用户名: 密码: 验证码:
无源无线声表面波传感器及仪器系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无源无线传感器技术是现代传感技术的重要研究内容之一。在易燃、易爆、高温、低温、高电压、强电磁场、强加速度、运动物体内部和许多其它传感器无法应用的特殊场合,声表面波无源无线传感器,具有其它传感器无法比拟的优点。它不仅能构成多参量传感器和阵列传感器,而且还可同时实现编码器的功能,应用于目标识别、商品防伪和智能交通系统中,因此,研究无源无线传感器具有十分重要的学术意义和广泛的工程应用前景。
    对无源无线传感器的已有的研究工作主要集中在对延迟型声表面波传感器和目标识别器的原理和应用方面。由于延迟型器件的Q值较低,蓄能性能较差,用作无线查询的无源传感器,无线遥测距离短,限制了这类型传感器的应用。本文针对这一问题,以谐振器型和谐振延迟型无源无线声表面波传感器为研究对象,对传感原理、信号处理方法和仪器系统的构成实现,从理论和系统实现两个方面进行了深入研究,取得了有价值的结果。
    本论文主要研究工作如下:
    1. 提出了一种谐振延迟型无源无线声表面波传感器,它兼有延迟线和谐振型声表面波传感器的优势,能够在较远的距离实现编码和传感的功能,从而避免了延迟线型和谐振型声表面波传感器各自的不足,扩大了应用的范围。推导了谐振延迟线型无源无线声表面波传感器对激励信号的响应特性,建立了相关的实验系统。进行了温度实验,验证了理论分析和系统设计的正确性。
    2. 推导了单端口声表面波谐振器的冲激响应特性和对间歇正弦激励信号的响应。并对推导进行了仿真和物理实验结果对比。分析了谐振器的结构和各部分的工作原理,以及谐振器的等效电路和稳态响应特性。
    3. 按照软件无线电的思路,采用虚拟仪器技术,应用个人计算机作仪器平台,使用尽可能少的硬件、更通用的电路结构和模块化设计实现了无源无线声表面波传感器仪器系统。它能作为谐振型传感器的无线收发系统,也可实现谐振编码型的无线收发系统。在该虚拟仪器系统中,完全由软件产生的DDS(直接数字合成)信号,实现高分辨率的、小步长、宽范围信号频率调节,进行传感查询。仪器系统自动捕捉传感器的工作频带,跟踪传感器的谐振频率。解决了收发开关泄漏对接收信号的非线性影响。在信号处理中,采用自适应信号预处理,防止频谱混叠,从而有效提高接收信号的信噪比。对短小天线进行设计和调试,分析了匹配网络的影响。对于标准的偶极子天线实现了10米以上的测量距离,而15厘米的小天线也达到了4米以上的测量距离。
    4. 分析了无源无线声表面波传感器信号和各种主要噪声的特点,针对传感器无线回波信号强度非常微弱,采取了抑制噪声和改进信噪比的相应措施,提出了一种新的提高信噪比的回波中心频率的自适应检测和估计方法。该方法已经过大量的实验验证。
    
    5. 提出了利用声表面波器件将电磁能提供给传感器和电路工作的“自供电”的概念及一种电磁能聚集、储存的声表面波自供电工作原理和结构,设计出一种电磁自供能系统。还根据正逆压电效应,介绍了机械能自供电的原理,并设计出相应的机械结构。分析了采用自供电系统对传感器性能的改善,指出采用自供电系统将大大提高传感器的传感距离,从而扩展应用领域。此外,针对石英材料与其它结构连接时存在的热应力,介绍了一种一体化微机械加工石英的方法,该方法能得到高的宽高比微型立体结构,彻底消除热应力。该方法也为在石英材料上构造各种微传感器提供了一种手段。
    6. 分析了在各向同性介质和各向异性压电介质中声表面波方程,从而求得瑞利波的质点位移和传播速度。建立了叉指换能器的函数声辐射模型,分析了它的工作原理及特点。建立了它的交叉场和共线场等效电路模型,根据此模型分析了叉指换能器的网络方程、输入导纳和辐射特性。对声表面波器件的设计和加工工艺特点进行了研究。
    7. 分析了压力、振动、质量负载及电参量等多种参量在实际应用中对无源无线声表面波温度传感器系统的影响,提出了减小或消除这些参数影响的措施。对无源无线声表面波阵列传感器进行研究。分析了频分复用和编码式传感器阵列原理,构造了阵列传感器的结构。
    8. 在模块化、通用化无源无线声表面波传感器实验系统的基础上成功研制了NI 6115和NI 5102两种数据采集模块的虚拟仪器系统。用两种虚拟仪器系统进行原理研究和温度传感实验分析。分析其数据分布、误差和测量精度,优化实验系统,提高测量精度。
Passive wireless sensor technology is one of important aspects for modern sensor techology. In the inflammable and explosive measurement, high temperature, low temperature, high voltage, powerful electromagnetic field and some other special application, passive wireless surface acoustic wave(SAW) sensor has more advantages than other sensors. It can constitute not only sensor array, but also encoder and decoder. It can be used for target recognition and smart traffic system. Therefore, the study of passive wireless sensor has scientific and engineering significance.
    The studies on the passive wireless sensors mainly focus on delay SAW sensors and ID-tag. Because the quality of the delay SAW device is very low, it only can be used for detecting in short distance. In this thesis, the principle, signal processing and instrument system of the resonator and the delay-resonator passive wireless SAW sensors are studied, and some valuable results have been obtained. The main work is provided as follows:
    1. A new delay-resonator passive wireless SAW sensor is proposed. It has both delay line and resonator advantages, so it can be used in longer distance. Its response characteristic for impulse signal is deduced. And the experiment system is constructed.
    2. Responses of one-port SAW resonator for impulse signal, sinusoidal burst signal and steady-state are deduced. Principle and equivalent circuit of one-port SAW sensor are analysed.
    3. According to software radio method, a passive wireless SAW sensor transceiver system by using the NI virtual instrument, the personal computer, the universal circuits and the module is realized. A signal generator of high-resolution, automatic search is accomplished by using the direct digital synthesis (DDS). The nolinear effect of the transmiting-receiving switch is eliminated. In processing circuit, the programmable gain amplifier (PGA) is used for different signal amplitudes. The match network in antenna is analysed. 4 meter detecting distance is obtained in 15 cm dipole antenna.
    4. The characteristic of the signal and the main noises is analysed. A new frequency evaluation method is proposed. The signal/noise ratio can be improved by using this method. And many experiments have shown that this method is correct.
    5. A concept of self-generating of electromagnetic energy in SAW device is proposed. Its principle is analysed. Its structure and system are designed. According to piezoelectric effects, the principle and the structure of self-generating of mechanic energy are also introduced. This thesis analyses the properties of self-generating sensors and shows that the detecting distance will be improved greatly. So it can be used for more application fields. Besides, a micro-manufacturing
    
