126] Raman C., Yates R. D., Mandayam M. B. Scheduling variable rate links viaspectrum server[C]//IEEE DySPAN2005.2005:110–118.
    [127] IMEONE O., STANOJEV I., SAVAZZI S. Spectrum leasing to cooperating sec-ondary ad hoc networks[J]. IEEE Journal on Selected Areas in Communication,2008,26(1):203–213.
    [128] Kamrul H., Sudharman K. J., Georges E., Carlos M. Efcient Dynamic SpectrumSharing in Cognitive Radio Networks Centralized Dynamic Spectrum Leasing (C-DSL)[J]. IEEE Trasaction on Wireless Communications,2010,9(9):2956–2967.
    [129] Cao L., Zheng H. Spectrum allocation in ad hoc networks via local bargain-ing[C]//SECON.2005:475–486.
    [130] Cao L., Zheng H. Distributed rule-regulated spectrum sharing[J]. IEEE Journal onselected areas in Communications,2008,26(1):130–145.
    [131] X. Wang, Z. Li, P. Xu. Spectrum Sharing in Cognitive Radio Networks—AnAuction-Based Approach[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN,AND CYBERNETICS—PART B: CYBERNETICS,2010,40(3):587–596.
    [132] Peng C., Zheng H., Zhao B. Y. Utilization and fairness in spectrum assignment foropportunistic spectrum access[C]//Mobil Networks and Applications.2006:555–576.
    [133] Nie N., Comaniciu C. Adaptive channel allocation spectrum etiquette for cognitiveradio networks[C]//Mobil Networks and Applications.2006:779–797.
    [134]程世伦.一种新型认知无线电资源分配跨层技术[J].南京邮电大学学报(自然科学版),2008,28(2):1–5.
    [135] S. Haykin. Cognitive radio: brain-empowered wireless communications[J]. IEEEJournal on Selected Areas in Communications,2005,23(2):201–220.
    [136] A. J. Goldsmith and P. P. Varaiya. Capacity of fading channels with channel sideinformation[J]. IEEE Transaction on Information Theory,1997,43(6):1986–1992.
    [137] E. Biglieri, J. Proakis, and S. Shamai. Fading channels: information theoreticand communications aspects[J]. IEEE Transaction on Information Theory,1998,44(6):2619–2692.
    [138] Y.-C. Liang, R. Zhang, and J. Ciof. Subchannel grouping and statistical water-filling for vector block-fading channels[J]. IEEE Transaction on Communications,2006,54(6):1131–1142.
    [139] A. Ghasemi and E. S. Sousa. Fundamental limits of spectrum-sharing in fadingenvironments[J]. IEEE Transaction on Wireless Communications,2007,6(2):649–658.
    [140] Kang X., Liang X. C., Nallanathan A. Optimal Power Allocation for FadingChannels in Cognitive Radio Networks: Ergodic Capacity and Outage Capacity[J].IEEE Transaction on Wireless Communications,2009,8(2):940–950.
    [141] Kang X., Garg H. K., Liang X. C. Optimal power allocation for OFDM-based cog-nitive radio with new primary transmission protection criteria[J]. IEEE Transactionon Wireless Communications,2010,9(6):2066–2075.
    [142] Menon R., Buehrer M. R., Reed J. H. Outage probability based comparisonof underlay and overlay spectrum sharing techniques[C]//IEEE DySPAN2005.2005:101–109.
    [143] Kaplan M., Buzluca F. A dynamic spectrum decision scheme for heterogeneouscognitive radio networks[C]//24th International Symposium on Computer and In-formation Sciences.2009:697–702.
    [144] Wen Zhigang, Fan C., Liu J. Research on spectrum hole distribution for cogni-tive radio systems[C]//6th International Conference on Wireless Communications,Networking and Mobile Computing.2010:1–4.
    [145] SIRIWONGPAIRAT W., SADEK K., LIU K.J Cooperative communications pro-tocol for multiuser OFDM networks[J]. IEEE Transaction on Communications,2008,7(7):3430–2435.
    [146] HAMMERSTROM I., WITTNEBEN A. Power allocation schemes for amplify-and-forward MIMO-OFDM relay liks[J]. IEEE Transaction on Communications,2007,6(8):2798–2802.
    [147] LI Y., WANG W., KONGONG J Subcarrier pairing for amplify-and-forward anddecode-and-forward OFDM relay links[J]. IEEE Communication Letters,2009,13(1):209–211.
    [148] YU W., LUI R. Dual methods for nonconvex spectrum optimization of multicarriersystems[J]. IEEE Transaction on Wireless Communication,2006,54(7):1310–1322.
    [149] Dang W. B., Tao M. X., Mu H. Subcarrier-Pair Based Resource Allocation forCooperative Multi-Relay OFDM Systems[J]. IEEE Transaction on Wireless Com-munication,2010,9(5):1640–1649.
    [150] BOYD S., VANDENBERGHE L. Convex optimization[M]. Cambridge: Cam-bridge University,2004.
    [151] HAMMERSTROM I., WITTNEBEN A. On the optimal power allocation fornonregenerative OFDM relay links[C]//IEEE International Conference on Com-munications. Istanbul:4463–4468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700