    
    procedure of quartz is introduced. The micro three-dimensional structure with high width-height ratio can be obtained by this procedure. Therefore, the thermal stress between sensor and exterior structure can be eliminated by using integration technology.
    6. The SAW wave functions in isotropic and anisotropic medium are analysed. The acoustic radiation module of function in the interdigital transducer (IDT) is introduced. Its principle and characteristic are analyzed. The module of cross field and longitudinal field is set up. The network equation, input admittance and radiation characteristic are analyzed.
    7. The effects of pressure, vibration, mass loading, conductivity and other parameters in applications of passive wireless SAW temperature sensor are analyzed. The prevention of the effects is discussed. In applications of frequency division multiplexing (FDM) and encoding passive wireless sensor array, the sensing principle and the structure are analyzed.
    8. The two modularized and universal passive wireless SAW sensor experiment systems are developed by using NI6115 and NI5102 virtual instruments. The principle research and temperature experiment analyses in the virtual instrument experiment system are accomplished. The error analysis is finished. The experiment system is optimized. Th
引文
[1] Suwei Zhou,et al, Review of embedded particle tagging methods for NDC of composite material and structure, Proc. of Smart Structures and Materials 1995, SPIE, 1995, Vol.2444, pp.39,
    [2] A. Pohl, et al, Radio signals for SAW ID tags and sensors in strong electromagnetic interference, Proceedings of the IEEE Ultrasonics Symposium, 1994, Vol.1, pp.195-198
    [3] V. K. Varadan, Wireless remote microaccelerometer, Proceedings of SPIE - The International Society for Optical Engineering, 1998, Vol.3316, No.1, pp. 497-503
    [4] A. Pohl, et al, Measurement of Physical Parameter of Car Tires Using Passive SAW Sensors, Advanced Microsystems for Automotive Applications Conference 98, Berlin, 1998, pp.250-262
    [5] Klaus Finkenzeller, 射频识别(RFID)技术,电子工业出版社,2001
    [6] R.M.White et al, Direct piezoelectric coupling to surface elastic waves, Appl. Phys. Lett., 1965, No.7, pp.314
    [7] Alfred Pohl, A Review of Wireless SAW Sensors, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequecy Control, 2000, Vol.47, No.2, pp.317-332
    [8] M. M. Driscoll, Low-Noise microwave signal generation using bulk- and surface-acoustic-wave resonators, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.3, pp.426-434
    [9] Robert C. Bray, Applications of SAW resonators in high-performance instrumentation, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.3, pp.331 -341
    [10] Thomas E. Parker, et al, Precise SAW oscillators, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.3, pp.342-364
    [11] J. B. Thaxter, et al, Propagation of transverse bulk and surface acoustic wave in LiNbO3 variable time-delay devices, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.5, pp.525- 530
    [12] J. H. Collins, et al, Role of Surface Acoustic Wave TechNology in Communication Systems, Ultrasonics, 1972, Vol.10, No.2, pp.59-71
    [13] W. J. Hunsinqer, Application of Saw Devices to Wideband Communication Links, IEE Conference Publication, 1973, No.10, pp.309-318
    [14] Riha, G., SAW devices for communication systems, Ultrasonics Symposium, IEEE Proceedings, 1989, Vol.1, pp.241–250
    [15] ANon, TechNology focus: Norway implements rf vehicle identification, Electronic Engineering
    
    
    (London), 1989, Vol.61, No.7, pp.42-43
    [16] S. E. Carter, SAW device implementation of a weighted stepped chirp code signal for direct sequence spread spectrum communications systems, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, Vol.47, No.4, pp.967-973
    [17] J. J. Crisp, Application of Saw Devices to Code Generation, Microwave Journal, 1975, Vol.18, No.4, pp.57-59
    [18] 李平,文玉梅,黄尚廉等,无源声表面波温度遥感系统响应信号的研究,压电与声光,2002, Vol.24,No.2,pp.92-95
    [19] Ping Li, et al, An Arbitrarily Distributed Tactile-Sensor Array Based on Piezoelectric Resonator, The International Journal of Robotics Research, 1999, Vol.18, No.2, pp.152-158
    [20] Ping Li, et al, An arbitrarily distributed tactile piezoelectric sensor array, Sensors and Actuators A, 1998, A65, pp.141-146
    [21] Yumei Wen, Ping Li. A Non-integrated piezoelectric passive sensor array for distributive sensing in smart structural systems, SPIE, 1997, Vol.3241, pp.361-369
    [22] W. B. Spillman, Jr., R. O. Claus, Sensory pheNomena and measurement instrumentation for smart structures and materials, SPIE, 1998, Vol.3330, pp.2-7
    [23] S. Ampuero, The electronic Nose applied to dairy products: A review, Sensors and Actuators, B: Chemical, 2003, Vol.94, No.1, pp.1-12
    [24] Kofi Korsah, et al, Harmonic frequency analysis of SAW resonator chemical sensors:application to the detection of carbon dioxide and humidity, Sensors and Actuators B, 1998, Vol.50, pp.110-116
    [25] S. M. Chang, Chemical vapour sensor using a SAW resonator, Biosensors & Bioelectronics, 1994, No.6, pp.9-14
    [26] V. K. Varadan, Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems, Smart Materials and Structures, 2000, Vol.9, No.6, pp.953-972
    [27] Neil White, Smart move for intelligent sensors, Sensor Review, 2001, Vol.21, No.1, pp.6-7
    [28] Piero Tortoli, et al, Blood flow images by a SAW-based multigate Doppler system, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.5, pp.545-551
    [29] C. A. Rogers, Intelligent materials, Scientific American, 1995, Vol.273, No.3, pp.154-157
    [30] T. M. Reeder, et al, Saw Oscillator Pressure Sensors, Metals TechNology, 1975, pp.264-268
    [31] K. Yozo, et al, New Type Of Pressure Sensor Utilizing Surface Acoustic Waves, Ferroelectrics, 1975, Vol.10, No.1-4, pp.71-74
    [32] T. M. Reeder, et al, Surface-Acoustic-Wave Pressure and Temperature Sensors, Proceedings of
    
    
    the IEEE, 1976, Vol.64, No.5, pp.754-756
    [33] Richard G. Kirman, et al, Force Sensor, United States Patent, Patent Number:4594898,1986
    [34] Frank Moller, SAW resonator temperature sensor, Sensors and Actuators A, 1992, Vol.30, pp.73-75
    [35] Martin Vien, et al, Highly sensitive temperature sensor using SAW resonator oscillator, Sensors and Actuators A, 1990, Vol.24, pp.209-211
    [36] G. Schmera, et al, Surface diffusion enhanced chemical sensing by surface acoustic waves, Sensors and Actuators, B: Chemical, 2003, Vol.93, No.1-3, pp.159-163
    [37] S. Bender, et al, Investigations on temperature controlled moNolithic integrated surface acoustic wave (SAW) gas sensors, Sensors and Actuators, B: Chemical, 2003, Vol.93, No.1-3, pp.164-168
    [38] F. Bender, Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring, Sensors and Actuators, B: Chemical, 2003, Vol.93, No.1-3, pp. 135-141
    [39] 李源等,声表面波无源传感器及其遥测系统的研究,电子学报,1997, Vol.25, No.12, pp.79-81
    [40] V. V. Varadan, et al, Wireless IDT microsensors for subsurface sensing Proceedings of SPIE - The International Society for Optical Engineering, 2000, Vol.4129, pp.352-358
    [41] L. Reindl, SAW devices as wireless passive sensors, Proceedings of the IEEE Ultrasonics Symposium, 1996, Vol.1, pp.363-367
    [42] M. Binhack, et al, A combination of SAW-Resonators and conventional sensing elements for wireless passive remote sensing, Proceedings of the IEEE Ultrasonics Symposium, 2000, Vol.1, pp.495-498
    [43] Vijay K. Varadan, et al, Design and fabrication of wireless remotely readable MEMS accelerometer, SPIE, 1997, Vol.3242, pp.36-45
    [44] V. V. Varadan, et al, Wireless passive IDT strain microsensor, Smart Mater., 1997, No.6, pp.745-751
    [45] Vijay K. Varadan, et al, Design and development of a smart wireless system for passive temperature sensors, Smart Mater., 2000, No.9, pp.379-388
    [46] R. Steindl, et al, SAW delay lines for wirelessly requestable conventional sensors, Proceedings of the IEEE Ultrasonics Symposium, 1998, Vol.1, pp.351-354
    [47] A. Pohl, et al, The “Intelligent Tire” utilizing passive SAW sensor-measurement of tire friction, IEEE Transactions on Instrumentation and Measurement, 1999, Vol.48, No.6, pp.1041-1046
    [48] A. Pohl, et al, Wireless sensing using oscillator circuits locked to remote high-Q SAW
    
    
    resonators, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.45, No.5, pp.1161-1168
    [49] A. Pohl, et al, Wireless Interrogable surface acoustic wave sensors for vehicular applications, IEEE Transactions on Instrumentation and Measurement, 1997, Vol.46, No.4, pp.1031-1038
    [50] Werner Buff, et al, Passive remote sensing for temperature and pressure using SAW resonator devices, IEEE Transactions on Instrumentation and Measurement, 1998, Vol.45, No.5, pp.1388-1392
    [51] Steindl, R., Pohl, A., Seifert, F., Impedance loaded SAW sensors offer a wide range of measurement opportunities, IEEE Transactions on Microwave Theory and Techniques, 1999, Vol.47, Issue.12, pp.2625 -2629
    [52] L.雷恩德尔等(西门子公司),用声表面波工作的识别或传感装置-声表面波装置,中国发明专利,申请号:97117768.6 ,1997年
    [53] W.瑞勒等(西门子公司),无线问答表面波技术传感器,中国发明专利,申请号:96193349.6,1996年
    [54] R.迈尔等(西门子公司),用于高压设备、使用表面波技术的可用无线电询问的变流器,中国发明专利,申请号:96193347.X,1996年
    [55] A.米勒尔等,用于中/高电压设备具有表面波设备的电压表,中国发明专利,申请号:96197869.4,1996年
    [56] F.施米特,采用声表面波工作的鉴别标识,中国发明专利,申请号:95191741.2,1995年
    [57] 文玉梅、李平等,声表面波无源无线多传感器信号接收处理装置,实用新型专利,专利号:ZL 02 2 21602.2,2002年
    [58] 李平等,无源无线声表面波多传感器系统及采用的频分识别方法,发明专利,公开号:02113358.1,2002年
    [59] 文玉梅,李平等,谐振编码型声表面波无源无线阵列传感系统,发明专利,公开号:02113480.4,2002年
    [60] Haivor Skeie, et al, Surface acoustic wave passive transponder having acoustic wave reflectors, United States Patent, Patent Number:4625208, 1986
    [61] Paul A. Nysen, et al, System for interrogating a passive transponder carrying phase-encoded information, United States Patent, Patent Number:4725841, 1988
    [62] Halvor Skeie, Surface acoustic wave passive transponder having amplitude and phase-modifying surface pads, United States Patent, Patent Number:4625207, 1983
    [63] Paul A. Nysen, et al, Frequency mixing passive transponder, United States Patent, Patent Number:6060815, 2000
    [64] Elio A. Mariani, et al, Passive SAW-ID tag using a chirp transducer, United States Patent, Patent
    
    
    Number:5469170, 1995
    [65] William J. Skudera, Recognition tag for use in a system for identifying distant items, United States Patent, Patent Number:5734326, 1998
    [66] Joseph L. Kelly, Surface acoustic wave pipe identification system, United States Patent, Patent Number:4698631, 1987
    [67] Elio A. Mariani, et al, Remote sensing of structural integrity using a surface acoustic wave sensor, United States Patent, Patent Number:5821425, 1998
    [68] Lewis, Meirion Francis, Acoustic transducer, European Patent, Patent Number: EP 0 140 618 A2, 1984
    [69] Nysen Paul A., Inductively coupled SAW device and method, European Patent, Patent Number: EP 0 513 007 B1, 1997
    [70] J. Ronald Richard, et al, Remote wireless switch sensing circuit using rf transceiver in combination with a SAW chirp processor, European Patent, Patent Number: EP 0 867 826 A2, 1998
    [71] McColl, James R., A multiplexed surface acoustical wave apparatus, European Patent, Patent Number: EP 0 415 063 A2, 1990
    [72] Siemens, System for determining the position and/or velocity of an object by means of surface wave identification tags, to be used especially for loading and handling systems, European Patent, Patent Number: EP 0 618 460 B1, 1994
    [73] Robinson Jeiry H., Remote tire pressure monitoring system employing coded tire identification and radio frequency transmission, and enabling recalibration upon tire rotation or replacement, European Patent, Patent Number: EP 0 687 225 B1, 1993
    [74] Wauer, Arrangement for wirelessly transmitting the temperature and for the presence of cookware on a cooktop, European Patent, Patent Number: EP 0 883 327 A2, 1998
    [75] Reindl Leonhard, Passive surface wave sensor which can be wirelessly interrogated, International Patent, Patent Number: PCT/DE92/01075, 1992
    [76] 竹内嘉彦,チャ一ブ信号を用ぃたSAW-ID-TAG装置,公开特许公报,特开平11-145874,平成11年(1999年)
    [77] I.A.Victorov, Rayleigh and Lamb Wave, New York Plenum,1967
    [78] B.A.Auld, Acoustic Fields and Waves in Solids, New York,1973
    [79] H.F.Pollard, Sound Waves in Solids, London,1977
    [80] J.F.Nye, Physical Properties of Crystals, Oxford University Press,1960
    [81] W.G.Cady, Piezoelectricity, New York,1946
    [82] B.A.Auld, Acoustic Fields and Waves in Solids, New York,1973
    
    [83] H.F.Pollard, Sound Waves in Solids, London,1977
    [84] W.G.Cady, Piezoelectricity, New York, 1946
    [85] 肖鸣山,宋道仁,声表面波器件基础,山东科学技术出版社,1980
    [86] 孙慷,张福学,压电学,上册,国防工业出版社,1984
    [87] J.F.Nye,Physical Properties of Crystals, Oxford at the Clarondon Press,1957
    [88] W.P.Mason, Piezoelectric Crystal and Their Application to Ultrasonics, D.Van Nostrand Company Inc., New York,1955
    [89] W.P.Mason, Physical Acoustics-Principles and Methods, New York and London, 1964
    [90] Smith, W.R., Wave Electronics, 1976, Vol. 2, No.1-2-3, pp.25-63
    [91] R.F.Mitchell, Spurious Bulk Wave Signals In Acoustic Surface Wave Devices, Ultrasonic Symposium, Proceedings, Milwaukee, WI, USA, 1974, pp.313-320
    [92] R.H.Tancrell, Acoustic Surface Wave Filters, Pro.IEEE, 1971, vol.59, pp.393-409
    [93] 张福学,孙慷,压电学,下册,国防工业出版社,1984
    [94] Anthem R. Reddy, Design of SAW bandpass filters using new wiondow functions, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988,Vol.35, No.1, pp.50-56
    [95] Richard L. Baer, Phase Noise in surface-acoustic-wave filters and resonators, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.3, pp.421-425
    [96] Kiyoshi Inagawa, et al, Equivalent networks for SAW interdigital transducers, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994, Vol.41, No.3, pp.402-411
    [97] R.H.Tancrell, Acoustic Surface Wave Filters, Pro.IEEE, 1971, vol.59, pp.393-409
    [98] W.R. Smith, H.M. Gerard, J.H. Show, Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model, IEEE Trans. Microwave Theory and Tech., MTT-17, 1969, pp.856-864
    [99] W.R. Smith, Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers, IEEE Trans. on Microwave Theory and Tech., MTT-17, 1974, pp 960-964
    [100] R.H.Tancrell et al., Acoustic Surface Wave Filters, Proc. of IEEE, 1971, Vol.59, pp.393
    [101] W.P.Mason, et al, Physical Acoustics, Vol.1A, Academic Press, 1964, pp335-416
    [102] W.P.Mason, Electromechanical Transducer and Wave Filters, D. Van Nostrand Co., 1948
    [103] Kiyoshi Nakamura, et al, Equivalent circuits for unidirectional SAW-IDT’s based on the coupling-of-modes theory, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1996, Vol.43, No.3, pp.467-472
    [104] A.A. Oliner, Acoustic Surface Waves, Springer-Verlag Berlin Heidelberg, New York, 1978
    
    [105] Julius Koskela, et al, SAW/LSAW COM parameter extraction from computer experiments with harmonic admittance of a periodic array of electrodes, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1999, Vol. 46, No. 4, pp.806-816
    [106] M. Politi, et al, Fast computation of static capacitance for periodic SAW transducers, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.6, p708-710
    [107] B. S. Panwar, et al, Transmission-line approach for computation of static capacitance of interdigital transducers in multilayered media, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1986, Vol.33, No.4, pp.416-420
    [108] 日本电子材料工业会,声表面波器件及其应用,科学出版社,1984
    [109] H.I.Smith et al., J. Electrochem, 1971, Vol.118, No.5, pp.821
    [110] B.J.Lin,J. Vac. Sci. TechNol., 1977, Vol.12, pp.758
    [111] Larry L. Pendergrass, SAW resonator design and fabrication for 2.0, 2.6, and 3.3 GHz, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequecy Control, 1988, Vol.35, No.3, pp.372-379
    [112] Binhack, M.; Buff, W.; Klett, S.; Hamsch, M.; Ehrenpfordt, J.; combination of SAW-resonators and conventional sensing elements for wireless passive remote sensing, IEEE Ultrasonics Symposium, 2000, Vol.1, pp.495 -498
    [113] Schmidt, F.; Sczesny, O.; Reindl, L.; Magori, V.; Remote sensing of physical parameters by means of passive surface acoustic wave devices (“ID-TAG”), IEEE Ultrasonics Symposium, 1994, Vol.1, pp.589 -592
    [114] Weidong Cheng; Yonggui Dong; Guangping Feng; A multi-resolution wireless force sensing system based upon a passive SAW device, Ultrasonics, IEEE Transactions on Ferroelectrics and Frequency Control, 2001, Vol.48, Issue: 5, pp.1438 -1441
    [115] Seifert, F.; Pohl, A.; Steindl, R.; Reindl, L.; Vellekoop, M.J.; Jakoby, B.; Wirelessly interrogable acoustic sensors, European Frequency and Time Forum, 1999 and the IEEE International Frequency Control Symposium, 1999, Vol.2, pp.1013 -1018
    [116] Matthaei George L.,O’Shaughnessy, Brian P., Barman Farshad, Relations For Analysis And Design Of Surface-Wave Resonators, IEEE Transactions on Sonics and Ultrasonics, 1976, Vol. SU-23, No.2
    [117] Matthaei George L.,Wong, David Y., O’Shaughnessy, Brian P., Synthesis Of Two Classes Of Acoustic Surface-Wave Filter Tap Weights, IEEE Transactions on Microwave Theory and Techniques, 1976, Vol. MTT-24, No.1, pp.1-10
    [118] Colin K. Campbell, Conductance measurements on a leaky SAW harmonic one-port resonator,
    
    
    IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2000, Vol.47, No.1, pp.111-116
    [119] Masao Takeuchi, et al, New types of SAW reflectors and resonators consisting of reflecting elements with positive and negative reflection coefficients, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1986, Vol.33, No.4, pp.369-374
    [120] K. Blotekjaer, K. A. Inqebriqtsen, H Skeie, Method For Analyzing Waves In Structures Consisting Of Metal Strips On Dispersive Media, IEEE Transactions on Electron Devices, 1973, Vol. ED-20, No.12, pp.1133-1138
    [121] K. Blotekjaer, K. A. Inqebriqtsen, H Skeie, Acoustic Surface Waves In Piezoelectric Materials With Periodic Metal Strips On The Surface, IEEE Transactions on Electron Devices, 1973, Vol. ED-20, No.12, pp.1139-1146
    [122] P. Hartmann, Ion Implanted Acoustic Surface Wave Resonators, Appl. Phys. Lett., 1976, Vol.28, pp.73-75
    [123] R. V. Schmidt, Acoustic Surface Wave Velocity Perturbation in LiNbO3 by Diffusion of Metals, Appl. Phys. Lett., 1975, Vol.27, pp.8-10
    [124] Waldemar Soluch, Design of SAW synchroNous resonators on ST cut quartz, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1999, Vol.46, No.5, pp.1324-1326
    [125] VJun Tsutsmi, et al, A Novel reflector-filter using a SAW waveguide directional coupler, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2000, Vol.47, No.5, pp.1228-1233
    [126] Waldemar Soluch, Scattering Matrix Approach to One-Port SAW Resonators, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, Vol.47, No.6
    [127] William J. Tanski, A configuration and circuit analysis for one-port SAW resonators, J. Appl. Phys., 1978, Vol.49, No.4, pp.2559-2560
    [128] Tooru Nomura, et al , Precise measurement of SAW velocity using SAW delay line, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988, Vol.35, No.6, pp.646-651
    [129] D.Hauden, SAW resonator for sensitive devices, Proc. 34th Ann. Freq. Control Symp., 1980, pp.312-319
    [130] Franz Seifert, Mechanical Sensors Based on Surface Acoustic Waves, Sensors and Actuators A, 1994, Vol.44, pp.231-239
    [131] Martin, S. J., et al, Gas sensing with surface acoustic wave devices, 1985 International Conference on Solid-State Sensors and Actuators, PA, USA, 1985, pp.71-73
    
    [132] Martin, S. J., et al, Dynamics and response of polymer-coated surface acoustic wave devices. Effect of viscoelastic properties and film resonance, Analytical Chemistry, 1994, Vol.66, No.14, pp.2201-2219
    [133] Morgan, D.P., Surfce-wave devices for signal processing [M],Elsevier, Amsterdoram, 1985
    [134] Tancell, R.H and Holland M.G.: Acoustic surface wave filters [J], Proc. of IEEE, 1971, Vol.59, No.3, pp.393-409
    [135] Coldren, L.A. and Rosenberg, R.L.: Surface acoustic wave resonator filters [J], Proc. of IEEE, 1979, Vol.67, No.1, pp.147-158
    [136] Tanski, J.W.: A configuration and circuit analysis for one-port SAW resonator [J], J. of Applied Physics, 1978, Vol.49, No.4, pp.2559-2560
    [137] Campell, C.K., Smith, P.M. and Edmond, P.J, Aspects of modeling the frequency response of a two-port waveguide-coupled SAW resonator-filter [J], IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 1992, Vol.39, No.5, pp.768-773
    [138] Harmann, C.S., Bell, D.T. and Rosenfeld, R.C.: Impulse model design of acoustic surface-wave filters [J], IEEE Trans. on Microwave Theory and Techniques, 1973, MTT-21, No.4, pp.162-175
    [139] Wolf-Eckhart Bulst, Clemens Ruppel, Developments to Watch in Surface Acoustic Wave TechNology [J], Siemens Rev. R&D Special. 1994, Spring, pp 2-6
    [140] Werner Buff,Stefan Klett ,Marián Rusko et al, Passive Remote Sensing for Temperature and Pressure Using SAW Resonator Devices [J], IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 1998, Vol.45, No.5, pp1388-1392
    [141] Fildes, R.D. and Bill, J.H.: Time domain analysis of SAW reflectors [J], IEEE Tran. on Microwave Theory and techniques, 1979, MTT-27, No.2, pp.194-198
    [142] Leon W. Couch II, Digital and Analog Communication Systems, fifth edition, Prentice-Hall International Inc., 1997
    [143] Constanine A Balanis, Antenna Theory Analysis and Design, Harper & Row, 1982
    [144] Ostermayer, G.; Pohl, A.; Hausleitner, C.; Reindl, L.; Seifert, F.; CDMA for wireless SAW sensor applications, IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, 1996, Vol.2, pp.795 -799
    [145] Hartmann, C.S., A global SAW ID tag with large data capacity, Ultrasonics Symposium, 2002. Vol.1 , pp.65 -70
    [146] Bulst, W.-E.; Fischerauer, G.; Reindl, L.; State of the art in wireless sensing with surface acoustic waves, IEEE Transactions on Industrial Electronics, 2001, Vol.48, Issue: 2, pp.265 -271
    
    [147] Reindl, L.; Ruile, W.; Programmable reflectors for SAW-ID-tags, IEEE Ultrasonics Symposium, 1993, Vol.1, pp.125 -130
    [148] Alan V. Oppenheim, Signal and Systems, Second Edition, Prentice-Hall International Inc., 1998
    [149] Vectron International, FX-101 Frequency Translator, Product Data Sheet, Vectron International Company, 2001
    [150] Vectron International, FX-700 Low Jitter Frequency Translator, Product Data Sheet, Vectron International Company, 2001
    [151] Vite TechNology Express, VCO(Voltage Controlled Oscillators) in SMD, Product Data Sheet, Vite TechNology Express, 2002
    [152] Analog Devices, A Technical Tutorial on Digital Signal Synthesis, Analog Devices, Inc., 1999, pp.5-10
    [153] Jouko Vankka, et al, A direct digital synthesizer with an on-chip D/A-converter, IEEE journal of solid-state circuits, 1998, Vol.33, No.2
    [154] Agilent TechNologies, A Low Distortion PIN Diode Switch Using Surface Mount Devices, Application Note 1049, Semiconductor, Agilent TechNologies, 1999, pp.7
    [155] Cronyn, Phasable, multioctave, planar, high efficiency, spiral mode antenna, United States Patent, Patent Number:6023250, 2000
    [156] Wang, et al, Broadband miniaturized slow-wave antenna, United States Patent, Patent Number:6137453, 2000
    [157] Skahill, et al, Apparatus and method for broadband matching of electrically small antennas, United States Patent, Patent Number:6121940, 2000
    [158] V K Varadan, et al, Design and development of electronically tunable microstrip antennas, Smart Mater. Struct., 1999, No.8, pp.238-242
    [159] Constantine A Balanis, Antenna Theory Analysis and Design, Harper & Row, 1982
    [160] 陈元亨,信号处理原理,四川大学出版社,1989
    [161] 刘有恒,信号检测与估计,人民邮电出版社,1989
    [162] Ken-Ya Hashimoto, Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation, Springer-Verlag Berlin Heidelberg, 2000
    [163] 杨进,李平,文玉梅,声表面波谐振器无源传感器信号特征和信号处理方法研究,电子测量与仪器学报(已录用)
    [164] National Instruments, National Instruments LabVIEW Measurements Manual, 1-1, National Instruments Corporation, 2000
    [165] 费业泰,误差理论与数据处理(第四版),机械工业出版社,2000
    
    [166] 庄楚强,应用数理统计基础,华南理工大学出版社,1992
    [167] Michael Thompson and David C. Stone, Surface-Launched Acoustic Wave Sensors, A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1997
    [168] Moussa Hoummady, Acoustic wave sensors: design, sensing mechanisms and applications, Smart Mater. Struct., 1997, No.6, pp.647-657
    [169] Cullen D E and Reeder T M, Measurement of SAW velocity versus strain for XY and ST-quartz, Proc. IEEE Ultrason. Symp., 1975, pp.519
    [170] Kanda Y,et al, New type of pressure sensor utilizing surface acoustic waves, Ferroelectrics, 1975, Vol.10, No.1-4, pp.71-74
    [171] Choujaa A, Tirole N, Bonjour G, et al, AIN/silicon Lamb-wave microsensors for pressure and gravimetric measurements Sensora and Actuators A, 1995, Vol.46/47, pp.179-82
    [172] T. M. Reeder, D. E. Cullen, Frequency output pressure sensors based on an application of surface acoustic wave techNology, SAE Preprints, 1976, No.760093
    [173] Hoummady M, et al, Surface acoustic wave (SAW) dew point sensor: application to dew point hygrometry, Sensors Actuators B, Vol.26/27, pp.315-17
    [174] S.Datta, Surface Acoustic Wave Devices, Pretince-Hall, Englewood Cliffs, NJ, 1986
    [175] R. Alder, IEEE Trans. Sonics Ultrason., 1971, SU-18, pp.115
    [176] Varduca, D.F.; Olivotto, C.D.; Selegean, H.; Monitoring system for over-temperature detection of water cooled rotor poles of hydro electrical generators installed at the Danube River Iron Gates Power Plant,Energy Conversion Engineering Conference, IECEC 96. Proceedings of the 31st Intersociety , 1996, Vol.2 , pp.1459 -1464
    [177] Zellers, E.T., Patrash, S.J., Guo-Zheng Zhang,?Selective measurement of organic vapors using SAW sensors with reactive or sorptive coatings: steric, electronic, and solubility factors, Solid-State Sensors and Actuators, Digest of Technical Papers, International Conference on TRANSDUCERS '91., 1991, pp. 998 –1001
    [178] Rapp, M.; Gemmeke, H.; Reichert, J.; Voigt, A.; Analytical microsystem for organic gas detection based on SAW devices, IEEE Ultrasonics Symposium, 1994, Vol.1, pp.619 -622
    [179] Campitelli, A., Wlodarski, W., Hoummady, M., Sawyer, W., Shear horizontal surface acoustic wave based immuNosensing system,Solid State Sensors and Actuators, International Conference on TRANSDUCERS '97, 1997, Vol.1, pp.187 –190
    [180] DiLella, D., Shaffer, R.E., McGill, R.A., Chung, R., Algorithms for the real-time analysis of SAW chemical sensor array data, IEEE International Frequency Control Symposium, 1998, pp.639 –644
    [181] Srivastava, A.K., Srivastava, S.K., Shukla, K.K., On the performance evaluation of
    
    
    hybrid-trained neural classifier for the detection of hazardous vapours using responses from SAW sensors array, IEEE International Conference on Industrial TechNology, 2000, Vol.1, pp.656 –661
    [182] Ping Li, Yumei Wen and Shanlian Huang,A New Passive and Wireless SAW Sensor and Sensor Array, Proc. of International Symposium on Smart Structures and Microsystems, HongKong, 10, 2000,
    [183] 李平、文玉梅、黄尚廉,声表面波无源无线温度传感系统研究,电子测量与仪器学报,2000,Vol.16, No.4, pp.44-49
    [184] Danel, J.S., Dufour, M., Michel, F., Application of quartz micromachining to the realization of a pressure sensor,IEEE International 47th. Frequency Control Symposium, 1993, pp.587 –596
    [185] Goka, S., Sekimoto, H., Watanabe, Y., Experimental study of vibrations of mesa-shaped AT-cut quartz plates,European Frequency and Time Forum, and the IEEE International Frequency Control Symposium, 1999, Vol.1, pp.441 –444
    [186] Le Traon, O., Deyzac, F., Janiaud, D., Muller, S.; The VIA vibrating beam accelerometer: a new quartz micromachined sensor, European Frequency and Time Forum, and the IEEE International Frequency Control Symposium, 1999, Vol.2, pp.1041 –1044
    [187] Nagaura, Y., Nagaura, Z., Nagaura, K., Nagato, K., Emoto, K., Imani, K., KiNoshita, K., Yokomizo, S., Nakazawa, M., Single-sided grooved type or double-sided grooved type resonators manufactured by chemical etching process of two or above steps, IEEE International Frequency Control Symposium and PDA Exhibition, 2001, pp.381 –389
    [188] Nagaura, Y., et al, Single-sided grooved type or double-sided grooved type resonators manufactured by chemical etching process, IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on NaNotechNology, 2001, pp.528 –533
    [189] Leblois, T.G., et al, Quartz resonant micro-structures as sensing elements for temperature sensors, European Frequency and Time Forum, and the IEEE International Frequency Control Symposium, 1999, Vol.2, pp.1045 –1048
    [190] Neumeier, D.A., Chemical milling of quartz using a solution based on organic solvents and anhydrous hydrofluoric acid, IEEE International Frequency Control Symposium and PDA Exhibition, 2002, pp.394 –402
    [191] R.C.Rosenfeld,R.B.Brown and C.S.Hartmann, Unidirectional Acoustic Surface Wave Filters with 2dB Insertion Loss, Proc. IEEE Ultrason. Symp. , 1974, pp.425-428
    [192] D.C.Malocha, Quadrature 3-Phase Unidirectional Transducer, IEEE Trans. Sonics and Ultrason., 1979, SU-26, pp.313-315
    
    [193] K.YamaNouchi, F.Nyfeller and K.Shibayama, Low Insertion Loss Acoustic Surface Wave Filter Using Group-type Unidirectional Interdigital Transducers, Proc. IEEE Ultrason. Symp., 1975, pp.317-321
    [194] C.S.Hartmann and B.P.Abott,Overview of Design Challeges for Single Phase Unidirectional SAW Filters, Proc. IEEE Ultrason. Symp., 1989, pp.79-89
    [195] K.YamaNouchi and H. Furuyashiki, New Low-Loss SAW Filter Using Internal Floating Electrode Reflection Types of Single-Phase Unidirectional Transducer, Electron. Lett., 1984, Vol.20, pp.989-990
    [196] C.S.Hartmann,P.V.Wright,R.J.Kansy and E.M.Garber, Analysis of SAW Interdigital Transducer with Internal Reflections and the Application to the Design of Single-Phase Unidirectional Transducers, Proc.IEEE Ultrason. Symp., 1982, pp40-45
    [197] M.I.Skolnik, Radar Systems, McGraw-Hill, New York, 1962
    
    
    
    
    攻读博士学位期间发表的相关论文
    和参加的相关科研工作
    
    攻读博士学位期间发表的相关论文
    
    [1] Ping Li,Yumei Wen and Shanlian Huang, A New Passive and Wireless SAW Sensor and Sensor Array, Proc. of International Symposium on Smart Structures and Microsystems, Hong Kong, 2000
    [2] 李平,文玉梅,刘双临,王军峰,黄尚廉,编码式谐振SAW无源无线温度传感阵列系统,仪器仪表学报,24,6,2003
    [3] 李平,文玉梅,黄尚廉,声表面波谐振器型无源无线温度传感器,仪器仪表学报,24,4,2003
    [4] 李平,文玉梅,黄尚廉,声表面波无源无线温度传感系统研究,电子测量与仪器学报,vol.16, no.4, 2002
    [5] 李平,文玉梅,黄尚廉等,无源声表面波温度遥感系统响应信号的研究,压电与声光,24,2,2002
    [6] 李平,文玉梅,陈剑,黄尚廉,声表面波无源无线传感系统,测控技术,21,4,2002
    [7] 李平,文玉梅,王军峰,刘双临,黄尚廉,基于声表面波谐振器和延迟线的编码型无源无线阵列传感器,仪表技术和传感器,2, 2003
    [8] 李平,文玉梅,王军峰,黄尚廉,表面波谐振器的时域响应特性研究,压电与声光,25, 2, 2003
    [9] 李平,文玉梅,李文军,压电机敏土木工程结构技术,仪器仪表学报增刊,22,4,2001
    [10]Yumei Wen, Ping Li, et al, Detecting and evaluating the signals of wirelessly interrogational passive SAW resonator sensors, IEEE Sensors Journal (accepted)
    [11] 杨进,李平,文玉梅,声表面波谐振器无源传感器信号特征和信号处理方法研究,电子测量与仪器学报(已录用)
    [12] 文玉梅,李平,刘双临,压电机敏混凝土原理,压电与声光,24,3,2002
    [13] 文玉梅,李平,声表面波传感器对无线正弦脉冲串的响应,中国学术期刊文摘,7, 10, 2001
    [14] 刘双临,李平,文玉梅,无源声表面波谐振器的无线温度传感系统,传感器技术,21,4,2002
    [15] 陈剑,文玉梅,李平,频率测量的软件方法及其在无线传感器中的应用,测控技术,21,8,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700